首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wright  DG 《Blood》1987,69(1):334-337
We have shown previously that induced maturation of the human myeloid leukemia cell line, HL-60, is associated with a selective down- regulation of guanine ribonucleotide synthesis and depletion of intracellular guanosine triphosphate (GTP) and guanosine diphosphate (GDP) pools. We showed, furthermore, that inhibitors of the enzyme, inosine monophosphate (IMP) dehydrogenase, which catalyzes the initial rate-limiting step of guanylate synthesis from the central intermediate IMP, are potent inducers of myeloid maturation in these cells. We now show that induced maturation of HL-60 cells is prevented or impaired if intracellular concentrations of guanine ribonucleotides are maintained at high levels. HL-60 cells can utilize exogenous guanine and guanosine to maintain GTP and GDP pools through a salvage pathway that bypasses guanylate synthesis from IMP. Moreover, incubation of HL-60 cells with guanosine or guanine (10(-6) to 10(-4) mol/L) prevents both the depletion of intracellular guanine ribonucleotides and the induction of myeloid maturation caused by the IMP dehydrogenase inhibitor, tiazofurin. These findings provide strong additional support for the concept that terminal myeloid differentiation is influenced by a guanine ribonucleotide-dependent regulatory system.  相似文献   

2.
The effect of GDP on rabbit heart adenylate cyclase has been determined under conditions where only 0.08% to 0.26% of an added 100 microM was converted to GTP in the course of the assay. At concentrations of 100 microM, GDP stimulated basal cyclase activity to the same extent as GTP and guanosine-5'-O-(2-thiodiphosphate) (GDP beta S). Isoproterenol increased activity in the presence of GTP or guanylyl-imidodiphosphate (Gpp(NH)p), but not in the presence of GDP or GDP beta S. It is suggested that the hydrolysis of GTP to GDP is the "turn-off" mechanism for beta-receptor stimulation of cardiac adenylate cyclase, but not for stimulation by GTP alone. The effects of GDP and GDP beta S are readily removed by washing, implying that their binding to Ns (the guanine nucleotide binding protein) is weak. GDP beta S initially competes with Gpp(NH)p, reducing Gpp(NH)p-stimulated activity. As stimulation of cyclase activity by Gpp(NH)p develops, in the course of 30 min, Gpp(NH)p becomes no longer displaceable by GDP beta S. Isoproterenol does not release 3H-Gpp(NH)p or reduce Gpp(NH)p-stimulated activity, once the nucleotide has become tightly bound. Nor does isoproterenol change the relative affinities of GDP beta S and Gpp(NH)p when these analogs are given together. There is, therefore, no evidence that isoproterenol acts by releasing tightly bound GDP from Ns, or that it 'unlocks' the guanine nucleotide binding site in the myocardial sarcolemma. In this, the cardiac adenylate cyclase system differs from the avian erythrocyte system. The action of isoproterenol is best explained by an increased dissociation of alpha(GTP) and beta,gamma-subunits of the Ns protein.  相似文献   

3.
Modulation of brain Na+ channels by a G-protein-coupled pathway.   总被引:7,自引:0,他引:7       下载免费PDF全文
Na+ channels in acutely dissociated rat hippocampal neurons and in Chinese hamster ovary (CHO) cells transfected with a cDNA encoding the alpha subunit of rat brain type IIA Na+ channel (CNaIIA-1 cells) are modulated by guanine nucleotide binding protein (G protein)-coupled pathways under conditions of whole-cell voltage clamp. Activation of G proteins by 0.2-0.5 mM guanosine 5'-[gamma-thio]triphosphate (GTP[gamma S]), a nonhydrolyzable GTP analog, increased Na+ currents recorded in both cell types. The increase in current amplitude was caused by an 8- to 10-mV negative shift in the voltage dependence of both activation and inactivation. The effects of G-protein activators were blocked by treatment with pertussis toxin or guanosine 5'-[beta-thio]diphosphate (GDP[beta S]), a nonhydrolyzable GDP analog, but not by cholera toxin. GDP[beta S] (2 mM) alone had effects opposite those of GTP[gamma S], shifting Na(+)-channel gating 8-10 mV toward more-positive membrane potentials and suggesting that basal activation of G proteins in the absence of stimulation is sufficient to modulate Na+ channels. In CNaIIA-1 cells, thrombin, which activates pertussis toxin-sensitive G proteins in CHO cells, caused a further negative shift in the voltage dependence of Na(+)-channel activation and inactivation beyond that observed with GTP alone. The results in CNaIIA-1 cells indicate that the alpha subunit of the Na+ channel alone is sufficient to mediate G protein effects on gating. The modulation of Na+ channels via a G-protein-coupled pathway acting on Na(+)-channel alpha subunits may regulate electrical excitability through integration of different G-protein-coupled synaptic inputs.  相似文献   

4.
Somatostatin reduces voltage-dependent Ca2+ current (ICa) and intracellular free Ca2+ concentration in the AtT-20/D16-16 pituitary cell line. We tested whether guanine nucleotide-binding proteins (G or N proteins) are involved in the signal transduction mechanism between the somatostatin receptor and voltage-dependent Ca2+ channels. Treatment of the cells with pertussis toxin, which selectively ADP ribosylates the GTP binding proteins Gi and Go and suppresses the ability of Gi to couple inhibitory receptors to adenylate cyclase, abolished the action of somatostatin on both ICa and intracellular free Ca2+. Intracellular application of the nonhydrolyzable guanine nucleotide analog guanosine 5'-[gamma-thio]triphosphate (GTP[gamma S]), which irreversibly activates G proteins, changed the somatostatin effect on ICa from a reversible to an irreversible inhibition. Intracellular GTP[gamma S] alone caused a very slowly developing inhibition of ICa. When ICa was inhibited by GTP[gamma S] (alone or with somatostatin), it failed to respond to subsequent applications of somatostatin. The effect of GTP[gamma S] on the inhibition of ICa by somatostatin was not altered by the intracellular application of cAMP and 3-isobutyl-1-methylxanthine. The results suggest that a GTP-binding protein is directly involved in the cAMP-independent receptor-mediated inhibition of voltage-dependent Ca2+ channels.  相似文献   

5.
The fate of the guanyl nucleotide bound to the regulatory site of adenylate cyclase was studied on a preparation of turkey erythrocyte membranes that was incubated with [3H]GTP plus isoproterenol and subsequently washed to remove hormone and free guanyl nucleotide. Further incubation of this preparation in the presence of beta-adrenergic agonists resulted in the release from the membrane of tritiated nucleotide, identified as [3H]GDP. The catecholamine-induced release of [3H]GDP was increased 2 to 3 times in the presence of the unlabeled guanyl nucleotides GTP, guanosine 5'-(beta,gamma-imino)triphosphate [gpp(NH)p], GDP, and GMP, whereas adenine nucleotides had little effect. In the presence of Gpp(NH)p, isoproterenol induced the release of [3H]GDP and the activation of adenylate cyclase, both effects following similar time courses. The findings indicate that the inactive adenylate cyclase possesses tightly bound (GDP, produced by the hydrolysis of GTP at the regulatory site. The hormone stimulates adenylate cyclase activity by inducing an "opening" of the guanyl nucleotide site, resulting in dissociation of the bound GDP and binding of the activating guanosine triphosphate.  相似文献   

6.
Knight  RD; Mangum  J; Lucas  DL; Cooney  DA; Khan  EC; Wright  DG 《Blood》1987,69(2):634-639
In previous studies of purine ribonucleotide metabolism in the human myeloid leukemia cell line HL-60, we observed that there is a down- regulation of guanine ribonucleotide biosynthesis from the central intermediate, inosine monophosphate (IMP) and a depletion of intracellular guanosine triphosphate (GTP) and guanosine diphosphate (GDP) pools that occur during the induced maturation of these cells. We also found that inhibitors of IMP dehydrogenase, the enzyme that catalyzes the first step of guanylate synthesis from IMP, are potent inducers of HL-60 maturation. Because of these observations we specifically investigated the activity of IMP dehydrogenase in HL-60 cells and in a new inducible human myeloid leukemia cell line, RDFD2- 25, both during maintenance culture and during induced maturation of the cells. Enzyme activity was examined directly in cell extracts with a radiometric assay that measures free 3H2O formed from [2-3H] IMP during the conversion of IMP to XMP. Uninduced HL-60 and RDFD2 cells in maintenance culture were found to have high levels of IMPD activity (5.2 to 5.7 pmol IMP metabolized/10(7) cells/min) compared with normal neutrophils and monocytes that had been purified from blood (less than 1.5 pmol IMP metabolized/10(7) cells/min). However, when HL-60 and RDFD2-25 cells were induced to mature with retinoic acid (10(-6) mol/L), dimethylformamide (6 X 10(-2) mol/L), or a known IMPD inhibitor, tiazofurin (10(-6) mol/L), IMPD activity in the cells fell by 51% to 80% within three to six hours. These changes in IMPD activity preceded detectable functional and antigenic maturation of the cells by at least 12 hours and were not temporally related to changes in cellular proliferation. These findings are consistent with the concept that the regulation of myeloid cell maturation may be influenced by intracellular concentrations of guanine ribonucleotides because IMP dehydrogenase activity is known to be rate limiting for the production of these nucleotides.  相似文献   

7.
The influence of somatostatin was studied on cyclic AMP levels and adenylate cyclase activity in cyc- variants of S49 lymphoma cells. These cells are deficient in the guanine nucleotide site that mediates hormone-induced adenylate cyclase stimulation, but their cyclase can be stimulated by forskolin. Somatostatin maximally decreased the 30 microM forskolin-stimulated cyclic AMP levels by 35%. Half-maximal suppression occurred at about 0.1 nM somatostatin. Somatostatin (up to 1 microM) had no effect on the 100 microM forskolin-stimulated adenylate cyclase activity in cyc- membrane preparations when guanine nucleotides were not present. In the presence of GTP, however, which by itself caused a small decrease in activity, somatostatin maximally inhibited the enzyme by 20-25%. GTP was half-maximally effective at 0.1 microM, and half-maximal inhibition by somatostatin was observed at 0.1- 1 nM. In the presence of the stable GTP analog guanosine 5'-O-(3-thiotriphosphate) (1 microM), which decreased the stimulated activity by about 40% after a short lag period, somatostatin (1 microM) did not cause a further decrease in final activity but reduced the lag period by about 50%. The data indicate that membranes of cyc- variants contain a regulatory site that mediates both guanine nucleotide and hormone-induced inhibition of the adenylate cyclase and suggest that the mechanisms of activation and inactivation of this inhibitory site are similar to those of the stimulatory component missing in cyc-membranes.  相似文献   

8.
When WBC264-9C cells are preincubated with pertussis toxin, chemotaxis is inhibited and ADP-ribosylation of a membrane protein with a subunit Mr 41,000 is observed. Both the inhibition of chemotaxis and the ADP-ribosylation by pertussis toxin display a similar time lag, temperature dependence, and pertussis toxin-concentration dependence. Although the inhibition of chemotaxis and the ADP-ribosylation of the membrane protein are qualitatively correlated, nearly complete inhibition of chemotaxis occurs when there is only partial ADP-ribosylation of the membrane protein. Pertussis toxin-catalyzed ADP-ribosylation of the Mr 41,000 protein in WBC264-9C membranes is stimulated by GDP, GTP, and to a lesser extent by GMP; the nonhydrolyzable GTP analog guanosine 5'-[beta, gamma-imido]triphosphate has no effect. WBC264-9C membranes have a high-affinity GTPase activity, which is partially inhibited in membranes from pertussis toxin-treated cells. Neither GTPase activity nor adenylate cyclase activity in membranes from WBC264-9C cells is affected by fMet-Leu-Phe, an attractant for these cells. Our results suggest that a guanine nucleotide binding protein may be involved in chemotaxis, but they do not indicate an involvement of adenylate cyclase.  相似文献   

9.
EGTA abolished corticotropin (ACTH)-stimulated adenylate cyclase in rat adipocyte membranes. In contrast, the potency of guanosine triphosphate (GTP) stimulation of adenylate cyclase activated with ACTH was greater in the presence of Ca2+ (1 mmol/L). EGTA (1 mmol/L) powerfully inhibited ACTH-stimulated [3H]guanosine diphosphate (GDP) release from membranes prelabeled with [3H]GTP in the presence of isoproterenol (ISO) or ACTH, whereas Ca2+ significantly increased it. In contrast, neither EGTA nor Ca2+ affected ISO-stimulated [3H]GDP release. These data clearly show that Ca2+ is necessary for the binding of ACTH to its receptor, and that Ca2+ stimulates the interaction of the ACTH-occupied receptor with GTP-binding proteins.  相似文献   

10.
The effects of endogenous phospholipase A2 activation by melittin on components of the beta adrenoceptor linked adenylate cyclase system were examined in cultured cardiac cells. Exposure of cardiac cells for one hour to melittin concentrations ranging from 0.125 microgram/ml to 5.0 micrograms/ml induced a concentration dependent hydrolysis of radioactively labelled phospholipids and loss of lysophospholipids from the cell membrane. Melittin concentrations of 2.5 micrograms/ml or greater markedly attenuated the isoprenaline induced rise in cyclic AMP. In vitro studies using cell homogenates suggest that phospholipase A2 activation by the higher concentration of melittin (5 micrograms/ml) partially uncoupled the beta adrenoceptor from adenylate cyclase. Beta adrenoceptor number estimated by 125I-iodohydroxybenzylpindolol specific binding as well as the affinity of isoprenaline for these binding sites were unaffected by melittin pre-exposure. The percentage stimulation of adenylate cyclase by sodium fluoride or guanylylimidodi-phosphate was not significantly affected by activation of endogenous phospholipase A2. Phosphodiesterase activity in the soluble fraction of cell homogenates increased marginally (9%, P = 0.05) in cells exposed to melittin. These results suggest that activation of endogenous phospholipase A2 within the sarcolemma can modulate the activity of the beta adrenoceptor linked adenylate cyclase system of intact cardiac cells. The reduced beta adrenoceptor responsiveness of the cells appears to be primarily due to an alteration in coupling between the beta adrenoceptor and the guanine nucleotide binding protein components of the adenylate cyclase system and not between the latter and the catalytic subunit.  相似文献   

11.
In rat liver plasma membranes preactivated with guanosine 5'-[beta,gamma-imido[triphosphate (GuoPP[NH]P), GDP promoted coupling of occupied glucagon receptor to adenylyl cyclase [adenylate cyclase; ATP, pyrophosphate-lyase (cyclizing), EC 4.6.1.1] with an apparent association constant Ka of 0.1-0.15 microM. The apparent Ka for the same effect of GTP was 0.2 microM. The effect of GDP was shown not to be due to GTP formed by putative transphosphorylation reaction(s) when ATP was present in the assay as substrate. In membranes not preactivated with GuoPP[NH]P, GDP both competitively inhibited GuoPP[NH]P stimulation of adenylyl cyclase (Ki 0.10 microM) and supported stimulation of cyclizing activity (apparent Ka 0.10 microM) by glucagon. These effects of GDP occurred in the absence of added GTP and in the absence of sufficient formation of GTP by putative transphosphorylation reaction(s) to account for them. It is concluded that two levels of regulation of liver adenylyl cyclase (cyclizing) activity must exit. One level is termed "receptor regulation"; it depends on occupancy of a receptor-related R site by nucleotide and is specific for either GDP or GTP. The second level of regulation is termed "GTPase regulation"; it is inhibited by GDP, depends on both GTP and GTPase, and accounts for activation of cyclizing activity by nonhydrolyzable analogs of GTP. The data suggest that both levels of regulation coexist and may synergize, one mediating responses to stimuli external to the cell (receptor regulation) and the other mediating stimuli of intracellular origin (GTPase regulation).  相似文献   

12.
In rat peritoneal mast cells, the activation of GTP-binding proteins (G proteins) by guanosine 5'-[gamma-thio]triphosphate GTP[gamma S] has been found to induce a transient rise in intracellular calcium as well as degranulation. A G protein that couples to phospholipase C (Gp) is thought to mediate the calcium response, whereas degranulation is mediated by a different G protein, termed Ge. In an attempt to activate mast-cell G proteins more selectively, the GTP analogues guanosine 5'-[alpha-thio]triphosphate (GTP[alpha S]) and guanosine 5'-[beta-thio]triphosphate (GTP[beta S]) (RP and SP diastereomers) were introduced into mast cells by means of patch pipettes. Degranulation and free intracellular calcium were monitored by cell capacitance and fura-2 measurements, respectively. It was found that RP-GTP[alpha S], like GTP[gamma S], induced both calcium release and exocytosis. In contrast, RP-GTP[beta S] induced repetitive calcium spikes that were not regularly accompanied by exocytosis. These results suggest that RP-GTP[beta S] selectively activates calcium signaling in mast cells. The RP-GTP[beta S]-induced oscillations were independent of extracellular calcium. They were absent in the presence of heparin or high concentrations of inositol 1,4,5-trisphosphate and modulated by compound 48/80, suggesting the involvement of the inositol phospholipid signaling pathway. Latency of appearance and spiking frequency were markedly modulated by varying the intracellular ATP concentration. The differential activation of intracellular calcium signaling and exocytosis by GTP[beta S] confirms the presence of independent signal-transduction pathways for the two cell responses. RP-GTP[beta S] may prove helpful in the biochemical and molecular characterization of Gp, the as-yet-unidentified G protein that couples receptors to intracellular calcium release.  相似文献   

13.
We have previously shown that FSH receptors are physically and functionally associated with a guanine nucleotide regulatory protein (Gs) in membranes of calf testis. Using N-ethylmaleimide (NEM), forskolin, and cholera toxin as probes, we have investigated the role of low and high affinity GTP-binding sites of stimulatory guanine nucleotide-binding protein of adenylate cyclase (Gs) in the activation of adenylate cyclase. When calf testis membranes were exposed to NEM (1 mM), FSH binding to receptors was slightly (30%) decreased, but the receptors showed continued sensitivity to GTP, resulting in a further decrease in [125I]human FSH binding to receptors. Pretreatment of membranes with NEM (up to 20 microM) produced no effect on GTP-binding. A dose-dependent decrease in high affinity GTP-binding sites, however, was observed at higher (greater than 50 microM) NEM. Adenylate cyclase activity was reduced in response to GTP gamma S or NaF concomitant to a decrease in high affinity GTP-binding sites in membranes treated with 50-100 microM NEM, or completely abolished in membranes exposed to 300 microM NEM. Stimulation by forskolin indicated that the significant inhibition of adenylate cyclase activity occurring in membranes exposed to low NEM (50-100 microM) was not due to inactivation of catalytic unit of adenylate cyclase by NEM. Pretreatment of membranes with 100 micrograms/ml cholera toxin and NAD slightly (18%) reduced specific FSH binding but did not affect Gpp(NH)p-binding. However, adenylate cyclase stimulation by GTP plus FSH in these membranes was significantly enhanced. When membranes were treated with higher concentration of cholera toxin (250 micrograms/ml), the adenylate cyclase stimulation by GTP plus FSH was abolished due to uncoupling of FSH receptors from Gs and a significant decrease in high affinity GTP-binding sites. Our results suggest that high affinity GTP-binding sites of Gs coupled to FSH receptors are essential for FSH and guanine nucleotide activation of adenylate cyclase. The low affinity binding sites bind GTP and thereby regulate FSH binding but are not involved in the activation of adenylate cyclase.  相似文献   

14.
Summary. Cytokines, such as granulocyte macrophage colony stimulating factor (GM-CSF) or interleukin-3 (IL-3) recruit quiescent cells into the cell cycle and sensitize these cells towards cell cycle specific chemotherapeutic agents. We examined the in vitro effects of GM-CSF on HL-60 cells and tested its modulatory influence on biochemical and cytotoxic effects seen with tiazofurin, a potent and specific inhibitor of IMP dehydrogenase. Incubation of HL-60 cells with 500 U/ml GM-CSF for 4 d enhanced cell proliferation, which was accompanied by a significant increase in IMP dehydrogenase activity (from 2·22 in control cells to 3·70 nmol/mg/h in cells pretreated with GM-CSF). When HL-60 cells were incubated with 100 μm tiazofurin for 2 h, intracellular GTP decreased to 46% of untreated control cells. In HL-60 cells pretreated with GM-CSF, GTP pools decreased to 38% of control after incubation with tiazofurin which is 69% of the predicted value for additive effect. The MTT chemosensitivity assay yielded significantly decreased IC50 values for tiazofurin in HL-60 cells, preincubated with GM-CSF (IC50 decreased from 13 μ m to 10 μ m ). Therefore our results suggest that combination therapy with GM-CSF and tiazofurin may be beneficial for the treatment of refractory leukaemia patients.  相似文献   

15.
Summary Antineoplastic activity of tiazofurin (2--D-ribofuranosylthiazole-4-carboxamide) is mediated by an anabolite of the drug thiazole-4-carboxamide adenine dinucleotide (TAD), an analog of NAD which inhibits IMP dehydrogenase activity resulting in the depletion of guanylate pools and cell death. Human chronic myelogenous leukemia K 562 cells were found to be sensitive to tiazofurin with an IC50 of 19.2 M. TAD content in K 562 cells (1.3 nmol/109/h) was in the range found in susceptible murine and human tumor cells. Studies were conducted to relate tiazofurin toxicity with biochemical effects by examining nucleotide pools. Among the nucleotides, only guanylate pools were significantly depleted by the drug. To further study the effect of the drug on the purine nucleotide de novo and salvage biosynthetic pathways, flux of radiolabelled formate and guanine was employed. The results showed that de novo synthesis of guanylates was curtailed primarily by the drug's action without influencing adenylate biosynthesis or salvage of guanine to guanylates. These studies show that K 562 cells are sensitive to selective inhibition of de novo guanylate pathway indicating that human chronic myelogenous leukemia in blast crisis might be a good candidate for Phase II clinical trials with tiazofurin.Abbreviations ALL acute lymphoblastic leukemia - ANLL acute non lymphocytic leukemia - CML chronic myelogenous leukemia - GMP, GDP, GTP guanosine 5-mono-, di-, triphosphate - HPLC high pressure liquid chromatography - IMP inosine 5-monophosphate - IMPD IMP dehydrogenase - NAD nicotinamide-adenine-dinucleotide - NCI National Cancer Institute; - PBS phosphate buffered saline - TAD thiazole-4-carboxamide-adenine dinucleotide - TCA trichloracetic acid - TRMP tiazofurin 5-monophosphate - TRTP tiazofurin 5-triphosphate. The research work outlined in this paper was supported by United States Public Health Service grant R 35 CA 42510 awarded by the National Cancer Institute, Department of Health and Human Services, USA to G. Weber. The results will be presented at the 79th annual meeting of the American Association for Cancer Research in New Orleans, May 25–28, 1988  相似文献   

16.
Goldfish brain has a high density of [3H]kainate-binding sites, a subpopulation of which appears to be coupled to a pertussis toxin-sensitive G protein. We show here that a purified kainate receptor preparation reconstituted into phospholipid vesicles exhibits guanine nucleotide-sensitive high-affinity [3H]kainate binding. Pertussis toxin treatment abolishes the guanine nucleotide-sensitive portion of the [3H]kainate binding, and kainate promotes [3H]guanosine 5'-[beta,gamma-imido]triphosphate binding and [gamma-32P]GTP hydrolysis. Guanosine 5'-[gamma-thio]triphosphate (GTP[gamma S]) decreases the apparent Stokes radius of the soluble purified receptor preparation, consistent with dissociation of the kainate receptor-G protein complexes. The affinity-purified preparations contain proteins of 45, 41, and 35 kDa. The 45- and 41-kDa proteins crossreact with antibodies against the kainate receptor cloned from frog brain. The 35-kDa protein is recognized by an antiserum (SW) directed against the beta subunit of G proteins. When kainate receptors are purified in the presence of GTP[gamma S], the 35-kDa protein is no longer present. Also, [3H]kainate affinity is decreased and is no longer guanine nucleotide sensitive. Upon reconstitution with purified G proteins, high-affinity guanine nucleotide-sensitive binding and kainate-stimulated GTPase activity can be restored. These observations indicate that a kainate receptor from goldfish brain functionally interacts with a pertussis toxin-sensitive G protein.  相似文献   

17.
Agonists stimulate guanylyl 5'-[gamma-[35S]thio]-triphosphate (GTP[gamma-35S]) binding to receptor-coupled guanine nucleotide binding protein (G proteins) in cell membranes as revealed in the presence of excess GDP. We now report that this reaction can be used to neuroanatomically localize receptor-activated G proteins in brain sections by in vitro autoradiography of GTP[gamma-35S] binding. Using the mu opioid-selective peptide [D-Ala2,N-MePhe4,Gly5-ol]enkephalin (DAMGO) as an agonist in rat brain sections and isolated thalamic membranes, agonist stimulation of GTP[gamma-35S] binding required the presence of excess GDP (1-2 mM GDP in sections vs. 10-30 microM GDP in membranes) to decrease basal G-protein activity and reveal agonist-stimulated GTP[gamma-35S] binding. Similar concentrations of DAMGO were required to stimulate GTP[gamma-35S] binding in sections and membranes. To demonstrate the general applicability of the technique, agonist-stimulated GTP[gamma-35S] binding in tissue sections was assessed with agonists for the mu opioid (DAMGO), cannabinoid (WIN 55212-2), and gamma-aminobutyric acid type B (baclofen) receptors. For opioid and cannabinoid receptors, agonist stimulation of GTP[gamma-35S] binding was blocked by incubation with agonists in the presence of the appropriate antagonists (naloxone for mu opioid and SR-141716A for cannabinoid), thus demonstrating that the effect was specifically receptor mediated. The anatomical distribution of agonist-stimulated GTP[gamma-35S] binding qualitatively paralleled receptor distribution as determined by receptor binding autoradiography. However, quantitative differences suggest that variations in coupling efficiency may exist between different receptors in various brain regions. This technique provides a method of functional neuroanatomy that identifies changes in the activation of G proteins by specific receptors.  相似文献   

18.
GTP-binding proteins have been demonstrated to stimulate and inhibit rat brain adenylate cyclase without the prior addition of hormone. Exposure of rat cerebral cortex membranes to hydrolysis-resistant GTP analogs results in inhibition (or stimulation) of adenylate cyclase, which persists subsequent to buffer washing. The hydrolysis-resistant GTP photoaffinity probe P3-(4-azidoanilido)-P1-5' GTP (AAGTP) can promote a similar persistent inhibition of adenylate cyclase, and, after removal of unbound AAGTP and subsequent UV photolysis, AAGTP is covalently linked to the 40-kDa inhibitory GTP binding protein, GNi (inhibitory guanine nucleotide binding regulatory subunit of adenylate cyclase). Under conditions where the persistent inhibition of adenylate cyclase is overcome by subsequent incubation with 5'-guanylyl imidodiphosphate or NaF, AAGTP bound to the 40-kDa GNi protein is diminished while that bound to the 42-kDa stimulatory GTP-binding protein (GNs) is increased. Additionally, we have identified a 32-kDa protein that binds AAGTP with an affinity similar to that of GNs. This protein does not appear to be a byproduct of proteolysis as demonstrated by Staphylococcus aureus V8 protease digestion experiments, and it is not a substrate for ADP-ribosylation by bacterial toxins. The sum of the AAGTP bound by the GNi and GNs proteins is constant, and the transfer of nonphotoactivated AAGTP to GNs from GNi is stable to buffer washing. Furthermore, this alteration in the AAGTP-labeling pattern corresponds to the shift in adenylate cyclase from inhibition to stimulation. These data raise the possibility that hydrolysis-resistant GTP analogs might be exchanged directly between the GNi and GNs and that there exists some interaction between those proteins in the regulation of adenylate cyclase activity.  相似文献   

19.
The role of guanine nucleotide-binding proteins (G proteins) in the cAMP-dependent action of serotonin (5-HT) and the antagonistic action of the neuropeptide Phe-Met-Arg-Phe-NH2 (FMRF-amide), mediated by the lipoxygenase metabolites of arachidonic acid, was investigated in Aplysia sensory neurons. Intracellular injection of guanosine 5'-[gamma-thio]triphosphate (GTP[gamma-S]) mimics the hyperpolarizing action of FMRF-amide due to activation of the S K+ current and alters the transient response to FMRF-amide into an irreversible (or only partially reversible) response. At higher concentrations, GTP[gamma-S] occludes the response to FMRF-amide. Injection of activated pertussis toxin inhibits the response to FMRF-amide but not to 5-HT. Injection of guanosine 5'-[beta-thio]diphosphate inhibits the response to FMRF-amide by approximately equal to 50% and completely blocks the response to 5-HT. Three lines of evidence suggest that the FMRF-amide-activated G protein is involved at an early stage of the arachidonic acid cascade, prior to the release of arachidonate. (i) Pertussis toxin injection blocks the hyperpolarizing response to FMRF-amide but not to exogenously applied arachidonic acid. (ii) Two blockers of the arachidonic acid cascade inhibit the hyperpolarizing responses to both FMRF-amide and GTP[gamma-S] (and unmask a 5-HT-like depolarizing response to the nucleotide). (iii) Concentrations of GTP[gamma-S] that alter the kinetics of the FMRF-amide response have no effect on the hyperpolarizing response to arachidonic acid. We conclude that a pertussis toxin-sensitive G protein most likely acts to couple the FMRF-amide receptor to phospholipase activation and arachidonic acid release, whereas a pertussis toxin-insensitive G protein couples the 5-HT receptor to adenylate cyclase.  相似文献   

20.
Ca2+-mobilizing agonists stimulate phospholipase C-mediated phosphatidylinositol 4,5-bisphosphate hydrolysis and inositol trisphosphate (IP3) formation in pulmonary as well as in peripheral vascular endothelial cells (EC). In general, it is believed that receptor-phospholipase C interactions involve a guanine nucleotide regulatory (G) protein. This interaction can be inhibited by Bordetella pertussis toxin in certain cells. Here we report that pertussis toxin catalyzes the [32P]ADP ribosylation of a Mr = 41,000 protein in human umbilical vein EC. However, prior EC treatment with pertussis toxin (250 ng/ml for 20 h) does not inhibit thrombin-induced Ca2+ flux or IP3 formation, despite markedly attenuating the radiolabeling of the Mr = 41,000 protein (less than 5% control). Treatment of digitonin-permeabilized human umbilical vein EC with GTP gamma S, a stable GTP analog, or AIF4-, but not with GDP beta S, stimulates IP3 accumulation. However, GDP beta S inhibits GTP gamma S-induced IP3 accumulation. Although thrombin alone is not very effective in elevating IP3 levels in permeabilized EC, thrombin and GTP gamma S act in a synergistic fashion to increase IP3 accumulation. Overall, these observations are interpreted to indicate that a pertussis toxin-insensitive G protein is a key intermediate in the signaling pathway linking thrombin receptors to phospholipase C in human umbilical vein EC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号