首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Rubbers are widely used in various fields as the important sealing materials, such as window seal, door seal, valve, pump seal, etc. The fretting wear behavior of rubbers has an important effect on their sealing performance. This paper presents an experimental study on the fretting wear behavior of rubbers against the steel ball under air conditions (room temperature at 20 ± 2 °C and humidity at 40%). Three kinds of rubbers, including EPDM (ethylene propylene diene monomer), FPM (fluororubber), and NBR (nitrile–butadiene rubber), are considered in experiments. The sphere-on-flat contact pattern is used as the contact model. The influences of the displacement amplitude, normal force, frequency, and rubber hardness on the fretting wear behavior are discussed in detail. White light profiler and scanning electron microscope (SEM) are used to analyze the wear mechanism of the rubber surface. The fretting wear performances of three rubbers are compared by considering the effect of the displacement amplitude, normal force, frequency, and rubber hardness. The results show that NBR has the most stable friction coefficient and the best wear resistance among the three rubbers.  相似文献   

2.
Objectives: The aim of the present work was to comparatively investigate the generation and characteristics of fretting and sliding wear debris produced by CuNiAl against 42CrMo4. Methods: Tribological tests were conducted employing a self-developed tribometer. Most experimental conditions were set the same except for the amplitudes and number of cycles. Morphological, chemical, microstructural and dimensional features of the worn area and debris were investigated using optical microscope (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) and a laser particle sizer. Outcomes: Not only wear scar profiles but also the wear debris color, distribution and generated amount under fretting and sliding wear modes were quite different, which can be attributed to the significant difference in wear mechanisms. Particle size analysis indicates that the fretting debris has a smaller size distribution range; the biggest detected fretting and sliding wear debris sizes were 141 μm and 355 μm, respectively. Both fretting and sliding debris are mainly composed of copper and its oxides, but the former shows a higher oxidation degree.  相似文献   

3.
Fretting wear is a common phenomenon that happens between contact parts when there is an oscillatory relative movement. To investigate wear characteristics history in the fretting process, the finite element method (FEM) is commonly applied to simulate the fretting by considering the wear in the model. In most literature publications, the wear coefficient is considered as a constant, which is not a real case based on the experimental results. To consider the variation of wear coefficient, a double-linear model is applied in this paper, and the tribologically transformed structure (TTS) phase is considered in the study of the wear coefficient variation model. By using these models for variable wear coefficient for both flat and cylinder, the difference of wear characteristics, plastic strain, and stress between variable wear coefficient model (VWCM) and constant wear coefficient model (CWCM) are analyzed. The results show that the variable wear coefficient has no significant effect on the wear characteristic at the end of the process in the gross sliding regime. However, in the partial slip regime, the effect of variable wear coefficient on wear characteristics is significant. Due to the difference in contact geometry in the fretting process between VWCM and CWCM, the tangential and shear stress and equivalent plastic strain also show differences during the fretting process.  相似文献   

4.
This paper discusses an in-depth experimental study on the fretting wear behavior of PVDF (polyvinylidene fluoride) piezoelectric thin film against a Si3N4 ceramic sphere under air conditions. A fretting wear device with a ball-on-plate contact configuration was applied. The changes of displacement amplitude, normal force, and applied voltage were taken into account. The friction logs were used to determine the contact state of the PVDF thin film during the fretting test. The 3D topography instrument and scanning electron microscope (SEM) were used to measure the details of the surface morphology and wear volume. The test results of PVDF thin films under different normal force, displacement amplitude, and applied voltage are summarized through the collection and analysis of experimental data. It is shown that the creep and plastic deformation lead to obvious winkles at the contact surface, which may decrease the specific wear rate of PVDF thin films.  相似文献   

5.
Carbide coatings are frequently used to improve the wear resistance of industrial components in various wear environments. In this research, aiming at the service characteristics of easy wear and short service life of ball mill liners, WC–10Cr3C2–12Ni coatings were prepared by supersonic flame spraying technology (HVOF). The reciprocating sliding tests were conducted under four different WC particle size conditions, and the differences in the tribological behavior of the coatings and three–body abrasive wear mechanism were obtained. The findings reveal that the average nanohardness of the WC–Cr3C2–Ni coating is nearly five times greater than that of the steel substance. The COF of tribo-pairs decreases and then increases as the particle size increases. In the case of no particles, the surface of the coating is slightly worn, with fatigue and oxidative wear being the primary wear mechanisms. Small particles (1.5 μm and 4 μm) are crushed and coated on the coating surface, in which the extremely fine particles are plasticized to form friction layers that have a protective effect on the coatings. The protective effect of the particles disappears as the particle size increases and is replaced by a powerful chiseling effect on the coatings, resulting in serious material loss. The particle size has a direct relationship with coating wear.  相似文献   

6.
A porous metal-bonded diamond grinding wheel has an excellent performance in precision grinding. In this research, a novel manufacturing process of porous metal-bonded diamond coating was presented. Firstly, the diamond/Ni/Al coatings (400–600 μm) were fabricated via low-pressure cold spraying and their microstructures were studied. The diamond particles in the feedstock had a core–shell structure. Secondly, the post-spray heat-treatments were set at 400 °C and 500 °C to produce pores in the cold-sprayed coatings via Ni-Al diffusion. The porosities of 400 °C and 500 °C heated coating were 8.8 ± 0.8% and 16.1 ± 0.7%, respectively. Finally, the wear behavior of porous heated coating was tested in contrast with cold-sprayed coating under the same condition via a ball-on-disc tribometer. The wear mechanism was revealed. The porous heated coating had better wear performance including chip space and slight clogging. The surface roughness of wear counterpart ground by the porous heated coating was smaller (Sa: 0.30 ± 0.07 μm) than that ground by cold-sprayed coating (Sa: 0.37 ± 0.09 μm). After ultrasonic clean, the average exposure height of diamond particles in the wear track of porous heated coating was 44.5% higher than that of cold-sprayed coating. The presented manufacturing process can contribute to fabricate high performance grinding wheels via cold spraying and porous structure controlling through Ni-Al diffusion–reaction.  相似文献   

7.
In this paper, the solid–liquid composite method is used to prepare the steel–copper bimetal sample through two-stage cooling process (forced air cooling and oil cooling). The relationship between the different microstructures and friction properties of the bimetal copper layer is clarified. The results show that: the friction and wear parameters are 250 N, the speed is 1500 r/min (3.86 m/s), the friction coefficient fluctuates in the range of 0.06–0.1, and the lowest point is 0.06 at 700 °C. The microstructure of the copper layer was α-Cu, δ, Cu3P, and Pb phases, and Pb was free between α-Cu dendrites. When the solidification temperature is 900 °C, the secondary dendrite of α-Cu develops. With the decrease temperature, the growth of primary and secondary dendrites gradually tends to balance at 700 °C. During the wear process, Pb forms a self-lubricating film uniformly distributed on the surface of α-Cu, and the Cu3P and δ phases are distributed in the wear mark to increase α-Cu wear resistance.  相似文献   

8.
Experiments were conducted under a dry gross fretting regime. Steel discs were put in contact with ceramic balls. Before tribological tests, discs were subjected to ball burnishing with different pressures. Due to ball burnishing, a decrease in surface amplitude and an increase in microhardness occurred. Ball burnishing caused decreases in the friction force and volumetric wear of up to 45% in comparison to sliding pairs containing milled discs. The friction force and volumetric wear were higher for a higher roughness of disc.  相似文献   

9.
The aim of this in vitro study was to investigate the microgaps at the implant–abutment interface when zirconia (Zr) and CAD/CAM or cast Co–Cr abutments were used. Methods: Sixty-four conical connection implants and their abutments were divided into four groups (Co–Cr (milled, laser-sintered and castable) and Zirconia (milled)). After chewing simulation (300,000 cycles, under 200 N loads at 2 Hz at a 30° angle) and thermocycling (10,000 cycles, 5 to 50 °C, dwelling time 55 s), the implant–abutment microgap was measured 14 times at each of the four anatomical aspects on each specimen by using a scanning electron microscope (SEM). Kruskal–Wallis and pair-wise comparison were used to analyze the data (α = 0.05). Results: The SEM analysis revealed smaller microgaps with Co–Cr milled abutments (0.69–8.39 μm) followed by Zr abutments (0.12–6.57 μm), Co–Cr sintered (7.31–25.7 μm) and cast Co–Cr (1.68–85.97 μm). Statistically significant differences were found between milled and cast Co–Cr, milled and laser-sintered Co–Cr, and between Zr and cast and laser-sintered Co–Cr (p < 0.05). Conclusions: The material and the abutment fabrication technique affected the implant–abutment microgap magnitude. The Zr and the milled Co–Cr presented smaller microgaps. Although the CAD/CAM abutments presented the most favorable values, all tested groups had microgaps within a range of 10 to 150 μm.  相似文献   

10.
In this article, a finite element (FE) thermal–electrical model with a trunk-conical discharge channel is employed to simulate individual EDM discharges with a time-on of 18 μs up to 320 μs, which are subsequently compared with the experimental results to validate the model. The discharge channel is a trunk-conical electrical conductor which dissipates heat by the Joule heating effect, being the correspondent factor equal to 1. Instead of the usual copper–iron electrode combination, steel (DIN CK45) and aluminium alloys (DIN 3.4365) are the implemented materials on both the tool and the workpiece, respectively. The numerical results were measured using the melting temperature of the materials as the boundary of material removal. The results obtained with the thermal–electrical model, namely the tool wear ratio, the tool wear rate, the material removal rate, and the surface roughness, are in good agreement with experimental results, showing that the new FE model is capable of predicting accurately with different materials for the electrodes.  相似文献   

11.
The process–structure–property relationships of copper laser powder bed fusion (L-PBF)-produced parts made of high purity copper powder (99.9 wt %) are examined in this work. A nominal laser beam diameter of 100 μm with a continuous wavelength of 1080 nm was employed. A wide range of process parameters was considered in this study, including five levels of laser power in the range of 200 to 370 W, nine levels of scanning speed from 200 to 700 mm/s, six levels of hatch spacing from 50 to 150 μm, and two layer thickness values of 30 μm and 40 μm. The influence of preheating was also investigated. A maximum relative density of 96% was obtained at a laser power of 370 W, scanning speed of 500 mm/s, and hatch spacing of 100 μm. The results illustrated the significant influence of some parameters such as laser power and hatch spacing on the part quality. In addition, surface integrity was evaluated by surface roughness measurements, where the optimum Ra was measured at 8 μm ± 0.5 μm. X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray spectroscopy (EDX) were performed on the as-built samples to assess the impact of impurities on the L-PBF part characteristics. The highest electrical conductivity recorded for the optimum density-low contaminated coils was 81% IACS.  相似文献   

12.
Coal fly ash with the addition of Al2O3 was recycled to produce mullite/alumina composites and the camphene-based freeze casting technique was processed to develop a controlled porous structure with improved mechanical strength. Many rod-shaped mullite crystals, formed by the mullitization of coal fly ash in the presence of enough silicate, melt. After sintering at 1300–1500 °C with the initial solid loadings of 30–50 wt.%, interconnected macro-sized pore channels with nearly circular-shaped cross-sections developed along the macroscopic solidification direction of camphene solvent used in freeze casting and a few micron-sized pores formed in the walls of the pore channels. The macro-pore size of the mullite/alumina composites was in the range 20–25 μm, 18–20 μm and 15–17 μm with reverse dependence on the sintering temperature at 30, 40 and 50 wt.% solid loading, respectively. By increasing initial solid loading and the sintering temperature, the sintered porosity was reduced from 79.8% to 31.2%, resulting in an increase in the compressive strength from 8.2 to 80.4 MPa.  相似文献   

13.
The damping performance of metal rubber is highly correlated with the tribological properties of the internal metal wires. In this paper, the friction and wear characteristics of 316L stainless-steel wire are investigated under different temperatures, loads, crossing angles, and working strokes. Results show that the friction coefficient increases from 0.415 to 0.635 and the wear depth increases from 34 μm to 51 μm, with the temperature rising from 20 °C to 400 °C. High temperature will soften metal materials and promote the oxidation of metal. Softened materials can be easily sheared and removed under friction action, resulting in high wear depth. However, when a continuous oxide film with high hardness is formed under higher temperature, the oxide film can work as a wear-resisting layer to prevent further wear of the wire to a certain degree. At the same temperature, the loads, crossing angles, and working strokes change the wear resistance by affecting the surface stress, debris removal efficiency, etc., and high temperature will aggravate this change. The results pave the way for the design and selection of materials for high-temperature metal rubber components.  相似文献   

14.
In this paper, the study of defects in InAs/GaSb type-II superlattices using high-resolution an x-ray diffraction method as well as scanning (SEM) and transmission (TEM) electron microscopy is presented. The investigated superlattices had 200 (#SL200), 300 (#SL300), and 400 (#SL400) periods and were grown using molecular beam epitaxy. The growth conditions differed only in growth temperature, which was 370 °C for #SL400 and #SL200, and 390 °C for #SL300. A wings-like diffuse scattering was observed in reciprocal space maps of symmetrical (004) GaSb reflection. The micrometer-sized defect conglomerates comprised of stacking faults, and linear dislocations were revealed by the analysis of diffuse scattering intensity in combination with SEM and TEM imaging. The following defect-related parameters were obtained: (1) integrated diffuse scattering intensity of 0.1480 for #SL400, 0.1208 for #SL300, and 0.0882 for #SL200; (2) defect size: (2.5–3) μm × (2.5–3) μm –#SL400 and #SL200, (3.2–3.4) μm × (3.7–3.9) μm –#SL300; (3) defect diameter: ~1.84 μm –#SL400, ~2.45 μm –#SL300 and ~2.01 μm –#SL200; (4) defect density: 1.42 × 106 cm−2 –#SL400, 1.01 × 106 cm−2 –#SL300, 0.51 × 106 cm−2 –#SL200; (5) diameter of stacking faults: 0.14 μm and 0.13 μm for #SL400 and #SL200, 0.30 μm for #SL300.  相似文献   

15.
Developing inexpensive and rapid fabrication methods for high efficiency thermoelectric alloys is a crucial challenge for the thermoelectric industry, especially for energy conversion applications. Here, we fabricated large amounts of p-type Cu0.07Bi0.5Sb1.5Te3 alloys, using water atomization to control its microstructure and improve thermoelectric performance by optimizing its initial powder size. All the water atomized powders were sieved with different aperture sizes, of 32–75 μm, 75–125 μm, 125–200 μm, and <200 μm, and subsequently consolidated using hot pressing at 490 °C. The grain sizes were found to increase with increasing powder particle size, which also increased carrier mobility due to improved carrier transport. The maximum electrical conductivity of 1457.33 Ω−1 cm−1 was obtained for the 125–200 μm samples due to their large grain sizes and subsequent high mobility. The Seebeck coefficient slightly increased with decreasing particle size due to scattering of carriers at fine grain boundaries. The higher power factor values of 4.20, 4.22 × 10−3 W/mk2 were, respectively, obtained for large powder specimens, such as 125–200 μm and 75–125 μm, due to their higher electrical conductivity. In addition, thermal conductivity increased with increasing particle size due to the improvement in carriers and phonons transport. The 75–125 μm powder specimen exhibited a relatively high thermoelectric figure of merit, ZT of 1.257 due to this higher electric conductivity.  相似文献   

16.
Laser-powder bed fusion (L-PBF) process is a family of modern technologies, in which functional, complex (3D) parts are formed by selectively melting the metallic powders layer-by-layer based on fusion. The machining of L-PBF parts for improving their quality is a difficult task. This is because different component orientations (L-PBF-layer orientations) produce different quality of machined surface even though the same cutting parameters are applied. In this paper, stainless steel grade SS 316L parts from L-PBF were subjected to the finishing (milling) process to study the effect of part orientations. Furthermore, an attempt is made to suppress the part orientation effect by changing the layer thickness (LT) of the parts during the L-PBF process. L-PBF parts were fabricated with four different layer thicknesses of 30, 60, 80 and 100 μm to see the effect of the LT on the finish milling process. The results showed that the layer thickness of 60 μm has significantly suppressed the part orientation effect as compared to the other three-layer thicknesses of 30, 80 and 100 μm. The milling results showed that the three-layer thickness including 30, 80 and 100 μm presented up to a 34% difference in surface roughness among different part orientations while using the same milling parameters. In contrast, the layer thickness of 60 μm showed uniform surface roughness for the three-part orientations having a variation of 5–17%. Similarly, the three-layer thicknesses 30, 80 and 100 μm showed up to a 25%, 34% and 56% difference of axial force (Fa), feed force (Ff) and radial force (Fr), respectively. On the other hand, the part produced with layer thickness 60 μm showed up to 11%, 25% and 28% difference in cutting force components Fa, Ff and Fr, respectively. The three-layer thicknesses 30, 80 and 100 μm in micro-hardness were found to vary by up to 14.7% for the three-part orientation. Negligible micro-hardness differences of 1.7% were revealed by the parts with LT 60 μm across different part orientations as compared to 6.5–14% variations for the parts with layer thickness of 30, 80 and 100 μm. Moreover, the parts with LT 60 μm showed uniform and superior surface morphology and reduced edge chipping across all the part orientations. This study revealed that the effect of part orientation during milling becomes minimum and improved machined surface integrity is achieved if the L-PBF parts are fabricated with a layer thickness of 60 μm.  相似文献   

17.
Bone regeneration procedures require alternative graft biomaterials to those for autogenous bone. Therefore, we developed a novel porcine graft using particle sizes of 250–500 μm and 500–1000 μm in rabbit calvarial bone defects and compared the graft properties with those of commercial hydroxyapatite (HA)/beta-tricalcium phosphate (β-TCP) over eight weeks. Surgery was performed in 20 adult male New Zealand white rabbits. During a standardized surgical procedure, four calvarial critical-size defects of 5 mm diameter and 3 mm depth were prepared. The defects were filled with HA/β-TCP, 250–500 μm or 500–1000 μm porcine graft, and control defects were not filled. The animals were grouped for sacrifice at 1, 2, 4, and 8 weeks post-surgery. Subsequently, sample blocks were prepared for micro-computed tomography (micro-CT) scanning and histological sectioning. Similar bone formations were observed in all three treatment groups, although the 250–500 μm porcine graft performed slightly better. Rabbit calvarial bone tissue positively responded to porcine grafts and commercial HA/β-TCP, structural analyses showed similar crystallinity and porosity of the porcine and HA/β-TCP grafts, which facilitated bone formation through osteoconduction. These porcine grafts can be considered as graft substitutes, although further development is required for clinical applications.  相似文献   

18.
Labyrinth seals as a noncontact sealing technology are widely used in aero-engine. To improve the efficiency of the aero-engine, the clearance between the rotor and stator must be as small as possible. However, the change of the clearance between the rotor and stator because of thermal expansion, vibration, mechanical loading may lead to undesirable high-speed rub, which will lead to the cracking of the seal fins. This paper focuses on the wear of the seal fin after the rub and presents the rubbing tests between seal fins and the metal honeycomb under rubbing speed of 380 m/s and incursion rates between 20 and 180 μm/s, with an incursion depth of 1500 μm and a temperature of 350 °C. The rubbing force and temperature were recorded, and the seal fins were checked by SEM and EDS. The results show that the wear mechanism of seal fins changed from oxidation wear and adhesive wear to delamination wear and then to metal wear with the increasing incursion rate. The axial cracks appeared on the worn surface of the seal fins due to the cracking of tribo-layers under periodic thermomechanical stress. The wear mechanism of the seal fin also has a great influence on the rubbing force and temperature.  相似文献   

19.
In this study, the effect of baking heat treatment on fatigue strength and fatigue life was evaluated by performing baking heat treatment after shot peening treatment on 4340M steel for landing gear. An ultrasonic fatigue test was performed to obtain the S–N curve, and the fatigue strength and fatigue life were compared. The micro hardness of shot peening showed a maximum at a hardened depth of about 50 μm and was almost uniform when it arrived at the hardened depth of about 400 μm. The overall average tensile strength after the baking heat treatment was lowered by about 80–111 MPa, but the yield strength was improved by about 206–262 MPa. The five cases of specimens showed similar fatigue strength and fatigue life in high cycle fatigue (HCF) regime. However, the fatigue limit of the baking heat treated specimens showed an increasing tendency rather than that of shot peening specimens when the fatigue life was extended to the very high cycle fatigue (VHCF) regime. The effect of baking heat treatment was identified from improved fatigue limit when baking heat was used to treat the specimen treated by shot peening containing inclusions. The optimum temperature range for the better baking heat treatment effect could be constrained not to exceed maximum 246 °C.  相似文献   

20.
Owing to orange-peel defects, the industrial application of light alloy structural members is significantly restricted. In this study, a quasi-in situ axial tensile experiment was conducted on a 6063-T4 aluminum alloy sample. The surface morphology and microstructure evolution of the tagged area were scanned simultaneously using laser scanning confocal microscopy and electron backscattered diffraction, and the surface roughening behavior of the polycrystal aluminum alloy surface, caused by deformation, was quantitatively analyzed. As the concave–convex features at the surface appear in pairs with increasing global strain, the width of the concave features increases, whereas that of the convex features decreases gradually, resulting in the initially increasing surface roughness, which subsequently remains unchanged. During the stretching process, the small-sized grains in the 37~102 μm range show weak strain localization and the highest coordination of deformation. The deformation mode of medium-sized grains in the 114–270 μm range tends to grain deflection, and others tend to slip.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号