首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
OBJECTIVE: Nitric oxide (NO) has been implicated in the depression of cardiac function in human heart failure. Some reports have identified iNOS (inducible nitric oxide synthase) within the myocyte component of the failing human heart, and NO is known to decrease the contraction amplitude of isolated ventricular myocytes. We have treated myocytes from failing human ventricle with a NOS inhibitor, NG-monomethyl-L-arginine (L-NMMA), in an attempt to restore contractile function. METHODS AND RESULTS: Myocytes were isolated from failing and non-failing human ventricles and their contraction amplitude was measured during superfusion (32 degrees C, 1-2 mmol/l Ca2+) and electrical stimulation (0.1-2 Hz). The contraction amplitude of myocytes from failing hearts was depressed in a frequency-dependent manner. At 1 Hz, the contraction amplitude of cells from non-failing heart was 4.70 +/- 0.53% cell shortening (mean +/- SEM, n = 13 subjects), compared with 2.18 +/- 0.27% (P < 0.01, 11 patients) from patients with ischaemic heart disease (IHD) or 2.56 +/- 0.74% (P < 0.02, six patients) with dilated cardiomyopathy (DCM). Superfusion with 0.1 mmol/l L-NMMA did not increase contraction amplitude in myocytes from failing heart at either 0.2 Hz (n = 11) or 1 Hz (n = 7). Responses to beta-adrenoceptor stimulation were reduced in myocytes from failing human heart, with contraction amplitude in maximum isoprenaline 0.47 +/- 0.11 of that in high Ca2+ in the same cell (n = 6), compared to 0.99 +/- 0.07 in non-failing heart (n = 14, P < 0.01). The presence of 0.1 mmol/l L-NMMA did not increase the isoprenaline/Ca2+ ratio in myocytes from failing heart (0.40 +/- 0.09, P = NS). CONCLUSION: These results do not suggest a functional role for tonic NO production in the frequency-dependent depression of contraction or beta-adrenoceptor desensitisation in myocytes from failing human ventricle.  相似文献   

2.
Cardiac parasympathetic activity reduces susceptibility to potentially lethal ventricular arrhythmias in heart failure and ischemic heart disease. This influence is mediated in large part by antagonism of the adverse cardiac effects of sympathetic overactivity ("indirect" parasympathetic activity) in addition to the "direct" effects of muscarinic stimulation. Nitric oxide modulates parasympathetic cardiac signaling in some animal models, but human data are lacking. We have investigated the influence of endogenous nitric oxide on cardiac responses to parasympathetic stimulation in healthy humans. In 18 volunteers, we studied chronotropic and inotropic responses to muscarinic stimulation, both before and after prestimulation with isoproterenol. Cardiac muscarinic stimulation was achieved using an intravenous bolus of the short-acting cholinesterase inhibitor, edrophonium. Responses were assessed during a background infusion of a nitric oxide synthase inhibitor (N(G)-monomethyl-L-arginine [L-NMMA]), placebo (saline), or phenylephrine (vasoconstrictor control) in a single-blind, random order, crossover protocol. L-NMMA did not affect chronotropic responses to edrophonium alone (direct parasympathetic activity). The decrease in heart rate attributable to "indirect" parasympathetic activity (derived by comparison with the effect of edrophonium during concurrent adrenergic stimulation) was substantially attenuated by L-NMMA in comparison to both control infusions. No modification of muscarinic inotropic responses by L-NMMA was apparent in comparison to the vasoconstrictor control. Nitric oxide exerts a powerful facilitating influence on indirect (antiadrenergic) but not direct human cardiac parasympathetic control. Stimulation of the endogenous nitric oxide pathway might enhance parasympathetic protection against the adverse influences of cardiac sympathetic overactivity.  相似文献   

3.
BACKGROUND: Increased nitric oxide (NO) in the failing heart attenuates the myocardial contractile response to beta-adrenergic receptor stimulation. However, the physiological effects of NO on the beta-adrenergic post-receptor signaling system are unknown. The objective of the present study was to examine the effects of cardiac NO synthase (NOS) inhibition on left ventricular (LV) hemodynamics and mechanoenergetics in response to adenylyl cyclase stimulation in human heart failure. METHODS AND RESULTS: The study group comprised 13 patients with heart failure because of idiopathic cardiomyopathy (IDC). Emax was examined as an index of LV contractility, LV external work (EW), pressure-volume area (PVA), myocardial oxygen consumption (MVO2), and mechanical efficiency (EW/MVO2) with the use of conductance and coronary sinus thermodilution catheters before and during colforsin daropate infusion, and during concurrent infusion of colforsin daropate with the NOS inhibitor, NG-monomethyl-L-arginine (L-NMMA; 200 micromol). Colforsin daropate increased Emax by 53% and EW by 18%, and reduced PVA by 14%, without altering MVO2 or mechanical efficiency. The combination of colforsin daropate with L-NMMA further increased Emax by 26% and reduced PVA by 9%, without altering MVO2 or mechanical efficiency. CONCLUSIONS: These findings suggest endogenous NO may modulate beta-adrenergic post-receptor pathways and preserve myocardial efficiency in patients with IDC.  相似文献   

4.
Nitric oxide (NO) exerts several effects on myocardial contraction, including enhancement of relaxation and diastolic function, modulation of β-adrenergic inotropic responses, and inotropic effects in the absence of agonist pre-stimulation. Different effects have been observed in different species and preparations, and it is unclear whether they are species- or preparation-specific, or whether they represent a range of responses that can manifest in most mammalian species. We therefore examined the effects of NO on the inotropic response to β-adrenergic stimulation in the isolated guinea-pig heart, a species in which we have previously shown that NO enhances basal left ventricular (LV) relaxation and modulates the Frank-Starling response. Isolated ejecting hearts were perfused with Krebs buffer at constant paced heart rate (1 μM indomethacin, 37°C, constant loading conditions), and high fidelity LV pressure was monitored by an apical 2F Millar catheter. All hearts were initially treated with dobutamine (0.1 μM) and then, once the peak inotropic and chronotropic response had been established, with either (a) no further treatment (n=6), (b) the NO donor sodium nitroprusside (1 μM, n=6; 10 μM, n=6), or (c) the specific agonist for NO release, substance P (0.1 μM, n=6). Dobutamine (0.1 μM) produced a rapid positive inotropic and chronotropic response, associated with a fall in LV end-diastolic pressure (LVEDP) and a rise in coronary flow. The positive inotropic effect of dobutamine declined over 20–28 minutes, while the chronotropic response persisted over this period. Low dose sodium nitroprusside (1 μM) delayed the decline in the inotropic response to dobutamine and exaggerated the fall in LVEDP. Similar effects were observed with substance P (0.1 μM). In contrast, a higher dose of sodium nitroprusside (10 μM) did not alter the response to dobutamine. These data indicate that “low dose” NO augments the inotropic response to β-adrenergic stimulation in the isolated ejecting guinea-pig heart, in addition to its previously reported effects on basal LV relaxation in the same preparation. Received: 3 September 1997, Returned for revision: 30 September 1997, Revision received: 16 December 1997, Accepted: 19 January 1998  相似文献   

5.
6.
Nitric oxide (NO) is an important modulator of cardiac performance and left ventricular (LV) remodeling after myocardial infarction (MI). We tested the effect of cardiomyocyte-restricted overexpression of one NO synthase isoform, NOS3, on LV remodeling after MI in mice. LV structure and function before and after permanent LAD coronary artery ligation were compared in transgenic mice with cardiomyocyte-restricted NOS3 overexpression (NOS3-TG) and their wild-type littermates (WT). Before MI, systemic hemodynamic measurements, echocardiographic assessment of LV fractional shortening (FS), heart weight, and myocyte width (as assessed histologically) did not differ in NOS3-TG and WT mice. The inotropic response to graded doses of isoproterenol was significantly reduced in NOS3-TG mice. One week after LAD ligation, the infarcted fraction of the LV did not differ in WT and NOS3-TG mice (34+/-4% versus 36+/-12%, respectively). Four weeks after MI, however, end-systolic LVID was greater, and fractional shortening and maximum and minimum rates of LV pressure development were less in WT than in NOS3-TG mice. LV weight/body weight ratio was greater in WT than in NOS3-TG mice (5.3+/-0.2 versus 4.6+/-0.5 mg/g; P<0.01). Myocyte width in noninfarcted myocardium was greater in WT than in NOS3-TG mice (18.8+/-2.0 versus 16.6+/-1.6 microm; P<0.05), whereas fibrosis in noninfarcted myocardium was similar in both genotypes. Cardiomyocyte-restricted overexpression of NOS3 limits LV dysfunction and remodeling after MI, in part by decreasing myocyte hypertrophy in noninfarcted myocardium.  相似文献   

7.
BackgroundIn nonfailing myocardium, β3-adrenergic signaling causes a decrease in contractility via endothelial nitric oxide synthase (eNOS) activation and nitric oxide (NO) release. This study investigates the hypothesis that β3-adrenergic signaling undergoes alterations in failing myocardium.MethodsWe compared eNOS- and β3-adrenoceptor expression using Western blot analysis in human nonfailing myocardium versus failing myocardium. With the use of immunohistochemistry, we investigated the distribution of the β3-adrenoceptor protein and eNOS translocation and phosphorylation under basal conditions. β3-adrenergic, eNOS activation, and inotropy were measured in failing myocardium using BRL37344 (BRL, a β3-adrenoceptor agonist).Resultsβ3-adrenoceptor expression was increased in failing myocardium. Under basal conditions, Akt- and eNOSSer1177 phosphorylation were reduced in failing myocardium. During stimulation with BRL in failing myocardium, a further dephosphorylation of eNOSSer1177 and Akt was observed, whereas eNOSSer114 phosphorylation was increased. These results suggest a deactivation of eNOS via β3-adrenergic stimulation. Nevertheless, BRL decreased contractility in failing myocardium, but this effect was not observed in the presence of the NO blocker L-NMA. In failing myocardium, the β3-adrenoceptor was predominantly expressed in endothelial cells. In the cardiomyocytes, the β3-adrenoceptor was mainly located at the intercalated disks.ConclusionIn failing cardiomyocytes, β3-adrenergic stimulation seems to deactivate rather than activate eNOS. At the same time, β3-adrenergic stimulation induced a NO-dependent negative inotropic effect. Because β3-adrenoceptors are expressed mainly in the endothelium in failing myocardium, our observations suggest a paracrine-negative inotropic effect via NO liberation from the cardiac endothelial cells.  相似文献   

8.
Inhibition of xanthine oxidase (XO) in failing hearts improves cardiac efficiency by an unknown mechanism. We hypothesized that this energetic effect is due to reduced oxidative stress and critically depends on nitric oxide synthase (NOS) activity, reflecting a balance between generation of nitric oxide (NO) and reactive oxygen species. In dogs with pacing-induced heart failure (HF), ascorbate (1000 mg) mimicked the beneficial energetic effects of allopurinol, increasing both contractility and efficiency, suggesting an antioxidant mechanism. Allopurinol had no additive effect beyond that of ascorbate. Crosstalk between XO and NOS signaling was assessed. NOS inhibition with N(G)-monomethyl-L-arginine (L-NMMA; 20 mg/kg) had no effect on basal contractility or efficiency in HF, but prevented the +26.2+/-3.5% and +66.5+/-17% enhancements of contractility and efficiency, respectively, observed with allopurinol alone. Similarly, improvements in contractility and energetics due to ascorbate were also inhibited by L-NMMA. Because of the observed NOS-XO crosstalk, we predicted that in normal hearts NOS inhibition would uncover a depression of energetics caused by XO activity. In normal conscious dogs, L-NMMA increased myocardial oxygen consumption (MVO2) while lowering left ventricular external work, reducing efficiency by 31.1+/-3.8% (P<0.005). Lowered efficiency was reversed by XO inhibition (allopurinol, 200 mg) or by ascorbate without affecting cardiac load or systemic hemodynamics. Single-cell immunofluorescence detected XO protein in cardiac myocytes that was enhanced in HF, consistent with autocrine signaling. These data show that both NOS and XO signaling systems participate in the regulation of myocardial mechanical efficiency and that upregulation of XO relative to NOS contributes to mechanoenergetic uncoupling in heart failure.  相似文献   

9.
The Role of Nitric Oxide in the Failing Heart   总被引:17,自引:0,他引:17  
Nitric oxide (NO) has effects on contractility, energetics and gene expression of failing myocardium. Initial studies on isolated cardiomyocytes showed NO to reduce systolic shortening but intracoronary infusions of NO-donors or of NO synthase (NOS) inhibitors failed to elicit changes in baseline LV contractility indices such as LVdP/dt(max). Intracoronary infusions of NO-donors or of substance P, which releases NO from the coronary endothelium, however demonstrated NO to induce a downward displacement of the left ventricular (LV) diastolic pressure-volume relation, consistent with increased LV diastolic distensibility. In end-stage failing myocardium, the increased oxygen consumption is related to reduced NO production and in isolated cardiomyocytes, NO blunts the norepinephrine-induced expression of the fetal gene programme thereby preserving myocardial calcium homeostasis.In dilated cardiomyopathy, changed endomyocardial NOS gene expression has been reported. Because of lower endomyocardial NOS gene expression in patients with higher functional class and lower LV stroke work, increased endomyocardial NOS gene expression seems to be beneficial rather than detrimental for the failing heart. A beneficial effect of increased NOS gene expression could result from NO's ability to increase LV diastolic distensibility, to augment LV preload reserve, to reduce myocardial oxygen consumption and to prevent downregulation of calcium ATPase. Upregulated endomyocardial NOS gene expression has also been reported in athlete's heart and could therefore play a role in physiological LV remodeling. Reduced endomyocardial NO content because of decreased NO or increased superoxide production could lower LV diastolic distensibility and contribute to diastolic heart failure. In many conditions such as aging, hypertension, diabetes or posttransplantation, the increased incidence of diastolic heart failure is indeed paralleled by reduced endothelium-dependent vasodilation.  相似文献   

10.
Experimental studies have delineated important signaling pathways in cardiomyocytes and their alterations in heart failure; however, there is now evidence that these observations are not necessarily applicable to human cardiac muscle cells. For example, angiotensin II (A II) does not exert positive inotropic effects in human ventricular muscle cells, in contrast to observation in rats. Thus, it is important to elucidate cardiac signaling pathways in humans in order to appreciate the functional role of neurohumoral or mechanical stimulation in human myocardium in health and disease. In the present article, we review signal pathways in the failing human heart based on studies in human cardiac tissues and in vivo physiological studies related to A II, nitric oxide, and β-adrenergic stimulation. (Trends Cardiovasc Med 1997; 7:151-160). ? 1997, Elsevier Science Inc.  相似文献   

11.
Damy T  Ratajczak P  Shah AM  Camors E  Marty I  Hasenfuss G  Marotte F  Samuel JL  Heymes C 《Lancet》2004,363(9418):1365-1367
Experimental data suggest that nitric oxide (NO) generated from neuronal NO synthase (nNOS) modulates the myocardial inotropic state. To assess the contribution of NO, derived from endothelial and neuronal isoforms, to the pathophysiology of congestive heart failure in human beings, we compared expression, localisation, and specific activity of NOS isoforms in myocardium from patients with dilated cardiomyopathy with those in controls who had died from head trauma or intracranial bleeds. Diseased hearts had a significant increase in nNOS mRNA and protein expression, and activity associated with the translocation of nNOS to the sarcolemma through interactions with caveolin 3. Enhanced nNOS activity counteracted a decrease in eNOS expression and activity. Our results provide evidence of increased nNOS-derived NO in the failing human heart. Such altered regulation may be important in the pathophysiology of cardiac dysfunction in human congestive heart failure.  相似文献   

12.
Inotropic effects of angiotensin II on human cardiac muscle in vitro   总被引:8,自引:0,他引:8  
The direct effects of angiotensin II (Ang II) on human cardiac muscle were investigated using isolated trabecular muscles from failing and functionally normal hearts. Atrial and ventricular trabeculae were studied. Results demonstrated a positive inotropic effect of Ang II on human cardiac muscle. Comparison of the effects of Ang II among groups indicated that the responsiveness tended to be greater in atrial and normal muscle compared with failing muscle. Results of this study also demonstrated heterogeneity in the responsiveness to Ang II among human muscles, which was not correlated with patient age, sex, diagnosis, prior treatment with angiotensin converting enzyme inhibitor, or heart function. A significant correlation between response to Ang II and response to isoproterenol was demonstrated in failing ventricular trabeculae, which may suggest that defects in beta-adrenergic responsiveness in the failing human ventricle are accompanied by a loss of responsiveness to Ang II. Studies were extended to the Syrian cardiomyopathic hamster and its control. A dose-dependent inotropic response occurred in normal hamster ventricular muscle but was significantly diminished in cardiomyopathic muscle. Ang II did not shorten the timing of contraction, and pretreatment with adrenergic-blocking agents did not shift the dose-response curve, indicating that the response was not cyclic AMP mediated. This study demonstrates for the first time that Ang II can exert an inotropic effect directly on human cardiac muscle and confirms that there is a direct effect of Ang II on hamster cardiac muscle. The study further suggests, however, that the inotropic response to Ang II in cardiac muscle is heterogeneous and may be diminished by heart failure.  相似文献   

13.
OBJECTIVES: This study examined the effects of endotoxin on cardiac contractility in human myocardium. BACKGROUND: In animal myocardium, endotoxin and cytokine treatment led to enhanced inducible nitric oxide synthase (iNOS) expression and contractile dysfunction. Effects in human myocardium are unknown. METHODS: Left ventricular myocardial preparations from failing (n = 18) and nonfailing (n = 5) human hearts were incubated for 6 and 12 h in tyrode solution or in tyrode plus lipopolysaccharides (LPS), with LPS plus N(G)-mono-methyl-L-arginine (L-NMMA), with LPS plus hemoglobin or with LPS plus the superoxide scavenger 4,5-dihydroxy-1,3-benzene disulfonic acid (Tiron). Force of contraction in response to isoprenaline (0.001 to 3 micromol/liter) was determined in electrically stimulated muscle preparations. The iNOS mRNA expression was examined by in situ hybridization and by polymerase chain reaction. The cyclic guanosine monophosphate (cGMP) levels were determined by radioimmunoassay. RESULTS: Isoprenaline concentration dependently increased force of contraction. Six and 12 hours of LPS treatment of failing myocardium decreased maximum inotropic response to isoprenaline by 54% (p = 0.009) and by 69% (p = 0.0023), respectively. In nonfailing myocardium, 12 h of LPS treatment decreased maximum inotropic effect of isoprenaline by 66% (p < 0.001). The LPS effects were attenuated by L-NMMA, hemoglobin and also Tiron. The iNOS mRNA was expressed in all LPS-treated preparations but also in most control myocardial preparations. In situ hybridization revealed iNOS expression within cardiac myocytes. There was no increase in myocardial cGMP content in response to endotoxin. CONCLUSIONS: Endotoxin exposure of human myocardium leads to a depression of cardiac contractility, which is mediated by enhanced iNOS activity and release of nitric oxide (NO). Consecutive reaction of NO with superoxide and formation of peroxynitrite may contribute to the decrease in force of contraction.  相似文献   

14.
Despite the apparent redundancy of NOS isoforms in the myocardium, subcellular compartmentation dictates specific NO signaling from each isoform to colocalized effectors in response to physical (e.g. stretch) or receptor-mediated stimuli. Genetic deletion or overexpression experiments helped to characterize each isoform's respective role in the normal or diseased heart. eNOS and nNOS both contribute to sustain normal EC coupling and contribute to the early and late phases of the Frank-Starling mechanism of the heart. They also negatively modulate the beta1-/beta2-adrenergic increase in inotropy and chronotropy, and reinforce the (pre- and post-synaptic) vagal control of cardiac contraction, thereby protecting the heart against excessive stimulation by catecholamines. In the ischemic and failing myocardium, iNOS expression is induced and further contributes to attenuate the inotropic effect of catecholamines, as does eNOS coupled to overexpressed beta3-adrenoceptors. nNOS expression also increases in the aging and ischemic heart, but its role (compensatory or deleterious) remains to be defined. Many drugs currently used for the treatment of ischemic or failing cardiac diseases also activate and/or upregulate eNOS in the myocardium, which supports its proposed protective role, e.g. as "endogenous beta-blocker". Future pharmacologic modulation of the cardiac NOS will have to take into account their specific modulation of the various aspects of cardiac function, if one hopes to deliver more targeted and efficient therapy than currently achieved with exogenous NO donors.  相似文献   

15.
Nitroxyl anion (HNONO(-)), the one-electron reduced form of nitric oxide (NO), induces positive cardiac inotropy and selective venodilation in the normal in vivo circulation. Here we tested whether HNO/NO(-) augments systolic and diastolic function of failing hearts, and whether contrary to NO/nitrates such modulation enhances rather than blunts beta-adrenergic stimulation and is accompanied by increased plasma calcitonin gene-related peptide (CGRP). HNO/NO(-) generated by Angelis' salt (AS) was infused (10 microg/kg per min, i.v.) to conscious dogs with cardiac failure induced by chronic tachycardia pacing. AS nearly doubled contractility, enhanced relaxation, and lowered cardiac preload and afterload (all P < 0.001) without altering plasma cGMP. This contrasted to modest systolic depression induced by an NO donor diethylamine(DEA)NO or nitroglycerin (NTG). Cardiotropic changes from AS were similar in failing hearts as in controls despite depressed beta-adrenergic and calcium signaling in the former. Inotropic effects of AS were additive to dobutamine, whereas DEA/NO blunted beta-stimulation and NTG was neutral. Administration of propranolol to nonfailing hearts fully blocked isoproterenol stimulation but had minimal effect on AS inotropy and enhanced lusitropy. Arterial plasma CGRP rose 3-fold with AS but was unaltered by DEA/NO or NTG, supporting a proposed role of this peptide to HNO/NO(-) cardiotropic action. Thus, HNO/NO(-) has positive inotropic and lusitropic action, which unlike NO/nitrates is independent and additive to beta-adrenergic stimulation and stimulates CGRP release. This suggests potential of HNO/NO(-) donors for the treatment of heart failure.  相似文献   

16.
We used radioligand binding techniques and measurement of beta-agonist-mediated positive inotropic responses in isolated cardiac tissue to examine beta-adrenergic-receptor subpopulations in nonfailing and failing human left and right ventricular myocardium. In tissue derived from 48 human hearts the receptor subtypes identified in nonfailing ventricle by radioligand binding were beta 1 (77%) and beta 2 (23%), with no evidence of an "atypical" beta-adrenergic receptor. In failing left ventricle the beta 1:beta 2 ratio was markedly different, i.e., 60:38. This decrease in the beta 1 proportion and increase in the beta 2 proportion in the failing ventricles were due to a 62%, "selective" down-regulation of the beta 1 subpopulation, with little or no change in beta 2 receptors. In muscle bath experiments in isolated trabeculae derived from nonfailing and failing right ventricles, both beta 1- and beta 2-adrenergic receptors were coupled to a positive inotropic response. In nonfailing myocardium, beta 1 responses predominated, as the selective beta 1 agonist denopamine produced a response that was 66% of the total contractile response of isoproterenol. In heart failure the beta 1 component was markedly decreased, while the beta 2 component was not significantly diminished. Moreover, in heart failure the beta 2 component increased in prominence, as the contractile response to the selective beta 2 agonist zinterol increased from a minority (39%) to a majority (60%) of the total response generated by isoproterenol. We conclude that failing human ventricular myocardium contains a relatively high proportion of beta 2 receptors, due to selective down-regulation of beta 1 receptors. As a result, in the failing human heart the beta 2-receptor subpopulation is a relatively important mediator of inotropic support in response to nonselective beta-agonist stimulation and is available for inotropic stimulation by selective beta 2 agonists.  相似文献   

17.
Nitric oxide (NO) functions principally as a diffusible paracrine effector. The exception is in cardiomyocytes where both NO synthases (NOS) and target proteins coexist, allowing NO to work in an autocrine/intracrine fashion. However, the most abundant myocyte isoform (NOS3) is far more expressed in vascular endothelium; thus, the in vivo contribution of myocyte-NOS3 remains less clear. The present study tested this role by transfecting whole hearts of NOS3-null (NOS3(-/-)) mice with adenovirus-expressing NOS3 coupled to a alpha-MHC promoter (AdV(NOS3)), comparing results to hearts transfected with marker-gene beta-galactosidase (AdVbeta(gal)). Total myocardial NOS3 protein and activity were restored to near wild-type (WT) levels in NOS3(-/-)+AdV(NOS3) hearts, and NOS3 relocalized normally with caveolin-3. Ejection function by pressure-volume analysis was enhanced in NOS3(-/-)+AdVbeta(gal) over WT or NOS3(-/-)+AdV(NOS3). More prominently, isoproterenol (ISO)-stimulated systolic and diastolic function in WT was amplified in NOS3(-/-)+AdVbeta(gal), whereas NOS3(-/-)+AdV(NOS3) returned the response to control. ISO-activated systolic function was inhibited 85% by concomitant muscarinic stimulation (carbachol) in NOS3(-/-)+AdV(NOS3) but not NOS3(-/-)+AdVbeta(gal) hearts. Lastly, NOS3(-/-)+AdVbeta(gal) mice displayed enhanced inotropy and lusitropy over WT at slower heart rates but a blunted rate augmentation versus controls. A more positive rate response was restored in NOS3(-/-)+AdV(NOS3) (P<0.001). Thus, myocyte autocrine/intracrine NOS3 regulation in vivo can underlie key roles in beta-adrenergic, muscarinic, and frequency-dependent cardiac regulation.  相似文献   

18.
Angiotensin II-forming pathways in normal and failing human hearts   总被引:17,自引:0,他引:17  
Reduced preload and afterload to the heart are important effects of angiotensin converting enzyme (ACE) inhibitors in the treatment of congestive heart failure. However, since angiotensin II (Ang II) directly increases the strength of myocardial contraction, suppression of Ang II formation by ACE inhibitors could potentially reduce the beneficial effects of Ang II on the failing heart. To study how ACE inhibition suppresses cardiac Ang II formation in man, we characterized ACE-dependent and ACE-independent Ang II-forming pathways in eight normal and 24 failing human hearts obtained at cardiac transplantation. Ang II-forming activity in left ventricular (LV) membrane preparations was assessed by measuring the conversion of [125I]angiotensin I (Ang I) to [125I]Ang II. LV [125I]Ang II-forming activity in normal hearts (35.5 +/- 2.7 fmol/min/mg, n = 8) was not different from that in hearts from patients with ischemic cardiomyopathy (25.5 +/- 2.9 fmol/min/mg, n = 9) and was 48% lower (p less than 0.001) in hearts from patients with idiopathic cardiomyopathy (18.5 +/- 1.9 fmol/min/mg, n = 15).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Objectives. The purpose of the present study was to examine the expression of the endothelial-type nitric oxide synthase (NOS III) and the inducible-type NOS (NOS II) in human myocardium and their regulation in heart failure from patients with different etiologies.Background. In heart failure, plasma levels of nitrates were found to be elevated. However, data on myocardial NOS expression in heart failure are conflicting.Methods. Using RNase protection analysis and Western blotting, the expression of NOS III and NOS II was investigated in ventricular myocardium from nonfailing (NF) hearts (n = 5) and from failing hearts of patients with idiopathic dilated cardiomyopathy (dCMP, n = 14), ischemic cardiomyopathy (iCMP, n = 9) or postmyocarditis cardiomyopathy (mCMP, n = 7). Furthermore, immunohistochemical studies were performed to localize NOS III and NOS II within the ventricular myocardium.Results. In failing human hearts, NOS III mRNA levels were increased to 180% in dCMP, 200% in iCMP and to 210% in mCMP as compared to NF hearts. Similarly, in Western blots (using constitutively expressed beta-tubulin as a reference) NOS III protein expression was increased about twofold in failing compared to NF hearts. Immunohistochemical studies with a selective antibody to NOS III showed no obvious differences in the staining of the endothelium of cardiac blood vessels from NF and failing human hearts. However, NOS III-immunoreactivity in cardiomyocytes was significantly more intense in failing compared to NF hearts. Low expression of NOS II mRNA was detected in only 2 of 30 failing human hearts and was not found in NF hearts. Inducible-type NOS protein was undetectable in either group.Conclusions. We conclude that the increased NOS III expression in the ventricular myocardium of failing human hearts may contribute to the contractile dysfunction observed in heart failure and/or may play a role in morphologic alterations such as hypertrophy and apoptosis of cardiomyocytes.  相似文献   

20.
The aim of this study was to assess the capability of MRI to characterize systolic and diastolic function in normal and chronically failing mouse hearts in vivo at rest and during inotropic stimulation. Applying an ECG-gated FLASH-cine sequence, MRI at 7 T was performed at rest and after administration of 1.5 microgram/g IP dobutamine. There was a significant increase of heart rate, cardiac output, and ejection fraction and significant decrease of end-diastolic and end-systolic left ventricular (LV) volumes (P<0.01 each) in normal mice during inotropic stimulation. In mice with heart failure due to chronic myocardial infarction (MI), MRI at rest revealed gross LV dilatation. There was a significant decrease of LV ejection fraction in infarcted mice (29%) versus sham mice (58%). Mice with MI showed a significantly reduced maximum LV ejection rate (P<0.001) and LV filling rate (P<0.01) and no increase of LV dynamics during dobutamine action, indicating loss of contractile and relaxation reserve. In 4-month-old transgenic mice with cardiospecific overexpression of the beta(1)-adrenergic receptor, which at this early stage do not show abnormalities of resting cardiac function, LV filling rate failed to increase after dobutamine stress (transgenic, 0.19+/-0.03 microL/ms; wild type, 0.36+/-0.01 microL/ms; P<0.01). Thus, MRI unmasked diastolic dysfunction during dobutamine stress. Dobutamine-stress MRI allows noninvasive assessment of systolic and diastolic components of heart failure. This study shows that MRI can demonstrate loss of inotropic and lusitropic response in mice with MI and can unmask diastolic dysfunction as an early sign of cardiac dysfunction in a transgenic mouse model of heart failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号