首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Objective: Functional cross-talk exists between sympathetic nerve fibers and cytokine-producing splenic cells in early collagen type II–induced arthritis (CIA) (day 32). These earlier experiments demonstrated exclusively neuronal sympathetic regulation of IFN-γ, CXCL1, IL-6, and TGF-β. However, in late arthritis, the sympathetic influence might change due to loss of sympathetic nerve fibers and appearance of neurotransmitter-producing cells. We aimed to investigate neurotransmitter-dependent regulation of IFN-γ, CXCL1, IL-6, and TGF-β in murine spleen in late CIA.Methods: Spleens were removed when animals reached day 58 (46–68) after immunization to generate 0.35 mm-thick spleen slices, which were transferred to superfusion microchambers to electrically induce release of neurotransmitters. Using respective neurotransmitter antagonists, effects of released neurotransmitters on cytokine secretion were investigated.Results: There was electrically induced inhibition of IFN-γ, CXCL1, and IL-6, and stimulation of TGF-β, which was much less pronounced than in early CIA. There existed β adrenergic inhibition of IFN-γ, IL-6, and TGF-β (and stimulation of CXCL1) independent of electrical stimulation (interpreted as non-neuronal). However, there was a neuronal α1/2 adrenergic stimulation of IFN-γ, CXCL1, and IL-6 and, we observed neuronal A1-adenosinergic stimulation of TGF-β.Conclusions: In the late phase of CIA, non-neuronal modulation of cytokine secretion increases while neuronal regulation strikingly decreases. Particularly, β-adrenergic effects are non-neuronal while α1/2-adrenergic effects are clearly neuronal. We suggest that alterations in sympathetic innervation of the spleen fundamentally change the functional neuroimmune interplay in the spleen of arthritic mice.  相似文献   

3.
In early morning hours, a rise of serum cytokines such as IL-6 was described. This study aimed to find reasons for this phenomenon focussing on NE and corticosterone. Mouse spleen slices were electrically stimulated (ES) in a microsuperfusion chamber in order to release endogenous NE. ES inhibited IL-6 secretion when animals were sacrificed at 03:00 and 06:00 (both p<0.001) but it increased its secretion from spleen slice removed at 09:00 (p=0.026). Prior administration of corticosterone or the glucocorticoid antagonist RU486 abrogated these ES effects. Endogenous NE via alpha- and beta-adrenoceptors mediated this time-dependent differential effects. This study demonstrates that cooperation of endogenous NE and corticosterone are involved in a time-dependent fall or rise of splenic IL-6 secretion.  相似文献   

4.
OBJECTIVES: The noradrenergic innervation of lymphoid organs controls several immune cell functions and local blood perfusion. Considering that cell and antigen uptake depend on the blood supply to lymphoid organs, the hypothesis was tested that feedback signals from activated immune cells control sympathetic vasomotor activity. METHODS: We determined the blood flow in spleen and mesenteric lymph nodes (mLN) of Wistar Kyoto rats during immune stimulation with endotoxin (LPS; 10 microg/kg) and following disruption of the noradrenergic transmission. RESULTS: Our data indicate that (a) the splenic noradrenaline content, which reflects the density of the sympathetic innervation, is 5 times higher in the spleen than in other peripheral organs and the spleen receives stronger tonic sympathetic input than mLN; (b) immune stimulation with LPS causes a 4-fold increase in the IL-1beta production in the spleen, but only 2-fold in mLN; (c) IL-1beta causes an inhibition of the sympathetic vasoconstrictor tonus in the spleen, but has no significant effect on the noradrenergic vascular tonus in mLN, and (d) in mLN, the local hyperemia induced by LPS is attenuated by the degranulation of vesicular stores of histamine and serotonin, indicating that these monoamines participate in the vasodilator effect of LPS in mLN. CONCLUSIONS: The present experiments, taken together with our previous studies, indicate that the control of blood supply to the spleen and mLN involves different mechanisms. While blood perfusion in the spleen depends on the inhibition of the noradrenergic vasoconstriction by endogenously produced IL-1beta, other vasoactive mediators such as serotonin and histamine play a role in the control of mLN perfusion.  相似文献   

5.
We have previously shown that intracerebroventricular(ICV) injection of interleukin-1β (IL-1β) suppressed splenic macrophage function. Sympathetic noradrenergic innervation of the spleen was implicated as a mediator of this IL-1β signal as surgical sympathectomy ablated the macrophage suppression. In this study, we have determined whether ICV administration of IL-1β has an effect on sympathetic outflow and norepinephrine (NE) turnover in the spleen. Adult male rats were injected with 5 ng of IL-1 or saline, and NE turnover in the spleen was determined using the rate of decline of NE content in the spleen after synthesis inhibition. The splenic NE turnover rate was increased significantly from 69.52 ng/g/h in saline-treated animals to 111.05 ng/g/h in IL-1-treated animals. In addition, serum corticosterone and ACTH were significantly elevated in IL-1β-treated animals 4 h postinjection. These data indicate that central administration of IL-1β increases both sympathetic outflow to the spleen and activates the hypothalamic-pituitary-adrenal axis during the period when IL-1β induces immunosuppression.  相似文献   

6.
The effects of intravenous (i.v.) administration of recombinant human interleukin-1 beta (rhIL-1 beta) on the activity of adrenal, splenic and renal sympathetic nerves were observed in urethane-anesthetized rats. An i.v. injection of IL-1 beta in doses of 10 pg-20 ng per animal (300-400 g, b.w.) resulted in a dose-dependent increase in the activity of the adrenal and splenic nerves, which lasted for more than 2-6 h. On the other hand, the activity of renal nerves showed a transient increase which was followed by a long-lasting suppression after injection of rhIL-1 beta (100 pg, i.v.). An i.v. injection of cyclooxygenase inhibitors (6 mg ibuprofen or 20 mg sodium salicylate) suppressed almost completely the rhIL-1 beta (100 pg)-induced activity in adrenal and splenic nerves. Although rhIL-1 beta (100 pg, i.v.) produced a fall in arterial blood pressure, baroreceptor denervation did not affect the excitatory responses of the adrenal and splenic nerves to rhIL-1 beta. The results suggest the regional differentiation of activity in the visceral sympathetic nerves in response to rhIL-1 beta. The rhIL-1 beta-induced activation of splenic sympathetic nerves implicates their involvement in the modulation of immunity by brain.  相似文献   

7.
Immune defence mechanisms can be modulated by brain function. To study such interactions, an in vitro method was developed to examine the release of cytokines and norepinephrine (NE) after electrical stimulation. Slices of mouse spleen were placed in chambers with a volume of 80 μl and superfused with culture medium. To characterize electrically evoked NE release and cell viability a suitable stimulation protocol was developed using of [3H]NE. As parameter for immune function, modulation of interleukin-6 (IL-6) release by the spleen cells brought about by electrical stimulation was investigated. Splenic [3H]NE overflow was calcium-dependent, tetrodotoxin-sensitive and elicited by 54 mM potassium. Electrically evoked [3H]NE release at 22 h was about 80% of the release at 5.3 h. Electrical stimulation substantially reduced IL-6 secretion at 6 h (control: 143.4 ± 14.3 vs. electrical: 71.3 ± 7.9 pg/ml/106 leukocytes, P = 0.0001). This effect was inhibited in a concentration-dependent manner by the β-adrenergic antagonist propranolol (P = 0.0298, EC50approx. 10−7M). In conclusion, this new technique allows long-term investigation of cell function in slices of murine spleen. In addition, these are the first in vitro data indicating the presence of a functional neuroimmunological link in murine lymphoid tissue.  相似文献   

8.
The baroreflex is a critical physiological mechanism controlling cardiovascular function by modulating both the sympathetic and parasympathetic activities. Here, we report that electrical activation of the baroreflex attenuates joint inflammation in experimental arthritis induced by the administration of zymosan into the femorotibial cavity. Baroreflex activation combined with lumbar sympathectomy, adrenalectomy, celiac subdiaphragmatic vagotomy or splenectomy dissected the mechanisms involved in the inflammatory modulation, highlighting the role played by sympathetic inhibition in the attenuation of joint inflammation. From the immunological standpoint, baroreflex activation attenuates neutrophil migration and the synovial levels of inflammatory cytokines including TNF, IL-1β and IL-6, but does not affect the levels of the anti-inflammatory cytokine IL-10. The anti-inflammatory effects of the baroreflex system are not mediated by IL-10, the vagus nerve, adrenal glands or the spleen, but by the inhibition of the sympathetic drive to the knee. These results reveal a novel physiological neuronal network controlling peripheral local inflammation.  相似文献   

9.
Systemic administration of endotoxin (LPS) or interleukin-1β (IL-1) to prepubertal rats induced a marked increase in splenic but not cardiac norepinephrine (NE) turnover, an index of sympathetic neural activity. In contrast, the splenic neural response was blunted in their fetal alcohol-exposed (FAE) cohorts. Because the sympathetic outflow to lymphoid organs is considered an important immune modulator, the anomalous neural response to immune signals may partly account for the impaired cellular immunity and, thus, for the increased susceptibility to infections associated with FAE.  相似文献   

10.
Previous findings from our laboratory revealed an age-related decline in noradrenergic (NA) sympathetic innervation of the spleen in male Fischer 344 (F344) rats. The purpose of this study was to determine whether other rat strains also progressively lose NA sympathetic nerves in the aging spleen. Sympathetic innervation of spleens from 3- and 21-month-old male F344, Brown Norway (BN), BN X F344 (BNF(1)), and Lewis rats was examined using fluorescence histochemistry to localize catecholamines combined with morphometric analysis and using high-performance liquid chromatography with electrochemical detection for measuring norepinephrine (NE). Neurochemistry revealed a significant age-related decline in NE concentrations in spleens from F344 and Lewis rats. In contrast, there was no effect of age on splenic NE concentrations in BN or BNF(1) rats. Consistent with neurochemical analysis, fluorescence histochemistry revealed a striking decline in NA innervation of spleens from old F344 and Lewis rats not observed in the other two strains. However, in BN and BNF(1) rats, nerve fibers were diminished in distal portions of the spleen but not in the hilar regions. Morphometric analysis confirmed neurochemical and histological findings, revealing approximately 65-70% loss in NA nerve density in spleens from F344 and Lewis rats. These findings indicate that age-related changes in sympathetic innervation of the rat spleen are strain-dependent. Whether the loss of sympathetic nerves in spleens from F344 and Lewis rats is associated with age-related changes in the splenic microenvironment remains to be determined. The functional significance of altered sympathetic innervation of the spleen with advancing age is discussed.  相似文献   

11.
The distribution of secretoneurin (SN), a peptide derived from secretogranin II (SgII), in the coeliac ganglion, the splenic nerve and the spleen was examined by immunohistochemistry. In the ganglion, SN immunoreactivity (IR) was unevenly distributed. Positive nerve terminals densely surrounded some postganglionic perikarya in which also intense SN-IR was present. In the crushed splenic nerves, intense immunoreactivities appeared proximal (but to a less extent also distal) to the crush of the nerve. Analysis by cytofluorimetric scanning (CFS) demonstrated that SN-IR and neuropeptide Y immunoreactivity (NPY-IR) were predominant in the axons proximal to the crush representing anterogradely transported components. Using radioimmunoassay (RIA) we demonstrated that upon electrical stimulation (10 Hz, 1 min) of the splenic nerve, significant amounts of SN-IR (64.2+/-2.3 fmol) were released together with NA (4. 1x106+/-0.2 fmol) and NPY (330.0+/-7.2 fmol) from the isolated perfused porcine spleen. To evaluate the processing of SgII in sympathetic neurons, boiled tissue extracts (coeliac ganglia and splenic nerve) and boiled spleen perfusate (used as a suitable source for vesicle derived peptides) were analysed by gel filtration chromatography followed by SN-RIA. In all cases immunoreactivity was present solely as SN, indicating that SgII was fully processed to the free peptide. The evidence that SN is transported to the nerve terminals and is released from the porcine spleen upon nerve stimulation, suggests that it may modulate adrenergic neurotransmission and may also play a role in the neuroimmune communication.  相似文献   

12.
Sympathetic noradrenergic (NA) neuronal activities in the thymus, spleen and mesenteric lymph nodes (MLN) and immune responses in the spleen were examined in young male F344 rats treated daily with 0, 0.25 mg, or 2.5 mg/kg body weight of L-deprenyl, an irreversible monoamine oxidase-B (MAO-B) inhibitor. Rats were treated daily for 1, 15, or 30 days, and sacrificed 7 days after the last deprenyl treatment. Deprenyl treatment increased norepinephrine (NE) content in the spleen without modifying the pattern and density of NA innervation in the splenic white pulp. The concentration of NE was unaltered in the thymus, but it was increased in the MLN of deprenyl-treated rats. One day of treatment with deprenyl decreased splenic NK cell activity while 15 days of deprenyl treatment enhanced splenic NK cell activity. Deprenyl elevated Con A-induced T lymphocyte proliferation following 30 days of treatment, but did not alter spleen cell Con A-induced IL-2 production or the percentage of CD5 + T cells in the spleen. A moderate decrease in the percentage of sIgM + B cells was observed in the spleens of 15- and 30-day deprenyl-treated rats. These results suggest that deprenyl has sympathomimetic action on sympathetic NA nerve fibers in the spleen; the enhancement of NA neuronal activity may contribute to the modulation of immune responses in the spleen.  相似文献   

13.
Septic shock is believed to be a consequence of excessive stimulation of the immune system by bacterial toxins that results in systemic overproduction of proinflammatory cytokines, including tumor necrosis factor-alpha (TNF-alpha), IL-1, and IL-6. Various studies have shown that TNF-alpha, a major mediator of septic shock, induces tissue injury, loss of blood pressure, organ failure, and ultimately death. Administration of the opioid antagonist naloxone has been reported to reverse opiate-mediated hypotension, promote organ perfusion and increase patient survival. In this study, we examined the mechanism by which the opioid receptor antagonist, naltrexone, modulates the septic shock response in BALB/c mice after injection with lipopolysaccharide (LPS) or staphylococcal enterotoxin B (SEB) in combination with d-galactosamine (d-gal), or with agonistic anti-Fas antibody (Jo2) alone. Each of these treatments induced rapid-onset, acute shock, and ultimately mortality (6-9h after injection), although different mechanisms are involved. Administration of the opioid antagonist naltrexone protected mice from shock induced by LPS+d-gal, but not SEB+d-gal or Jo2 antibody, a protective effect that was reversed by morphine. Naltrexone significantly inhibited the production of TNF-alpha induced by LPS, but not SEB in vivo. When bone marrow-derived, splenic or peritoneal macrophages were treated with LPS in vitro, administration of naltrexone had no direct effect on TNF-alpha production. These results suggest that naltrexone is capable of preventing LPS-induced septic shock mortality by indirect inhibition of TNF-alpha production in vivo.  相似文献   

14.
In aged Fischer 344 (F344) rats, sympathetic noradrenergic (NA) innervation of the spleen is markedly diminished compared with young rats. To determine if diminished NA innervation can still provide functional signals to splenic T cells, young (3 months old) and old (17 months old) F344 rats were treated with the NA-selective neurotoxin, 6-hydroxydopamine (6-OHDA) to destroy peripheral NA nerve fibers. In 3-month-old rats, no alterations in spleen cell Con A-induced T cell proliferation, IL-2 or IFN-gamma production were observed up to 15 days after sympathectomy, when splenic NE was maximally depleted. By 21 days post-sympathectomy, when NE levels had partially recovered, Con A-induced proliferation and IFN-gamma production, but not IL-2 production, were reduced in sympathectomized animals. After day 21 post-sympathectomy, no alterations in T cell functions were observed in sympathectomized animals. In 17-month-old rats, spleen cell Con A-induced proliferation and IL-2 production were reduced 5 days after sympathectomy in the absence of changes in CD5+ T cells or IFN-gamma production. Desipramine pretreatment, to block 6-OHDA uptake and prevent sympathectomy, completely blocked the 6-OHDA-induced effects, demonstrating that the destruction of NA nerve fibers is required. After day 5 post-sympathectomy, no sympathectomy-induced alterations in Con A-induced T cell functions were observed in old animals. These differences between young and old rats demonstrate that old animals are more susceptible to loss of sympathetic NA innervation, perhaps because compensatory mechanisms are limited. The sympathectomy-induced reduction in T cell proliferation indicates that splenic NA innervation in old animals, though diminished, can exert a positive regulatory influence on T lymphocyte function. Further study of sympathetic neural-immune interactions in the aged rat may provide a means to improve T cell responsiveness in aging.  相似文献   

15.
The effect of norepinephrine on endotoxin-mediated macrophage activation   总被引:6,自引:1,他引:5  
The effect of norepinephrine (NE) on the production of tumor necrosis factor (TNF) by rat spleen macrophages was determined. Following activation with lipopolysaccharide, analysis of both secreted and cell-associated samples showed that TNF activity was significantly suppressed in the presence of 10 microM NE. With the addition of the beta-receptor antagonist propranolol a partial reversal of the suppressive effect of NE was noted whereas the addition of the mixed alpha-receptor antagonist phentolamine induced a more pronounced suppressive effect in the supernatant fraction. Similar results were obtained with epinephrine and isoproterenol. Control experiments confirmed that this effect of NE was mediated at the level of macrophage activation. Analysis of lymphocyte activating factors demonstrated a similar pattern of response. Since factors released by macrophages participate in many aspects of the immune response, these results support a functional role for sympathetic innervation of the spleen in immune regulation.  相似文献   

16.
Prenatal alcohol exposure (FAE) has been associated with multiple anomalies, including a selective developmental delay of sympathetic innervation in lymphoid organs. Sympathetic neurons require nerve growth factor (NGF) for their development and maintenance, and recent evidence has suggested that alcohol impairs the synthesis and/or biological activity of NGF in selected central and peripheral neurons. Thus, the present study examined the hypothesis that NGF administration to FAE rats during early postnatal development would reverse some of the peripheral sympathetic deficits. Neonate rats, FAE and the corresponding control cohorts, received daily treatments of NGF or cytochrome C (0.3 mg/kg; s.c.) for various time intervals, and were killed 24hr or 10 days after the last treatment. The measured parameters included norepinephrine (NE) concentrations in the spleen and heart, which receive noradrenergic innervation from the coeliac ganglion and the superior cervical ganglion (SCG), respectively. In addition, we measured the activity of pineal N-acetyltransferase (NAT), the rate-limiting enzyme of melatonin biosynthesis, which depends on sympathetic innervation from the SCG. The data show that chronic, but not acute, NGF treatments reversed the FAE-related deficits in splenic NE concentrations as well as in pineal NAT activity in a time- and age-dependent manner. Sympathetic neurons play an important role in immune modulation. Thus, the altered splenic NE levels and pineal NAT activity may play a role in immune deficits associated with exposure to alcohol in utero.  相似文献   

17.
Sympathetic nerves in the spleen undergo an injury and sprouting response with development of adjuvant-induced arthritis (AA), a model of rheumatoid arthritis (RA). The objective of the present study was to determine whether this injury and sprouting response is disease-specific or occurs in a non-specific manner similar to injury and sprouting responses following sympathectomy with specific neurotoxins. Changes in noradrenergic (NA) innervation in spleens from Lewis rats 28 days following adjuvant treatment to induce arthritis and/or local 6-hydroxydopamine (6-OHDA) treatment to destroy NA nerves were examined using immunocytochemistry for tyrosine hydroxylase (TH). We observed significant increases in sympathetic innervation of hilar regions, sites of nerve entry into the spleen, and a striking decline in innervation of splenic regions distant to the hilus in arthritic compared to non-arthritic rats. While increased hilar and decreased distal NA innervation in arthritic rats was strikingly similar to that of non-arthritic 6-OHDA-treated rats, there were differences in splenic compartments innervated by sympathetic nerves between these groups. In 6-OHDA-treated rats, NA nerves re-innervated splenic compartments normally innervated by sympathetic nerves. In arthritic rats, sympathetic nerves returned to normally innervated splenic compartments, but also abundantly innervated red pulp. These findings suggest that splenic sympathetic nerves undergo a disease-associated injury/sprouting response with disease development that alters the normal pattern and distribution of NA innervation. The altered sympathetic innervation pattern is likely to change NA signaling to immune cell targets, which could exert long-term regulatory influences on initiation, maintenance, and resolution of immune responses that impact disease pathology.  相似文献   

18.
Both the hypothalamic pituitary adrenal axis (HPAA) and the sympathetic nervous system (SNS) can inhibit immune function and are regarded as the primary efferent pathways for neural-immune interactions. To determine if this relationship is maintained in vivo in response to an inflammatory stimulus, rats were injected intravenously (iv) with various doses of lipopolysaccharide (LPS) and splenic cytokine mRNA and protein levels were measured at several dose and time intervals post-injection. The spleen was chosen as the target organ because both the neural and hormonal inputs to the spleen can be selectively removed by splenic nerve cut (SNC) and adrenalectomy (ADX), respectively. Data from our dose response studies established that maximum levels of splenic cytokines were induced in response to relatively low doses of LPS. Minimal changes in LPS-induced splenic cytokine levels were observed in response to ADX, SNC, or a combination of the two procedures across several doses of LPS. These results suggest that there are aspects of immune regulation that are functionally removed from these central modulatory systems and that the counter-regulatory responses induced by LPS have minimal impact on the concurrent induction of cytokines by this inflammatory stimulus. The conceptual model of neural-immune regulation as an inhibitory feedback system, at least with regards to the early activational effects induced by an inflammatory stimulus, was not supported by these studies.  相似文献   

19.
Administration of cytokines to animals can elicit many effects on the brain, particularly neuroendocrine and behavioral effects. Cytokine administration also alters neurotransmission, which may underlie these effects. The most well studied effect is the activation of the hypothalamo-pituitary-adrenocortical (HPA) axis, especially that by interleukin-1 (IL-1). Peripheral and central administration of IL-1 also induces norepinephrine (NE) release in the brain, most markedly in the hypothalamus. Small changes in brain dopamine (DA) are occasionally observed, but these effects are not regionally selective. IL-1 also increases brain concentrations of tryptophan, and the metabolism of serotonin (5-HT) throughout the brain in a regionally nonselective manner. Increases of tryptophan and 5-HT, but not NE, are also elicited by IL-6, which also activates the HPA axis, although it is much less potent in these respects than IL-1. IL-2 has modest effects on DA, NE and 5-HT. Like IL-6, tumor necrosis factor-α (TNFα) activates the HPA axis, but affects NE and tryptophan only at high doses. The interferons (IFN's) induce fever and HPA axis activation in man, but such effects are weak or absent in rodents. The reported effects of IFN's on brain catecholamines and serotonin have been very varied. However, interferon-γ, and to a lesser extent, interferon-α, have profound effects on the catabolism of tryptophan, effectively reducing its concentration in plasma, and may thus limit brain 5-HT synthesis.Administration of endotoxin (LPS) elicits responses similar to those of IL-1. Bacterial and viral infections induce HPA activation, and also increase brain NE and 5-HT metabolism and brain tryptophan. Typically, there is also behavioral depression. These effects are strikingly similar to those of IL-1, suggesting that IL-1 secretion, which accompanies many infections, may mediate these responses. Studies with IL-1 antagonists, support this possibility, although in most cases the antagonism is incomplete, suggesting the existence of multiple mechanisms. Because LPS is known to stimulate the secretion of IL-1, IL-6 and TNFα, it seems likely that these cytokines mediate at least some of the responses, but studies with antagonists indicate that there are multiple mechanisms. The neurochemical responses to cytokines are likely to underlie the endocrine and behavioral responses. The NE response to IL-1 appears to be instrumental in the HPA activation, but other mechanisms exist. Neither the noradrenergic nor the serotonergic systems appear to be involved in the major behavioral responses. The significance of the serotonin response is unknown.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号