首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
3.
Nuclear factor kappaB subunits induce epithelial cell growth arrest   总被引:7,自引:0,他引:7  
Seitz CS  Deng H  Hinata K  Lin Q  Khavari PA 《Cancer research》2000,60(15):4085-4092
Nuclear factor kappaB (NF-kappaB) gene-regulatory proteins play important roles in inflammation, neoplasia, and programmed cell death. Recently, blockade of NF-kappaB function has been shown to result in epithelial hyperplasia, suggesting a potential role for NF-kappaB in negative growth regulation. We expressed active NF-kappaB subunits in normal epithelial cells and found that NF-kappaB profoundly inhibits cell cycle progression. This growth inhibition is resistant to mitogenic stimuli and is accompanied by other features of irreversible growth arrest. NF-kappaB-triggered cell cycle arrest is also associated with selective induction of the cyclin-dependent kinase inhibitor p21CiP1, with overexpression of p21(Cip1) alone inducing findings similar to those seen with NF-kappaB in vitro. An active NF-kappaB subunit expressed in the epidermis of p21(CiP1-/- mice, however, displays only partial growth-inhibitory effects, suggesting that full NF-kappaB growth inhibition is only partially p21(Cip1) dependent in this setting. These data indicate that NF-kappaB can trigger cell cycle arrest in epithelial cells in association with selective induction of a cell cycle inhibitor.  相似文献   

4.
5.
Chen F 《Cancer research》2004,64(22):8135-8138
  相似文献   

6.
7.
8.
9.
Caspase-mediated p65 cleavage promotes TRAIL-induced apoptosis   总被引:5,自引:0,他引:5  
Kim HS  Chang I  Kim JY  Choi KH  Lee MS 《Cancer research》2005,65(14):6111-6119
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is cytotoxic to a wide variety of transformed cells, but not to most normal cells, implying potential therapeutic value against advanced cancer. However, signal transduction in TRAIL-mediated apoptosis is not clearly understood compared with other TNF family members. Specifically, it is not yet understood how TRAIL controls nuclear factor kappaB (NF-kappaB) activation and overcomes its anti-apoptotic effect. We explored the regulation of NF-kappaB activity by TRAIL and its role in apoptosis. TRAIL combined with IkappaBalpha-"superrepressor" induced potent apoptosis of SK-Hep1 hepatoma cells at low concentrations of TRAIL that do not independently induce apoptosis. Apoptosis by high concentrations of TRAIL was not affected by IkappaBalpha-superrepressor. Although TRAIL alone did not induce NF-kappaB activity, TRAIL combined with z-VAD significantly increased NF-kappaB activation. Analysis of the NF-kappaB activation pathway indicated that TRAIL unexpectedly induced cleavage of p65 at Asp97, which was blocked by z-VAD, accounting for all of these findings. p65 expression abrogated apoptosis and increased NF-kappaB activity in TRAIL-treated cells. Cleavage-resistant p65D97A further increased NF-kappaB activity in TRAIL-treated cells, whereas the COOH-terminal p65 fragment acted as a dominant-negative inhibitor. XIAP levels were increased by TRAIL in combination with z-VAD, whereas XIAP levels were decreased by TRAIL alone. Cleavage of p65 was also detected after FRO thyroid cancer cells were treated with TRAIL. These results suggest that TRAIL induces NF-kappaB activation, but simultaneously abrogates NF-kappaB activation by cleaving p65, and thereby inhibits the induction of anti-apoptotic proteins such as XIAP, which contributes to the strong apoptotic activity of TRAIL compared with other TNF family members.  相似文献   

10.
11.
12.
13.
14.
15.
FOXO transcription factor-dependent p15(INK4b) and p19(INK4d) expression   总被引:1,自引:0,他引:1  
Katayama K  Nakamura A  Sugimoto Y  Tsuruo T  Fujita N 《Oncogene》2008,27(12):1677-1686
  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号