首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With the development of infrastructure, there are growing numbers of high geothermal environments, which, therefore, form a serious threat to tunnel structures. However, research on the changes in mechanical properties of shotcrete under high temperatures and humid environments are insufficient. In this paper, the combination of various temperatures (20 °C/40 °C/60 °C) and 55% relative humidity is used to simulate the effect of environment on the strength and stress–strain curve of basalt fiber reinforced shotcrete. Moreover, a constitutive model of shotcrete considering the effect of fiber content and temperature is established. The results show that the early mechanical properties of BFRS are improved with the increase in curing temperature, while the compressive strength at a later age decreases slightly. The 1-day and 7-day compressive strength of shotcrete at 40 °C and 60 °C increased by 10.5%, 41.1% and 24.1%, 66.8%, respectively. The addition of basalt fiber can reduce the loss of later strength, especially for flexural strength, with a increase rate of 11.9% to 39.5%. In addition, the brittleness of shotcrete increases during high temperature curing, so more transverse cracks are observed in the failure mode, and the peak stress and peak strain decrease. The addition of basalt fiber can improve the ductility and plasticity of shotcrete and increase the peak strain of shotcrete. The constitutive model is in good agreement with the experimental results.  相似文献   

2.
The hydration process and compressive strength and flexural strength development of sulphate-resistant Portland cement (SRPC) curing at 20 °C, 40 °C, 50 °C, and 60 °C were studied. In addition, MIP, XRD, SEM, and a thermodynamic simulation (using Gibbs Energy Minimization Software (GEMS)) were used to study the pore structure, the types, contents, and transformations of hydration products, and the changes in the internal micro-morphology. The results indicate that, compared with normal-temperature curing (20 °C), the early compressive strength (1, 3, and 7 d) of SRPC cured at 40~60 °C increased by 10.1~57.4%, and the flexural strength increased by 1.8~21.3%. However, high-temperature curing was unfavorable for the development of compressive strength and flexural strength in the later period (28~90 d), as they were reduced by 1.5~14.6% and 1.1~25.5%, respectively. With the increase in the curing temperature and curing age, the internal pores of the SRPC changed from small pores to large pores, and the number of harmful pores (>50 nm) increased significantly. In addition, the pore structure was further coarsened after curing at 60 °C for 90 d, and the number of multiple harmful pores (>200 nm) increased by 17.9%. High-temperature curing had no effect on the types of hydration products of the SRPC but accelerated the formation rate of hydration products. The production of the hydration products C-S-H increased by 13.5%, 18.6%, and 22.8% after curing at 40, 50, and 60 °C for 3 d, respectively. The stability of ettringite (AFt) reduced under high-temperature curing, and its diffraction peak was not observed in the XRD patterns. When the curing temperature was higher than 50 °C, AFt began to transform into monosulfate, which consumed more tricalcium aluminate hydrate and inhibited the formation of “delayed ettringite”. Under high-temperature curing, the compactness of the internal microstructure of the SRPC decreased, and the distribution of hydration products was not uniform, which affected the growth in its strength during the later period.  相似文献   

3.
Geopolymer is a new type of synthesized aluminosilicate material. Compared with ordinary Portland cement, it has better fire resistance and durability, and is more environmentally friendly. In this paper, a high-strength metakaolin-based geopolymer composite (HMGC) has been developed by utilizing quartz powder and steel fibers. The optimization compositions and effect of curing temperatures (from ambient temperature to 90 °C) on the strength performance of the HMGC is studied. The optimized 1-day compressive strength of the HMGC can reach 80 MPa, and the 3-day compressive strength is close to 100 MPa (97.49 MPa). Combined with XRD, FTIR, SEM and MIP characterization, the mechanisms behind the strength development under different curing temperatures are analyzed. The results show that heat curing can significantly speed up the process of geopolymerization and increase the early strength of the HMGC. However, long-term heat curing under high temperature (such as 90 °C, 7 days) would reduce the mechanical strength of the HMGC. Prolonged high-temperature curing increases the pores and micro-defects in the gel phase of the HMGC, which may be attributed to chemical shrinkage. Thus, the curing temperature should be carefully controlled to make a HMGC with better performance.  相似文献   

4.
Geopolymer concrete possesses superior fire resistance compared to ordinary Portland cement (OPC)-based concrete; however, there are concerns regarding its vulnerability when exposed to real fire events. In the present study, the fire resistance of fly-ash-based geopolymer concrete was evaluated relative to that of OPC-based concrete. Concrete specimens of standard strength grades of 20, 40, and 60 MPa were exposed to fire at 500 and 1200 °C for 2 h to simulate real fire events. Visual observation was performed, mass loss and residual compressive strength were measured, and scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR) analyses were conducted. OPC-based concrete suffered major cracks accompanied with spalling for the high-strength specimen, while geopolymer concrete experienced minor cracks with no spalling. Mass losses of the geopolymer concrete—of 1.69% and 4%, after the exposure to fire at 500 and 1200 °C, respectively—were lower than those of the OPC-based concrete. More than 50% of the residual compressive strength for low- and medium-strength geopolymer concrete, after the exposure to fire at 1200 °C, was maintained. After the exposure to fire at 500 °C, the residual compressive strength of the geopolymer concrete increased from 13 to 45%, while the OPC-based concrete was not able to sustain its compressive strength. SEM images showed that the matrix of the geopolymer concrete, after the exposure to fire, was denser than that of the OPC-based concrete, while the FTIR spectra of the geopolymer concrete showed a minor shift in wavelength. Hence, our findings indicate that fly-ash-based geopolymer concrete has an excellent fire resistance as compared to OPC-based concrete.  相似文献   

5.
The effect of the dosage of sulphur-containing tailings (STs) and curing temperature on the properties of M32.5 cement mortar was studied in this work. An experimental study was conducted to evaluate the effects of STs with different substitution ratios (0, 10%, 20%, 30%, 40%) on the compressive strength experiment, fluidity, expansion ratio, and pore structure of M32.5 cement mortar. The results showed that the addition of STs reduced the fluidity of mortar, and the fluidity decreased with the increase of the STs dosage. The compressive strength of mortars increased at a lower substitution rate (0~20%) but decreased at a higher substitution rate (>20%). Ettringite peaks and new sulfate peaks were found by X-ray diffraction (XRD) analysis. Scanning electron microscope (SEM) observation of the microstructure showed that a large number of hydrated products, such as ettringite, formed and filled in the interstitial space, which was conducive to the development of strength. The optimal STs replacement ratio of river sand was 10%. Then, the performance of mortar at curing temperatures of 23 ± 1, 40, 60, and 80 °C was further investigated under the optimal STs replacement ratio. Under high-temperature curing conditions, the early strength of M32.5 cement mortar with STs increased greatly, but the late strength decreased gradually with the increase in curing temperature. The early strength development of the mortar mainly depended on the high speed of hydration reaction, and the late strength variation was mainly affected by hydration products and the pore size distribution. After comprehensive consideration, the optimal curing temperature of M32.5 cement mortar with STs was 40 °C.  相似文献   

6.
The effect of calcium nitrate (CN) dosages from 0 to 3% (of cement mass) on the properties of fresh cement paste rheology and hardening processes and on the strength of hardened concrete with two types of limestone-blended composite cements (CEM II A-LL 42.5 R and 42.5 N) at different initial (two-day) curing temperatures (−10 °C to +20 °C) is presented. The rheology results showed that a CN dosage up to 1.5% works as a plasticizing admixture, while higher amounts demonstrate the effect of increasing viscosity. At higher CN content, the viscosity growth in normal early strength (N type) cement pastes is much slower than in high early strength (R type) cement pastes. For both cement-type pastes, shortening the initial and final setting times is more effective when using 3% at +5 °C and 0 °C. At these temperatures, the use of 3% CN reduces the initial setting time for high early strength paste by 7.4 and 5.4 times and for normal early strength cement paste by 3.5 and 3.4 times when compared to a CN-free cement paste. The most efficient use of CN is achieved at −5 °C for compressive strength enlargement; a 1% CN dosage ensures the compressive strength of samples at a −5 °C initial curing temperature, with high early strength cement exceeding 3.5 MPa but being less than the required 3.5 MPa in samples with normal early strength cement.  相似文献   

7.
This investigation studies the effects of hot water and hot air curing on the strength development, transport properties, and freeze-thaw resistance of mortars incorporating low-heat blast furnace slag cement and nanosilica (NS). Mortar samples were prepared and stored in ambient conditions for 24 h. After demolding, mortar samples were subjected to two different hot curing methods: Hot water and hot air curing (40 °C and 60 °C) for 24 h. For comparison purposes, mortar reference mixes were prepared and cured in water and air at ambient conditions. Strength development (from 1 to 180 days), capillary water porosity, water sorptivity, and freeze-thaw resistance were tested after 180 days of curing. The experimental results showed that both curing regimes accelerate the strength development of mortars, especially in the first seven days of hydration. The highest early strengths were reported for mortars subjected to a temperature of 60 °C, followed by those cured at 40 °C. The hot water curing regime was found to be more suitable, as a result of more stable strength development. Similar findings were observed in regard to durability-related properties. It is worth noting that thermal curing can more efficiently increase strength in the presence of nanosilica, suggesting that NS is more effective in enhancing strength under thermal curing.  相似文献   

8.
The study aims to investigate the fire performance of reinforced concrete (RC) slab fabricated from high volume fly ash inclusion with nano-silica (HVFANS) under ISO 834 load curve. The HVFANS concrete slab with dimensions of 1850 mm × 1700 mm × 200 mm was tested via an electrical furnace under an exposing temperature of 1100 °C for 120 min. The slab behaviour was evaluated in terms of residual compressive strength, temperature distribution along its thickness, spalling, and cracks. The results revealed that the slab was capable of maintaining 62.19% of its original compressive strength at room temperature after exposure to the above temperature. Moreover, the distribution of temperature revealed that the temperature of concrete cover and bottom reinforcement was less than 300 °C with a maximum spalling depth of 11 mm within the temperature range of 680 to 840 °C. Furthermore, the thermal conductivity index (K) of the HVFANS concrete was determined, and results indicated that thermal conductivity equalled 0.35 W/mK which is considered low, as compared with other concretes tested in current and previous studies.  相似文献   

9.
In this research, structural-functional integrated cement-based materials were prepared by employing cement paste and a microencapsulated phase change material (MPCM) manufactured using urea-formaldehyde resin as the shell and paraffin as the core material. The encapsulation ratio of the MPCM could reach up to 91.21 wt%. Thermal energy storage cement pastes (TESCPs) incorporated with different MPCM contents (5%, 10%, 15%, 20% and 25% by weight of cement) were developed, and their thermal and mechanical properties were studied. The results showed that the total energy storage capacity of the hardened cement specimens with MPCM increased by up to 3.9-times compared with that of the control cement paste. The thermal conductivity at different temperature levels (35–36 °C, 55–56 °C and 72–74 °C) decreased with the increase of MPCM content, and the decrease was the highest when the temperature level was 55–56 °C. Moreover, the compressive strength, flexural strength and density of hardened cement paste decreased with the increase in MPCM content linearly. Among the evaluated properties, the compressive strength of TESCPs had a larger and faster degradation with the increase of MPCM content.  相似文献   

10.
In order to create greener polyurethane (PUR) foams, modified used cooking oils (UCO) were applied as starting resources for the synthesis of bio-polyols. The bio-polyols were produced using transesterification of UCO with diethylene glycol (UCO_DEG) and triethanolamine (UCO_TEA). Next, open-cell PUR foams were synthesized by replacing 20, 40, 60, 80 and 100% of the petrochemical polyol with the bio-polyol UCO_DEG or UCO_TEA. It was observed that an increasing bio-polyol content (up to 60%) led to an increase of the closed cell content. However, a further increase in the bio-polyol content up to 100% resulted in foam cell opening. The bio-foams obtained in the experiment had an apparent density of 13–18 kg/m3. The coefficient of thermal conductivity was determined at three different average temperatures: 10, 0 and −10 °C. The PUR bio-foams modified with bio-polyol UCO_TEA had lower values of thermal conductivity, regardless of the average temperature (35.99–39.57 mW/m·K) than the foams modified with bio-polyol UCO_DEG (36.95–43.78 mW/m·K). The compressive strength of most of the bio-foams was characterized by a higher value than the compressive strength of the reference material (without bio-polyol). Finally, it was observed that the bio-materials exhibited dimensional stability at 70 °C.  相似文献   

11.
The effect of the thermal properties of aggregates on the mechanical properties of high-strength concrete was evaluated under loading and high-temperature conditions. For the concrete, granite was selected as a natural aggregate, and ash-clay and clay as lightweight aggregates. The mechanical properties of the concrete (stress–strain, compressive strength, elastic modulus, thermal strain, and transient creep) were evaluated experimentally under uniform heating from 20 to 700 °C while maintaining the load at 0, 20, and 40% of the compressive strength at room temperature. Experimental results showed that the concrete containing lightweight aggregates had better mechanical properties, such as compressive strength and elastic modulus, than that of the concrete with a granite aggregate at high temperature. In particular, the concrete containing lightweight aggregates exhibited high compressive strength (60–80% of that at room temperature) even at 700 °C. Moreover, the concrete containing granite exhibited a higher thermal strain than that containing lightweight aggregates. The influence of the binding force under loaded conditions, however, was found to be larger for the latter type. The transient creep caused by the loading was constant regardless of the aggregate type below 500 °C but increased more rapidly when the coefficient of the thermal expansion of the aggregate was above 500 °C.  相似文献   

12.
The early strength of magnesium phosphate cement (MPC) decreases sharply in severe cold environments ≤−10 °C, with the 2 h compressive strength falling to 3.5 MPa at−20 °C. Therefore, it cannot be used as a repair material for emergency repair construction in such environments. In this study, MPC is adapted for use in such cold environments by replacing part of the dead-burned magnesia (M) in the mixture with a small amount of light-burned magnesia (LBM) and introducing dilute phosphoric acid (PA) solution as the mixing water. The heat released by the highly active acid–base reaction of PA and LBM stimulates an MPC reaction. Moreover, the early strength of the MPC significantly improves with the increase in the Mg2+ concentration and the initial reaction temperature of the MPC paste, which enables MPC hardening in severe cold environments. Although the morphology of the reaction products of the MPC is poor and the grain plumpness and size of the struvite crystals are remarkably reduced, the early strength of MPC prepared in the severe cold environment is close to that of MPC prepared under normal temperature. Furthermore, the increases in the early reaction temperature and early strength of magnesium phosphate cement concrete (MPCC) are significantly improved when the PA concentration in the mixing water and the LBM/M ratio are 10% and 4–6% at −10 °C and 20% and 6–8% at −20 °C, respectively. Moreover, self-curing of MPCC can be realized even at −20 °C, at which temperature the 2 h and 24 h compressive strength of MPCC reach 36 MPa and 45 MPa, respectively.  相似文献   

13.
This paper investigated the curing effects on the mechanical properties of calcium-containing geopolymer mortar. Three precursors are used: Class C fly ash, Class F fly ash plus calcium hydroxide and Class F fly ash plus slag. Curing conditions included: (1) standard curing at 20 ± 3 °C and RH 95% (C); (2) steam curing at 60 °C for 24 h (S); (3) steam curing at 60 °C for 6 h (S6); and (4) oven curing at 60 °C for 24 h (O), then the latter three followed by the standard curing. Under the standard conditions, the flexural strength and compressive strength of Class C fly ash geopolymer mortars developed quickly until the age of 7 days, followed by a gradual increase. Specimens with Class F fly ash plus Ca(OH)2 showed slow increase till the age of 28 days. Under these non-standard conditions (2–4), all specimens showed higher 3-day strength, while later strengths were either higher or lower than those in standard conditions, depending on the type of the precursor.  相似文献   

14.
Mineral resources are increasingly being developed in cold and permafrost regions. However, the mechanical and physical properties of cemented tailings backfill (CTB) cured at normal temperature are no longer applicable. To clarify the reasons for this variability, a series of tests were performed. The mechanical properties of CTB with different cement–tailings ratios (CTR, 1:4, 1:8, 1:12, 1:16, and 1:20) were tested at different curing ages (3, 7 and 28 days) and curing temperatures (20 °C, 5 °C, −5 °C, and −20 °C). The differences of CTB in mechanical and physical properties under positive- and negative-temperature curing conditions were analyzed, and the microscopic failure process of CTB under negative-temperature curing conditions was discussed. The results revealed that the mechanical properties and deformation behavior of CTB under positive- and negative-temperature curing conditions were different. The frozen CTB had higher early strength than the standard-temperature curing condition (20 °C), and the lower the temperature, the higher the early strength. The low-temperature curing condition, on the other hand, was not beneficial to CTB’s long-term strength. The low-temperature curing condition was not conducive to the long-term strength of CTB. After yielding, strain hardening and strain softening appeared in the deformation behavior of frozen backfill, indicating ductility. In contrast to the typical-temperature curing condition, the frozen CTB showed a new failure pattern that has little relation to curing time or CTR. Furthermore, the failure process of frozen backfill was reviewed and studied, which was separated into four stages, and altered as the curing time increased. The results of this study can act as a guide for filling mines in permafrost and cold climates.  相似文献   

15.
This paper uses polyoxyethylene alkyether sulphate (PAS) to form foam via pre-foaming method, which is then incorporated into geopolymer based on fly ash and ladle furnace slag. In the literature, only PAS-geopolymer foams made with single precursor were studied. Therefore, the performance of fly ash-slag blended geopolymer with and without PAS foam was investigated at 29–1000 °C. Unfoamed geopolymer (G-0) was prepared by a combination of sodium alkali, fly ash and slag. The PAS foam-to-paste ratio was set at 1.0 and 2.0 to prepare geopolymer foam (G-1 and G-2). Foamed geopolymer showed decreased compressive strength (25.1–32.0 MPa for G-1 and 21.5–36.2 MPa for G-2) compared to G-0 (36.9–43.1 MPa) at 29–1000 °C. Nevertheless, when compared to unheated samples, heated G-0 lost compressive strength by 8.7% up to 1000 °C, while the foamed geopolymer gained compressive strength by 68.5% up to 1000 °C. The thermal stability of foamed geopolymer was greatly improved due to the increased porosity, lower thermal conductivity, and incompact microstructure, which helped to reduce pressure during moisture evaporation and resulted in lessened deterioration.  相似文献   

16.
With the aim of investigating the response of concrete to the dual effect of accidental fire high temperatures and possible induced impacts due to falling fragmented or burst parts or objects, an experimental work is conducted in this study to explore the influence of exposure to temperatures of 200, 400 and 600 °C on the responses of concrete specimens subjected to impact loads. Cylindrical specimens are tested using the recommended repeated impact procedure of the ACI 544-2R test. Three concrete mixtures with concrete nominal design strengths of 20, 40 and 80 MPa are introduced to represent different levels of concrete strength. From each concrete mixture, 24 cylinders and 12 cubes are prepared to evaluate the residual impact resistance and compressive strength. Six cylindrical specimens and three cubes from each concrete mixture are heated to each of the three levels of high temperatures, while the other six cylinders and three cubes are tested without heating as reference specimens. The test results show that the behavior of impact resistance is completely different from that of compressive strength after exposure to high temperatures; the cylindrical specimens lose more than 80% of the cracking and failure impact resistance after exposure to 200 °C, while impact resistance almost vanishes after exposure to 400 and 600 °C. Concrete compressive strength is found to be effective on the unheated impact specimens, where the higher-strength cylinders retain significantly higher impact numbers. This effect noticeably decreases after exposure to 200 and 400 °C, and vanishes after exposure to 600 °C.  相似文献   

17.
Thermal conductivity plays a significant role in controlling thermal cracking of cement-based materials. In this study, the thermal conductivity of cement paste at an early age was measured by the hot plate method. The test results showed that the thermal conductivity of cement paste decreased with the increase of water/cement ratio and curing age. Meanwhile, a multiphase model for the thermal conductivity of cement paste was proposed and used to study the influence of saturation and curing temperature on the thermal conductivity of cement paste. To determine the parameters involved in this model, the thermal conductivity of each phase in cement paste was calculated by the molecular dynamic simulation method, and the hydration of cement was simulated by the Virtual Cement and Concrete Testing Laboratory. The inversion results showed that the relative error between experimental and simulation results lay between 1.1% and 6.5%. The thermal conductivity of paste in the saturated condition was 14.9–32.3% higher than that in the dry state. With the curing temperature increasing from 10 °C to 60 °C, the thermal conductivity of cement paste decreased by 3.9–4.9% depending on the water/cement ratio.  相似文献   

18.
This study aims to evaluate the mechanical properties of carbon fiber-reinforced reactive powder concrete (CFRPC) after exposure to cryogenic temperature. The mechanical properties of plain RPC and CFRPC with carbon fiber volume contents of 0, 0.5%, 1.0%, and 1.5% were examined after exposure to 20 °C, −5 °C, −15 °C, and −25 °C for 72 h. The effect of fiber contents and exposure temperatures on the cubic and axial compressive strength, splitting tensile strength, elastic modulus, and peak strain were systematically reported and analyzed. The results showed adding carbon fiber to RPC could significantly enhance the strength and slightly improve ductility performance. Additionally, CFRPC with 1.0% fiber content showed the best mechanical properties. The maximum increases in cubic and axial compressive strength and tensile strength were 26.0%, 25.7%, and 21.8%, the elastic modulus was 13.2%, and the peak strain was 13.0% over the plain RPC. Additionally, all mechanical properties continued to degrade with decreasing temperature. After exposure to −25 °C, the cubic, axial compressive strength, and tensile strength of CFRPC degraded to 82.2–84.9%, 80.7–87.5%, and 72.7–73.7% of the normal temperature strength, respectively. In addition, the linear relationship equation between the discount factor of each mechanical property and the temperature was established. Finally, the equation for the stress–strain ascending curve of CFRPC described by a quadratic polynomial was proposed, which fitted well with the experimental results.  相似文献   

19.
A new type of steel–concrete–steel composite structure was adopted and widely used in the immersed tunnel of the Shenzhen–Zhongshan access. The research on the mechanical behavior of the new composite structure under a high temperature of fire is of great engineering significance to the fire protection design of the structure. Both the model test and a numerical simulation were adopted to study the mechanical behavior and damage characteristics of the new composite structure under fire. The RABT standard temperature rise curve was used to simulate the temperature rising law under fire (it reflects the characteristics of temperature rise in case of fire in an enclosed environment: rapidly raised to 1200 °C within 5 min, maintained at 1200 °C for 120 min, then it is cooled to normal temperature after 110 min). The temperature distribution law inside the structure, the deformation development law of the roof and the crack distribution were analyzed based on the thermal–mechanical coupling analysis method. The results showed that the internal part of the composite structure close to the fire surface was directly affected by the high temperature, and the temperature presented a step distribution law, while the part far from the fire surface was affected by the lag effect of the temperature transfer, and the temperature presented a continuous growth law. The roof deformation presented a three-stage model of “rapid growth-deformation stability-deformation recovery” with time. The overall cracks of the composite structure showed a symmetrical distribution under fire. The composite structure presented a shear failure mode as a whole. The results could provide a reference for the study of fire resistance for the new composite structure and support the structural fire protection design of the immersed tunnel of the Shenzhen–Zhongshan access.  相似文献   

20.
The properties of blended cement containing 0%, 20%, and 50% iron tailing powder (ITP) at 20 °C and 60 °C were investigated by determining the hydration heat, microstructure, and compressive strength. The addition of ITP decreases the exothermic rate and cumulative hydration heat of blended cement at 20 °C. The high temperature increases the hydration rate and leads to the hydration heat of blended cement containing 20% ITP higher than that of Portland cement. Increasing the amount of ITP decreases the non-evaporable water content and Ca(OH)2 content as well as compressive strength at both of the two studied temperatures. The addition of ITP coarsens the early-age pore structure but improves the later-age pore structure at 20 °C. The high temperature significantly improves the early-age properties of blended cement containing ITP, but it is detrimental to the later-age properties development. The reaction of ITP is limited even at high temperature. The large ITP particles bond poorly with surrounding hydration products under early high-temperature curing condition. The properties of blended cement containing a large amount of ITP are much poorer at high temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号