首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In the vertebrate embryo, the lateral somite gives rise to limb bud and body wall muscles whereas the medial somite generates the axial musculature. We show that in chick embryos, this polarity along the medio-lateral axis is achieved through the antagonistic influences of the lateral plate and the medial neural tube. Bone morphogenetic protein 4 (BMP4) mediates the lateralising signal delivered by the lateral plate and is counteracted locally by Noggin expressed in the medial dermomyotome; Noggin expression in the somite is regulated by the Wnt1 protein which is expressed in the dorsal neural tube and mediates the medialising effect of the neural tube. Therefore, somite medio-lateral patterning results from a signalling cascade in which Wnt1 produced by the neural tube promotes noggin expression in the medial somite which in turn antagonises lateral plate-derived BMP4. This mechanism could lead to the establishment of a BMP4 activity gradient that would produce appropriate BMP4 signalling to generate medial and lateral somite patterning.  相似文献   

3.
Epithelial-mesenchymal transformation is a critical developmental process reiterated in multiple organs throughout embryogenesis. Formation of endocardial cushions, primordia of valves and septa, is a classic example of epithelial-mesenchymal transformation. Several gene mutations are known to affect cardiac valve formation. Sox9 is activated when endocardial endothelial cells undergo mesenchymal transformation and migrate into an extracellular matrix, called cardiac jelly, to form endocardial cushions. In Sox9-null mutants, endocardial cushions are markedly hypoplastic. In these mutants, Nfatc1 is ectopically expressed and no longer restricted to endothelial cells. Further, Sox9-deficient endocardial mesenchymal cells fail to express ErbB3, which is required for endocardial cushion cell differentiation and proliferation. Our results reveal a succession of molecular steps in the pathway of endocardial cushion development. We propose that loss of Sox9 inhibits epithelial-mesenchymal transformation after delamination and initial migration, but before definitive mesenchymal transformation.  相似文献   

4.
During folding of the embryo, lateroanterior visceral mesoderm forms the embryonic tubular heart at the midline, just ventral to the foregut. In mice, this nascent tube contains the future left ventricle and atrioventricular canal. Mesenchymal cells subsequently recruited to the cardiac lineage at the intake and the outflow of the tube will form the atria and the right ventricle and outflow tract, respectively. Shortly after its emergence, the embryonic heart tube starts to loop, and the first signs of left ventricular chamber differentiation become visible on the outer curvature of the middle portion of the tube. Subsequently, the right ventricle differentiates cranially, and the atria caudally, while the inflow tract, atrioventricular canal, inner curvatures, and outflow tract form recognizable components flanking the chambers. The latter, nonchamber regions in turn provide signals for the formation of the cushion mesenchyme, are involved in remodeling of the heart, and form the nodes of the conduction system. This review discusses how the patterning of the heart tube relates to the localized differentiation of atrial and ventricular chambers, why some parts of the heart do not form chambers, and how this relates to the formation of the conduction system.  相似文献   

5.
A structural, ultrastructural and histochemical study in chick embryos indicates that the septum primum mesenchymal tissue originate between 3 and 5 days of development and that their origin may be related to an activation of endocardial cells that cover the septum primum. By day 3, endocardial cells display migratory appendages, cell hypertrophy and an increase in secretory and mitotic activity. In later stages (day 4) hypertrophic endocardial cells undergoing division seem to delaminate and translocate toward the subendocardial space to give rise to free mesenchymal-type cells. These results suggest that the endocardium makes up the bulk of the septum primum mesenchymal tissue as has been demonstrated during mesenchymal tissue formation in the atrioventricular canal and outflow tract. Before and during mesenchymal tissue formation an accumulation of extracellular matrix components like proteoglycans can be visualized using tannic acid. These extracellular components might be related to the promotion of cellular events described during endocardial activation. The fusion of the septum primum with the atrioventricular (AV) endocardial cushions which would obliterate the foramen primum, occurs between mesenchymal tissues. Therefore, any alteration in the normal development of these mesenchymal tissues could be related to pathological cases of persistent atrial communications. Light microscopy preliminary observations of embryonic mouse heart indicate that septum primum mesenchymal tissue formation occurs similarly between mouse and chick embryos.  相似文献   

6.
In this review, we report and analyse the molecular factors involved in cardiogenesis from the earliest stages of development, using mainly the chick embryo as a model. The first part of the review demonstrates the areas where cardiogenic cells are located from gastrula stages, analysing a brief summary of the fate map of cardiogenic cells, from the epiblast through to the primitive heart tube. The next part analyses the commitment of pre-cardiac cells in cardiogenesis before, during, and after ingression through the primitive streak. Throughout the different journeys of the pre-cardiac cells, from the origin on the epiblast level up to the constitution of the tubular heart in the mid-line, the genes involved in the different stages of the process of cardiogenesis are very numerous. These have a greater or lesser importance depending on their specificity and the order in which they appear, bearing in mind that they become more valuable as the developmental process advances and the precursor cells start acquiring the commitment of pre-cardiac cells. Next, we show some box-filled diagrams to illustrate the dynamic gene expression pattern throughout the early stages of heart development, grouping the genes by their chronological significance. Finally, we discuss the implications that this temporal genomic expression could have in the induction and specification of the different types of cells and regions of the heart.  相似文献   

7.
The neural cell adhesion molecule, NCAM, was localized in the embryonic chick heart from Hamburger-Hamilton stage 14 up to hatching and in the adult heart. A monoclonal antibody directed to NCAM was used with the indirect antibody technique to stain frozen sections with immunoperoxidase. The myocardium showed immunoreactivity at stages 15 and 21, with little to no staining of epicardium, endocardium or atrioventricular endocardial cushion tissue. At stage 22, additional immunoreactivity was found in the endocardium of both the atrial septum and the atrial and ventricular surfaces of the atrioventricular cushions. Endocardial-derived mesenchymal cells within the cushions were also immunostained for NCAM. A gradient of NCAM staining was evident in the ventricular wall by stage 16. The staining intensity in the myocardium subjacent to the epicardium was less than found near the ventricular lumen. Biochemical analyses revealed that the embryonic heart expresses polysialylated NCAM. Upon desialylation with the endoneuraminidase Endo-N, the predominant heart NCAM has an apparent molecular weight of 155 to 160 kDa, which is distinct in size from the predominant forms found in embryonic chick nervous system (180, 140 and 120 kDa). NCAM expression is regionally regulated in the heart. The pattern of its expression is consistent with our hypothesis that it is involved in (1) differentiation of the atrial and ventricular walls, (2) fusion of the atrial septum with the endocardial cushions, (3) fusion of the endocardial cushions, and (4) formation and remodeling of ventricular trabeculae.  相似文献   

8.
Control of somite patterning by signals from the lateral plate.   总被引:4,自引:1,他引:4       下载免费PDF全文
The body musculature of higher vertebrates is composed of the epaxial muscles, associated with the vertebral column, and of the hypaxial muscles of the limbs and ventro-lateral body wall. Both sets of muscles arise from different cell populations within the dermomyotomal component of the somite. Myogenesis first occurs in the medial somitic cells that will form the epaxial muscles and starts with a significant delay in cells derived from the lateral somitic moiety that migrate to yield the hypaxial muscles. The newly formed somite is mostly composed of unspecified cells, and the determination of somitic compartments toward specific lineages is controlled by environmental cues. In this report, we show that determinant signals for lateral somite specification are provided by the lateral plate. They result in a blockade of the myogenic program, which maintains the lateral somitic cells as undifferentiated muscle progenitors expressing the Pax-3 gene, and represses the activation of the MyoD family genes. In vivo, this mechanism could account for the delay observed in the onset of myogenesis between muscles of the epaxial and hypaxial domains.  相似文献   

9.
We have identified extracell potential changes associated with the electrical activity of the canine sinoatrial pacemaker. Small nonpolarizable electrodes and low frequency high gain amplification were used to record unipolar electrograms from both the epicardial and the endocardial surfaces of the canine sinus node. Initially in vitro studies were performed so that transmembrane action potential changes could be recorded simultaneously with the extracell potentials. The sinus nodal electrogram showed two characteristic potentials when the electrode was in immediate proximity to pacemaking cells: (1) During phase 4 there was a steady slope of about −30 to −100 μv/sec, and (2) during the transition from phase 4 to phase 0 of the transmembrane action potential the slope of the electrogram increased smoothly to approximately −400 to −1,000 μv/sec. These potentials were followed by high frequency deflections as cells in the surrounding atrium depolarized. Tetrodotoxin (5 mg/liter) rendered the atrial muscle inexcitable and delayed and then abolished the high frequency activity in the sinus electrogram, which then appeared as a continuous smooth tracing similar to the sinus pacemaker action potential but reversed in polarity. We then recorded these small localized potentials from the in situ canine heart. Sinus nodal electrograms could be obtained from beating hearts with hand held probes on the epicardial surface and with conventional recording catheters on the endocardial surface. The results demonstrate that the canine sinus node gives rise to detectable and characteristic changes in extracell potential and suggest that similar potentials can be recorded from man to evaluate sinus nodal function.  相似文献   

10.
To establish the morphogenetic mechanisms underlying formation and separation of the atrioventricular connections, we studied the remodeling of the myocardium of the atrioventricular canal and the extracardiac mesenchymal tissue of the vestibular spine in human embryonic hearts from 4.5 to 10 weeks of development. Septation of the atrioventricular junction is brought about by downgrowth of the primary atrial septum, fusion of the endocardial cushions, and forward expansion of the vestibular spine between atrial septum and cushions. The vestibular spine subsequently myocardializes to form the ventral rim of the oval fossa. The connection of the atrioventricular canal with the atria expands evenly. In contrast, the expression patterns of creatine kinase M and GlN2, markers for the atrioventricular and interventricular junctions, respectively, show that the junction of the canal with the right ventricle forms by local growth in the inner curvature of the heart. Growth of the caudal portion of the muscular ventricular septum to make contact with the inferior endocardial cushion occurs only after the canal has expanded rightward. The atrioventricular node develops from that part of the canal myocardium that retains its continuity with the ventricular myocardium.  相似文献   

11.
It used to be thought that the atrioventricular septum was predominantly the product of the atrioventricular endocardial cushions. In a previous study, we have shown that multiple developmental primordia are of importance in its formation. With this in mind, we have evaluated cardiac morphogenesis in the mouse with trisomy 16, an animal model with a high incidence of atrioventricular septal defects. Normal and trisomic fetuses from an Rb(11.16)2H/Rb(16.17)7Bnr x C57BL/6J cross were collected on days 10 to 15 of gestation and examined by scanning electron microscopy and histological serial sectioning. No evidence was found to suggest that atrioventricular septal defect could be explained simply on the basis of "failure of fusion" between the atrioventricular endocardial cushions. Rather, our findings supported two other developmental elements as being important in the genesis of atrioventricular septal defect. The first is an alteration in the configuration of the heart tube, with inadequate remodeling of the inner heart curvature. This resulted in the failure of the atrioventricular junction to expand to the right, with subsequent malalignment of the atrioventricular endocardial cushions with the proximal outflow cushions. The second is a variability in the connection of the primary atrial cardiac segment to the body of the embryo, the so-called dorsal mesocardium, which influences its relationship to the extracardiac mediastinal mesoderm. There appeared little difference in the connection between normal and trisomic embryos at the stage of 20 to 25 somites, but the area subsequently showed marked changes. In most trisomic embryos, the connection with the mediastinal mesoderm of the body was over a larger area than seen in normal embryos. As this area of attachment encloses the pulmonary pit, the entry point of the pulmonary vein, this gives potential for variation in the connection of the pulmonary vein. In addition, in the majority of trisomic embryos, the right pulmonary ridge (the spina vestibuli) did not accumulate extracardiac mesoderm, nor did it undergo the pronounced forward growth seen in normal embryos of equivalent stages. Consequently, the trisomic embryos show incomplete formation of both the atrial and the atrioventricular septal structures.  相似文献   

12.
INTRODUCTION: The high posterolateral right atrium (RA) is considered the "sinus node area," but we lack information on endocardial atrial activation in sinus rhythm. We studied RA and left atrial (LA) endocardial activation in the electrophysiology laboratory. METHODS AND RESULTS: Thirty-five patients (21 men) aged 47 +/- 16.4 years (mean +/- SD) underwent RA mapping (22.2 +/- 3.8 points). In 21 patients, LA activation was mapped (11.1 +/- 3.9 points) through the coronary sinus (CS), right pulmonary artery, and/or a patent oval foramen. Fourteen patients had atrial arrhythmias, and 3 an ECG pattern of Bachmann's bundle block. Endocardial RA activation preceded P wave in 5 (-14 +/- 4.2 ms), coincided in 11, and followed P onset in 18 (16.7 +/- 6.6 ms). Location of the zero point varied from the superior vena cava to the low RA and from lateral to paraseptal RA. In 19 patients, activation started simultaneously in 2 to 5 points located >or=1 cm apart. RA activation was descending in most, but in 3 with low onset there was collision in the anterior and septal walls. In 15 of 21 patients, descending LA activation dominated, ending in the mid CS in 12, proximal CS in 1, and simultaneously throughout the CS in 2. In 3 with Bachmann's bundle block, CS activation was ascending and in 2 double potentials were recorded from the LA roof. CONCLUSION: During stable sinus rhythm, RA activation can start in different areas or simultaneously over large areas resulting in different activation patterns, both in the RA and the LA. LA activation is predominantly descending, but in Bachmann's bundle block it becomes ascending, and double potentials suggest a location of block in the LA roof.  相似文献   

13.
The dorsal-ventral polarity of the somite is controlled by antagonistic signals from the dorsal neural tube/surface ectoderm, mediated by WNTs, and from the ventral notochord, mediated by sonic hedgehog (SHH). Each factor can act over a distance greater than a somite diameter in vitro, suggesting they must limit each other's actions within their own patterning domains in vivo. We show here that the growth-arrest specific gene 1 (Gas1), which is expressed in the dorsal somite, is induced by WNTs and encodes a protein that can bind to SHH. Furthermore, ectopic expression of Gas1 in presomitic cells attenuates the response of these cells to SHH in vitro. Taken together, these data suggest that GAS1 functions to reduce the availability of active SHH within the dorsal somite.  相似文献   

14.
In my Mannheimer lecture, designed to meet the needs of a mainly clinical audience, I present aspects of cardiac development that link basic science to clinically relevant problems. During development of the cardiac tube, and its subsequent changes as a dextrally looped structure, which is still connected to the dorsal body wall by a venous and an arterial pole, there are basic requirements. These consist of the development of myocardium, endocardium and the interposed cardiac jelly from the cardiogenic plates. In this primitive heart tube, septation and valvar formation then take place to convert it into a four-chambered heart. I demonstrate that the refining of the above events cannot take place without the addition of extracardiac populations of cells. These are presented as the "quintessence of heart development", and consist of cells derived from the neural crest, along with epicardially derived cells. Without these contributions, the embryos uniformly die of cardiac insufficiency. Important contributions are made by the cells derived from the neural crest to septation and the formation of the arterial valves, and possibly in differentiation of the central conduction system. The epicardially derived cells are essential for formation of the interstitial fibroblasts and the myocardium, as well as the coronary vascular system. I conclude by discussing specific malformations of the heart that might be linked to these extracardiac contributions.  相似文献   

15.
We studied the effects of ischemia on transmembrane action potentials, conduction time, and refractory periods of both endocardial and epicardial muscle cells of coronary-perfused cat left ventricles. Oxygenated Tyrode's solution was perfused through the left anterior descending coronary artery, while the preparation was superfused with Tyrode's solution gassed with 95% N2 and 5% CO2. Transmembrane action potentials recorded simultaneously from endocardial and epicardial cells were normal during coronary perfusion. When perfusion was discontinued ("ischemia"), rapid deterioration of action potentials and prolongation of conduction time were observed in both endocardial and epicardial cells. The magnitude of the reduction of action potential amplitude and action potential duration (APD), and of prolongation of conduction time, was greater in epicardial cells than in endocardial cells, although the change in resting membrane potential was almost the same. However, APD of endocardial cells decreased progressively during 30 min of ischemia, whereas APD of epicardial cells was reduced maximally at 10 min and then partially recovered. Shortening of refractory periods of endocardial cells paralleled APD shortening, whereas refractory periods of epicardial cells decreased for the first 10 min and then increased. At 10 min of ischemia, APD and refractory periods of epicardial cells were significantly shorter than those of endocardial cells. At 30 min of ischemia, refractory periods of epicardial cells exceeded those of endocardial cells because of development of greater postrepolarization refractoriness in epicardial cells. Accompanying these different changes in APD and refractory periods of endocardial and epicardial cells, spontaneous extrasystolic impulses increased and rapid runs of extrasystolic impulses could be induced by extrastimuli.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
d-Sotalol and Atrial Reentry. Introduction: In the chronically instrumented animal and the isolated blood perfused heart, atrial reentry via a fixed path around an anatomical obstacle has been described and is terminated by the Class III antiarrhythmic agent, d-sotalol. The precise mechanism by which d-sotalol terminates this arrhythmia is not known.
Methods and Results: In the present study, right atrial (RA) activation sequences in the isolated, coronary artery perfused canine heart during episodes of sustained flutter (n = 7) and drug administration were determined. A fixed array of bipolar electrodes was used to record endocardial electrograms from 96 sites on the RA simultaneously. Maps of all control flutters showed that the rhythm was due to persistent circus movement of the impulse around the tricuspid valve ring. D-sotalol was effective in terminating atrial reentry in this model. In all episodes, block of the excitatory impulse in a specific region of the reentrant circuit accompanied these terminations. However, the events preceding the occurrence of block of the impulse were not similar. Two different modes of termination are described.
Conclusion: The Class III antiarrhythmic agent d-sotalol can terminate atrial reentry in several ways. In one mode, complete conduction block of he reentering impulse within the fixed path occurs to terminate the rhythm. In the other mode, interruption of the original reentrant circuit occurs when there is failure of a lateral boundary. Often in this latter case, interruption of the original circuit is by an extra impulse that is secondary to a change in the path of the impulse. In both modes cycle length oscillations are observed.  相似文献   

17.
We have examined the effect of implantation of a supernumerary notochord or floor plate on dorsoventral somitic organization. We show that notochord and floor plate are able to inhibit the differentiation of the dorsal somitic derivatives--i.e., axial muscles and dermis--thus converting the entire somite into cartilage, which normally arises only from its ventral part. We infer from these results that the dorsoventral patterning of somitic derivatives is controlled by signals provided by ventral axial structures.  相似文献   

18.
19.
The liver develops from two anlages: the hepatic diverticulum, which buds off the ventral side of the foregut, and the septum transversum, which is the mesenchymal plate that partially separates the embryonic thoracic and abdominal cavities. The endodermal cells of the hepatic diverticulum invade the septum transversum, forming sheets and cords of hepatoblasts arrayed along the sinusoidal vascular channels derived from the vitelline veins emanating from the yolk sac. The vitelline veins fuse to form the portal vein, which ramifies as tributaries within the liver along mesenchymal channels termed portal tracts. Those hepatoblasts immediately adjacent to the mesenchyme of the portal tracts differentiate into a ductal plate, a single circumferential layer of biliary epithelial cells. Mesenchymal cells interpose between the ductal plate and the remaining parenchymal hepatoblasts, which differentiate into hepatocytes. By week 7 the ductal plate begins to reduplicate, forming a double layer of cells around the portal tract. Lumena form between the two cell layers of the ductal plate, forming peripheral biliary tubular structures. These peripheral tubules remodel and, with continued proliferation of the mesenchyme, by the 11th week begin to become more centrally located within portal tracts as terminal bile ducts with a circular cross-section. The remaining ductal plate resorbs, leaving behind only tethers of bile ductules connecting the terminal bile ducts to the parenchyma. Abutting and within the parenchyma are the canals of Hering, ductular structures half-lined by hepatocytes and half-lined by biliary epithelial cells. Maturation of the intrahepatic biliary tree to the mature tubular treelike architecture occurs from the hilum of the liver outward, beginning around the 11th week of gestation and continuing past birth for several months. The architecture of maturation is the same regardless of gestational age or radial location in the liver. Importantly, the immature intrahepatic biliary system maintains patency and continuity with the extrahepatic biliary tree throughout gestation, with no evidence of a solid phase of development. Thus, from the earliest time of hepatocellular bile formation beginning around the 12th week, there is a patent passage to the alimentary canal.  相似文献   

20.
We have used a transgene mutation approach to study how expression domains of Hoxc8 are established during mouse embryogenesis. A cis-regulatory region located 3 kb upstream from the Hoxc8 translational start site directs the early phase of expression. Four elements, termed A, B, C, and D, were previously shown to direct expression to the neural tube. Here we report that a fifth element, E, located immediately downstream of D directs expression to mesoderm in combination with the other four elements. These elements are interdependent and partially redundant. Different combinations of elements determine expression in different posterior regions of the embryo. Neural tube expression is determined minimally by ABC, ABD, or ACD; somite expression by ACDE; and lateral plate mesoderm expression by DE. Neural tube and lateral plate mesoderm enhancers can be separated, but independent somite expression has not been achieved. Furthermore, mutations within these elements result in posteriorization of the reporter gene expression. Thus, the anterior extent of expression is determined by the combined action of these elements. We propose that the early phase of Hoxc8 expression is directed by two separate mechanisms: one that determines tissue specificity and another that determines anterior extent of expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号