首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel technique called "k-t GRAPPA" is introduced for the acceleration of dynamic magnetic resonance imaging. Dynamic magnetic resonance images have significant signal correlations in k-space and time dimension. Hence, it is feasible to acquire only a reduced amount of data and recover the missing portion afterward. Generalized autocalibrating partially parallel acquisitions (GRAPPA), as an important parallel imaging technique, linearly interpolates the missing data in k-space. In this work, it is shown that the idea of GRAPPA can also be applied in k-t space to take advantage of the correlations and interpolate the missing data in k-t space. For this method, no training data, filters, additional parameters, or sensitivity maps are necessary, and it is applicable for either single or multiple receiver coils. The signal correlation is locally derived from the acquired data. In this work, the k-t GRAPPA technique is compared with our implementation of GRAPPA, TGRAPPA, and sliding window reconstructions, as described in Methods. The experimental results manifest that k-t GRAPPA generates high spatial resolution reconstruction without significant loss of temporal resolution when the reduction factor is as high as 4. When the reduction factor becomes higher, there might be a noticeable loss of temporal resolution since k-t GRAPPA uses temporal interpolation. Images reconstructed using k-t GRAPPA have less residue/folding artifacts than those reconstructed by sliding window, much less noise than those reconstructed by GRAPPA, and wider temporal bandwidth than those reconstructed by GRAPPA with residual k-space. k-t GRAPPA is applicable to a wide range of dynamic imaging applications and is not limited to imaging parts with quasi-periodic motion. Since only local information is used for reconstruction, k-t GRAPPA is also preferred for applications requiring real time reconstruction, such as monitoring interventional MRI.  相似文献   

2.
A parallel imaging technique, GRAPPA (GeneRalized Auto-calibrating Partially Parallel Acquisitions), has been used to improve temporal or spatial resolution. Coil calibration in GRAPPA is performed in central k-space by fitting a target signal using its adjacent signals. Missing signals in outer k-space are reconstructed. However, coil calibration operates with signals that exhibit large amplitude variation while reconstruction is performed using signals with small amplitude variation. Different signal variations in coil calibration and reconstruction may result in residual image artifact and noise. The purpose of this work was to improve GRAPPA coil calibration and variable density (VD) sampling for suppressing residual artifact and noise. The proposed coil calibration was performed in local k-space along both the phase and frequency encoding directions. Outer k-space was acquired with two different reduction factors. Phantom data were reconstructed by both the conventional GRAPPA and the improved technique for comparison at an acceleration of two. Under the same acceleration, optimal sampling and calibration parameters were determined. An in vivo image was reconstructed in the same way using the predetermined optimal parameters. The performance of GRAPPA was improved by the localized coil calibration and VD sampling scheme.  相似文献   

3.
Self-calibrating GRAPPA operator gridding (GROG) is a method by which non-Cartesian MRI data can be gridded using spatial information from a multichannel coil array without the need for an additional calibration dataset. Using self-calibrating GROG, the non-Cartesian datapoints are shifted to nearby k-space locations using parallel imaging weight sets determined from the datapoints themselves. GROG employs the GRAPPA Operator, a special formulation of the general reconstruction method GRAPPA, to perform these shifts. Although GROG can be used to grid undersampled datasets, it is important to note that this method uses parallel imaging only for gridding, and not to reconstruct artifact-free images from undersampled data. The innovation introduced here, namely, self-calibrating GROG, allows the shift operators to be calculated directly out of the non-Cartesian data themselves. This eliminates the need for an additional calibration dataset, which reduces the imaging time and also makes the GROG reconstruction more robust by removing possible inconsistencies between the calibration and non-Cartesian datasets. Simulated and in vivo examples of radial and spiral datasets gridded using self-calibrating GROG are compared to images gridded using the standard method of convolution gridding.  相似文献   

4.
PURPOSE: To investigate the effectiveness of k-t GRAPPA for accelerating four-dimensional (4D) coronary MRA in comparison with GRAPPA and the feasibility of combining variable density undersampling with conventional k-t GRAPPA (k-t(2) GRAPPA) to alleviate the overhead of acquiring autocalibration signals. MATERIALS AND METHODS: The right coronary artery of nine healthy volunteers was scanned at 1.5 Tesla. The 4D k-space datasets were fully acquired and subsequently undersampled to simulate partially parallel acquisitions, namely, GRAPPA, k-t GRAPPA, and k-t(2) GRAPPA. Comparisons were made between the images reconstructed from full k-space datasets and those reconstructed from undersampled k-space datasets. RESULTS: k-t GRAPPA significantly reduced artifacts compared with GRAPPA and high acceleration factors were achieved with only minimal sacrifices in vessel depiction. k-t(2) GRAPPA could further increase imaging speed without significant losses in image quality. CONCLUSION: By exploiting high-degree spatiotemporal correlations during the rest period of a cardiac cycle, k-t GRAPPA and k-t(2) GRAPPA can greatly increase data acquisition efficiency and, therefore, are promising solutions for fast 4D coronary MRA.  相似文献   

5.
Coil-by-coil image reconstruction with SMASH.   总被引:1,自引:0,他引:1  
The SiMultaneous Acquisition of Spatial Harmonics (SMASH) technique uses linear combinations of undersampled datasets from the component coils of an RF coil array to reconstruct fully sampled composite datasets in reduced imaging times. In previously reported implementations, SMASH reconstructions were designed to reproduce the images that would otherwise be obtained by simple sums of fully gradient encoded component coil images. This strategy has left SMASH images vulnerable to phase cancellation artifacts when the sensitivities of RF coil array elements are not suitably phase-aligned. In fully gradient encoded imaging schemes these artifacts can be eliminated using a variety of methods for combining the individual coil images, including matched filter combinations as well as sum of squares combinations. Until now, these reconstruction schemes have been unavailable to SMASH reconstructions as SMASH produced a final composite image directly from the raw component coil k-space datasets. This article demonstrates a modification to SMASH that allows reconstruction of a full set of accelerated individual component coil images by fitting component coil sensitivity functions to a complete set of spatial harmonics tailored for each coil in the array. Standard component coil combinations applied to the individual reconstructed images produce final composite images free of phase cancellation artifacts.  相似文献   

6.
Generalized autocalibrating partially parallel acquisitions (GRAPPA).   总被引:39,自引:0,他引:39  
In this study, a novel partially parallel acquisition (PPA) method is presented which can be used to accelerate image acquisition using an RF coil array for spatial encoding. This technique, GeneRalized Autocalibrating Partially Parallel Acquisitions (GRAPPA) is an extension of both the PILS and VD-AUTO-SMASH reconstruction techniques. As in those previous methods, a detailed, highly accurate RF field map is not needed prior to reconstruction in GRAPPA. This information is obtained from several k-space lines which are acquired in addition to the normal image acquisition. As in PILS, the GRAPPA reconstruction algorithm provides unaliased images from each component coil prior to image combination. This results in even higher SNR and better image quality since the steps of image reconstruction and image combination are performed in separate steps. After introducing the GRAPPA technique, primary focus is given to issues related to the practical implementation of GRAPPA, including the reconstruction algorithm as well as analysis of SNR in the resulting images. Finally, in vivo GRAPPA images are shown which demonstrate the utility of the technique.  相似文献   

7.
PURPOSE: To develop and optimize a new modification of GRAPPA (generalized autocalibrating partially parallel acquisitions) MR reconstruction algorithm named "Robust GRAPPA." MATERIALS AND METHODS: In Robust GRAPPA, k-space data points were weighted before the reconstruction. Small or zero weights were assigned to "outliers" in k-space. We implemented a Slow Robust GRAPPA method, which iteratively reweighted the k-space data. It was compared to an ad hoc Fast Robust GRAPPA method, which eliminated (assigned zero weights to) a fixed percentage of k-space "outliers" following an initial estimation procedure. In comprehensive experiments the new algorithms were evaluated using the perceptual difference model (PDM), whereby image quality was quantitatively compared to the reference image. Independent variables included algorithm type, total reduction factor, outlier ratio, center filling options, and noise across multiple image datasets, providing 10,800 test images for evaluation. RESULTS: The Fast Robust GRAPPA method gave results very similar to Slow Robust GRAPPA, and showed significant improvements as compared to regular GRAPPA. Fast Robust GRAPPA added little computation time compared with regular GRAPPA. CONCLUSION: Robust GRAPPA was proposed and proved useful for improving the reconstructed image quality. PDM was helpful in designing and optimizing the MR reconstruction algorithms.  相似文献   

8.
The correction of motion artifacts continues to be a significant problem in MRI. In the case of uncooperative patients, such as children, or patients who are unable to remain stationary, the accurate determination and correction of motion artifacts becomes a very important prerequisite for achieving good image quality. The application of conventional motion-correction strategies often produces inconsistencies in k-space data. As a result, significant residual artifacts can persist. In this work a formalism is introduced for parallel imaging in the presence of motion. The proposed method can improve overall image quality because it diminishes k-space inconsistencies by exploiting the complementary image encoding capacity of individual receiver coils. Specifically, an augmented version of an iterative SENSE reconstruction is used as a means of synthesizing the missing data in k-space. Motion is determined from low-resolution navigator images that are coregistered by an automatic registration routine. Navigator data can be derived from self-navigating k-space trajectories or in combination with other navigation schemes that estimate patient motion. This correction method is demonstrated by interleaved spiral images collected from volunteers. Conventional spiral scans and scans corrected with proposed techniques are shown, and the results illustrate the capacity of this new correction approach.  相似文献   

9.
Most k-space-based parallel imaging reconstruction techniques, such as Generalized Autocalibrating Partially Parallel Acquisitions (GRAPPA), necessitate the acquisition of regularly sampled Cartesian k-space data to reconstruct a nonaliased image efficiently. However, non-Cartesian sampling schemes offer some inherent advantages to the user due to their better coverage of the center of k-space and faster acquisition times. On the other hand, these sampling schemes have the disadvantage that the points acquired generally do not lie on a grid and have complex k-space sampling patterns. Thus, the extension of Cartesian GRAPPA to non-Cartesian sequences is nontrivial. This study introduces a simple, novel method for performing Cartesian GRAPPA reconstructions on undersampled non-Cartesian k-space data gridded using GROG (GRAPPA Operator Gridding) to arrive at a nonaliased image. Because the undersampled non-Cartesian data cannot be reconstructed using a single GRAPPA kernel, several Cartesian patterns are selected for the reconstruction. This flexibility in terms of both the appearance and number of patterns allows this pseudo-Cartesian GRAPPA to be used with undersampled data sets acquired with any non-Cartesian trajectory. The successful implementation of the reconstruction algorithm using several different trajectories, including radial, rosette, spiral, one-dimensional non-Cartesian, and zig-zag trajectories, is demonstrated.  相似文献   

10.
The extended version of the generalized autocalibrating partially parallel acquisition (GRAPPA) technique incorporates multiple lines and multiple columns of measured k-space data to estimate missing data. For a given accelerated dataset, the selection of the measured data points for fitting a missing datum (i.e., the kernel support) that provides optimal reconstruction depends on coil array configuration, noise level in the acquired data, imaging configuration, and number and position of autocalibrating signal lines. In this work, cross-validation is used to select the kernel support that best balances the conflicting demands of fit accuracy and stability in GRAPPA reconstruction. The result is an optimized tradeoff between artifacts and noise. As demonstrated with experimental data, the method improves image reconstruction with GRAPPA. Because the method is simple and applied in postprocessing, it can be used with GRAPPA routinely.  相似文献   

11.
Parallel imaging is a robust method for accelerating the acquisition of magnetic resonance imaging (MRI) data, and has made possible many new applications of MR imaging. Parallel imaging works by acquiring a reduced amount of k-space data with an array of receiver coils. These undersampled data can be acquired more quickly, but the undersampling leads to aliased images. One of several parallel imaging algorithms can then be used to reconstruct artifact-free images from either the aliased images (SENSE-type reconstruction) or from the undersampled data (GRAPPA-type reconstruction). The advantages of parallel imaging in a clinical setting include faster image acquisition, which can be used, for instance, to shorten breath-hold times resulting in fewer motion-corrupted examinations. In this article the basic concepts behind parallel imaging are introduced. The relationship between undersampling and aliasing is discussed and two commonly used parallel imaging methods, SENSE and GRAPPA, are explained in detail. Examples of artifacts arising from parallel imaging are shown and ways to detect and mitigate these artifacts are described. Finally, several current applications of parallel imaging are presented and recent advancements and promising research in parallel imaging are briefly reviewed.  相似文献   

12.
Parallel imaging is one of the most promising developments in recent years for the acceleration of MR acquisitions. One area of practical importance where different parallel imaging methods perform differently is the manner in which they deal with aliasing in the full-FOV reconstructed image. It has been reported that sensitivity encoding (SENSE) reconstruction fails whenever the reconstructed FOV is smaller than the object being imaged. On the other hand, generalized autocalibrating partially parallel acquisition (GRAPPA) has been used successfully to reconstruct images with aliasing in the reconstructed FOV, as in conventional imaging. The disparate behavior of these methods can be easily demonstrated by a few simple illustrative examples. Additional in vivo examples using GRAPPA and modified SENSE (mSENSE) make this distinction clear. These experiments demonstrate that SENSE fails to reconstruct correct images when coil sensitivity maps are used that do not automatically account for the object size and therefore the aliasing in the reconstructed images. However, with the use of aliased high-resolution coil sensitivity maps, accurate SENSE reconstructions can be generated. On the other hand, GRAPPA produces images with an aliasing appearance that is exactly as would be expected from normal nonaccelerated acquisitions. An understanding of these effects could potentially lead to fewer operator-dependent errors, as well as a better understanding of the differences between the underlying reconstruction processes.  相似文献   

13.
PURPOSE: To evaluate the parallel acquisition techniques, generalized autocalibrating partially parallel acquisitions (GRAPPA) and modified sensitivity encoding (mSENSE), and determine imaging parameters maximizing sensitivity toward functional activation at 3T. MATERIALS AND METHODS: A total of eight imaging protocols with different parallel imaging techniques (GRAPPA and mSENSE) and reduction factors (R = 1, 2, 3) were compared at different matrix sizes (64 and 128) with respect to temporal noise characteristics, artifact behavior, and sensitivity toward functional activation. RESULTS: Echo planar imaging (EPI) with GRAPPA and a reduction factor of 2 revealed similar image quality and sensitivity than full k-space EPI. A higher incidence of artifacts and a marked sensitivity loss occurred at R = 3. Even though the same eight-channel head coil was used for signal detection in all experiments, GRAPPA generally showed more benign patterns of spatially-varying noise amplification, and mSENSE was also more susceptible to residual unfolding artifacts than GRAPPA. CONCLUSION: At 3T and a reduction factor of 2, parallel imaging can be used with only little penalty with regard to sensitivity. With our implementation and coil setup the performance of GRAPPA was clearly superior to mSENSE. Thus, it seems advisable to pay special attention to the employed parallel imaging method and its implementation.  相似文献   

14.
In this work an iterative reconstruction method based on generalized autocalibrating partially parallel acquisitions (GRAPPA) reconstruction is introduced. In the new method the reconstructed lines are used to reestimate and refine the weights from all the acquired data by applying the GRAPPA procedure iteratively with regularization. Both phantom and in vivo MRI experiments demonstrated that, compared to GRAPPA, the iterative approach reduces parallel imaging artifacts and permits high-quality image reconstruction with a relatively small number of calibration lines and slight changes of GRAPPA weights.  相似文献   

15.
16.
In MRI applications where short acquisition time is necessary, the increase of acquisition speed is often at the expense of image resolution and SNR. In such cases, the newly developed parallel acquisition techniques could provide images without mentioned limitations and in reasonably shortened measurement time. A newly designed eight-channel head coil array (i-PAT coil) allowing for parallel acquisition of independently reconstructed images (GRAPPA mode) has been tested for its applicability in neuroradiology. Image homogeneity was tested in standard phantom and healthy volunteers. BOLD signal changes were studied in a group of six volunteers using finger tapping stimulation. Phantom studies revealed an important drop of signal even after the use of a normalization filter in the center of the image and an important increase of artifact power with reduction of measurement time strongly depending on the combination of acceleration parameters. The additional application of a parallel acquisition technique such as GRAPPA decreases measurement time in the range of about 30%, but further reduction is often possible only at the expense of SNR. This technique performs best in conditions in which imaging speed is important, such as CE MRA, but time resolution still does not allow the acquisition of angiograms separating the arterial and venous phase. Significantly larger areas of BOLD activation were found using the i-PAT coil compared to the standard head coil. Being an eight-channel surface coil array, peripheral cortical structures profit from high SNR as high-resolution imaging of small cortical dysplasias and functional activation of cortical areas imaged by BOLD contrast. In BOLD contrast imaging, susceptibility artifacts are reduced, but only if an appropriate combination of acceleration parameters is used.  相似文献   

17.
As expected from the generalized sampling theorem of Papoulis, the use of a bunched sampling acquisition scheme in conjunction with a conjugate gradient (CG) reconstruction algorithm can decrease scan time by reducing the number of phase‐encoding lines needed to generate an unaliased image at a given resolution. However, the acquisition of such bunched data requires both modified pulse sequences and high gradient performance. A novel method of generating the “bunched” data using self‐calibrating GRAPPA operator gridding (GROG), a parallel imaging method that shifts data points by small distances in k‐space (with Δk usually less than 1.0, depending on the receiver coil) using the GRAPPA operator, is presented here. With the CG reconstruction method, these additional “bunched” points can then be used to reconstruct an image with reduced artifacts from undersampled data. This method is referred to as GROG‐facilitated bunched phase encoding (BPE), or GROG‐BPE. To better understand how the patterns of bunched points, maximal blip size, and number of bunched points affect the reconstruction quality, a number of simulations were performed using the GROG‐BPE approach. Finally, to demonstrate that this method can be combined with a variety of trajectories, examples of images with reduced artifacts reconstructed from undersampled in vivo radial, spiral, and rosette data are shown. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
Generalized autocalibrating partially parallel acquisitions (GRAPPA), an important parallel imaging technique, can be easily applied to radial k-space data by segmenting the k-space. The previously reported radial GRAPPA method requires extra calibration data to determine the relative shift operators. In this work it is shown that pseudo-full k-space data can be generated from the partially acquired radial data by filtering in image space followed by inverse gridding. The relative shift operators can then be approximated from the pseudo-full k-space data. The self-calibration method using pseudo-full k-space data can be applied in both k and k-t space. This technique avoids the prescans and hence improves the applicability of radial GRAPPA to image static tissue, and makes k-t GRAPPA applicable to radial trajectory. Experiments show that radial GRAPPA calibrated with pseudo-full calibration data generates results similar to radial GRAPPA calibrated with the true full k-space data for that image. If motion occurs during acquisition, self-calibrated radial GRAPPA protects structural information better than externally calibrated GRAPPA. However, radial GRAPPA calibrated with pseudo-full calibration data suffers from residual streaking artifacts when the reduction factor is high. Radial k-t GRAPPA calibrated with pseudo-full calibration data generates reduced errors compared to the sliding-window method and temporal GRAPPA (TGRAPPA).  相似文献   

19.
PURPOSE: To develop a novel regularization method for GRAPPA by which the regularization parameters can be optimally and adaptively chosen. MATERIALS AND METHODS: In the fit procedures in GRAPPA, the discrepancy principle, which chooses the regularization parameter based on a priori information about the noise level in the autocalibrating signals (ACS), is used with the truncated singular value decomposition (TSVD) regularization and the Tikhonov regularization, and its performance is compared with the singular value (SV) threshold method and the L-curve method, respectively by axial and sagittal head imaging experiments. RESULTS: In both axial and sagittal reconstructions, normal GRAPPA reconstruction results exhibit a relatively high level of noise. With discrepancy-based choices of parameters, regularization can improve the signal-to-noise ratio (SNR) with only a very modest increase in aliasing artifacts. The L-curve method in all of the reconstructions leads to overregularization, which causes severe residual aliasing artifacts. The 10% SV threshold method yields good overall image quality in the axial case, but in the sagittal case it also leads to an obvious increase in aliasing artifacts. CONCLUSION: Neither a fixed SV threshold nor the L-curve are robust means of choosing the appropriate parameters in GRAPPA reconstruction. However, with the discrepancy-based parameter-choice strategy, adaptively regularized GRAPPA can be used to automatically choose nearly optimal parameters for reconstruction and achieve an excellent compromise between SNR and artifacts.  相似文献   

20.
A novel approach that uses the concepts of parallel imaging to grid data sampled along a non-Cartesian trajectory using GRAPPA operator gridding (GROG) is described. GROG shifts any acquired data point to its nearest Cartesian location, thereby converting non-Cartesian to Cartesian data. Unlike other parallel imaging methods, GROG synthesizes the net weight for a shift in any direction from a single basis set of weights along the logical k-space directions. Given the vastly reduced size of the basis set, GROG calibration and reconstruction requires fewer operations and less calibration data than other parallel imaging methods for gridding. Instead of calculating and applying a density compensation function (DCF), GROG requires only local averaging, as the reconstructed points fall upon the Cartesian grid. Simulations are performed to demonstrate that the root mean square error (RMSE) values of images gridded with GROG are similar to those for images gridded using the gold-standard convolution gridding. Finally, GROG is compared to the convolution gridding technique using data sampled along radial, spiral, rosette, and BLADE (a.k.a. periodically rotated overlapping parallel lines with enhanced reconstruction [PROPELLER]) trajectories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号