首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
This work was carried out within the context of an R&D project on morphable polymer matrix composites (PMC), actuated by shape memory alloys (SMA), to be used for active aerodynamic systems in automotives. Critical issues for SMA–polymer integration are analyzed that are mostly related to the limited strength of metal–polymer interfaces. To this aim, materials with suitable thermo-mechanical properties were first selected to avoid premature activation of SMA elements during polymer setting as well as to avoid polymer damage during thermal activation of SMAs. Nonstandard samples were manufactured for both static and fatigue pullout tests under thermo-mechanical loading, which are made of SMA wires embedded in cylindrical resin blocks. Fully coupled thermo-mechanical simulations, including a special constitutive model for SMAs, were also carried out to analyze the stress and temperature distribution in the SMA–polymer samples as obtained from the application of both mechanical loads and thermal activation of the SMA wires. The results highlighted the severe effects of SMA thermal activation on adhesion strength due to the large recovery forces and to the temperature increase at the metal–polymer interface. Samples exhibit a nominal pullout stress of around 940 MPa under static mechanical load, and a marked reduction to 280 MPa was captured under simultaneous application of thermal and mechanical loads. Furthermore, fatigue run-out of 5000 cycles was achieved, under the combination of thermal activation and mechanical loads, at a nominal stress of around 200 MPa. These results represent the main design limitations of SMA/PMC systems in terms of maximum allowable stresses during both static and cyclic actuation.  相似文献   

2.
The remarkable properties of shape memory alloys (SMA) are attracting significant technological interest in many fields of science and engineering. In this paper, a nonlinear dynamic analytical model is developed for a laminated beam with a shape memory alloy layer. The model is derived based on Falk’s polynomial model for SMAs combined with Timoshenko beam theory. In addition, axial velocity, axial pressure, temperature, and complex boundary conditions are also parameters that have been taken into account in the creation of the SMA dynamical equation. The nonlinear vibration characteristics of SMA laminated beams under 1:3 internal resonance are studied. The multi-scale method is used to solve the discretized modal equation system, the characteristic equation of vibration modes coupled to each other in the case of internal resonance, as well as the time-history and phase diagrams of the common resonance amplitude in the system are obtained. The effects of axial velocity and initial conditions on the nonlinear internal resonance characteristics of the system were also studied.  相似文献   

3.
Shape memory alloys (SMAs) have been widely used in civil engineering applications including active and passive control of structures, sensors and actuators and strengthening of reinforced concrete (RC) structures owing to unique features such as the shape memory effect and pseudo-elasticity. Iron-based shape memory alloys (Fe-SMAs) have become popular in recent years. Use of iron-based SMAs for strengthening RC structures has received attention in the recent decade due to the advantages it presents, that is, no ducts or anchor heads are required, friction losses do not occur and no space is needed for a hydraulic device to exert force. Accordingly, Fe-SMAs embedded in a shotcrete layer have been used for pre-stressing RC beams at Empa. The aim of this study is to present an approach to model and analyze the behavior of RC members strengthened and pre-stressed with Fe-SMA rebars embedded in a shotcrete layer. The lack of research on developing finite element models for studying the behavior of concrete structures strengthened by iron-based shape memory alloys is addressed. Three-dimensional finite element models were developed in the commercial finite element code ABAQUS, using the concrete damaged plasticity model to predict the studied beams’ load–displacement response. The results of the finite element analyses show a considerably good agreement with the experimental data in terms of the beams’ cracking load and ultimate load capacity. The effects of different strengthening parameters, including SMA rebar diameter, steel rebar diameter and pre-stressing force level on the beam behavior, were investigated based on the verified finite element models. The results were compared. The load-displacement response of an 18-m concrete girder strengthened and pre-stressed with iron-based SMA bars was examined by the developed finite element model as a case study.  相似文献   

4.
An innovative method for prestressing structural elements through the use of shape memory alloys (SMAs) is gaining increasing attention in research as this method does not require the use of mechanical anchorages for tendons. The activation of the memory effect by means of temperature variations (Joule effect) in effect produces high stresses in SMA components attached to concrete components as reported in the literature. This paper presents the work performed for the purpose of prestressing concrete hollow cylinders with the use of nickel–titanium (Ni–Ti) SMA wires. In the tests, a variety of hollow cylinders were made using the same concrete mix and with the same wall thickness (20 mm), but with different external diameters (200 mm, 250 mm, and 300 mm). Their prestressing was achieved by the means of Ni-Ti SMA wires of different diameters (1 mm, 2 mm, and 3 mm) wrapped around the cylinders. Longitudinal and circumferential strain during the thermal activation of the SMA wires by Joule heating was measured using gauges located on the internal surface of the hollow cylinders. The experimental protocol, recorded observations, and discussion of the effectiveness of the prestressing of concrete elements as a function of the test parameters are included in the text in detail. Comments on the conditions for effective prestressing of concrete cylinders with SMA wires are proposed in the conclusions of the paper.  相似文献   

5.
Jong Wan Hu 《Materials》2014,7(2):1122-1141
In this paper, the superelastic shape memory alloy (SMA) slit damper system as an alternative design approach for steel structures is intended to be evaluated with respect to inelastic behavior simulated by refined finite element (FE) analyses. Although the steel slit dampers conventionally used for aseismic design are able to dissipate a considerable amount of energy generated by the plastic yielding of the base materials, large permanent deformation may occur in the entire structure. After strong seismic events, extra damage repair costs are required to restore the original configuration and to replace defective devices with new ones. Innovative slit dampers fabricated by superelastic SMAs that automatically recover their initial conditions only by the removal of stresses without heat treatment are introduced with a view toward mitigating the problem of permanent deformation. The cyclically tested FE models are calibrated to experimental results for the purpose of predicting accurate behavior. This study also focuses on the material constitutive model that is able to reproduce the inherent behavior of superelastic SMA materials by taking phase transformation between austenite and martensite into consideration. The responses of SMA slit dampers are compared to those of steel slit dampers. Axial stress and strain components are also investigated on the FE models under cyclic loading in an effort to validate the adequacy of FE modeling and then to compare between two slit damper systems. It can be shown that SMA slit dampers exhibit many structural advantages in terms of ultimate strength, moderate energy dissipation and recentering capability.  相似文献   

6.
ObjectiveTo examine whether diabetes shared medical appointments (SMAs) implemented as part of usual clinical practice in diverse health systems are more effective than usual care in improving and sustaining A1c improvements.Research Design and MethodsA multi-site cluster randomized pragmatic trial examining implementation in clinical practice of diabetes SMAs in five Veterans Affairs (VA) health systems was conducted from 2016 to 2020 among 1537 adults with type 2 diabetes and elevated A1cs. Eligible patients were randomly assigned to either: (1) invitation to participate in a series of SMAs totaling 8–9 h; or (2) continuation of usual care. Relative change in A1c (primary outcome) and in systolic blood pressure, insulin starts, statin starts, and anti-hypertensive medication classes (secondary outcomes) were measured as part of usual clinical care at baseline, at 6 months and at 12 months (~7 months after conclusion of the final SMA in four of five sites). We examined outcomes in three samples of SMA participants: all those scheduled for a SMA, those attending at least one SMA, and those attending at least half of SMAs.ResultsBaseline mean A1c was 9.0%. Participants scheduled for an SMA achieved A1c reductions 0.35% points greater than the control group between baseline and 6-months follow up (p = .001). Those who attended at least one SMA achieved reductions 0.42 % points greater (p < .001), and those who attended at least half of scheduled SMAs achieved reductions 0.53 % points greater (p < .001) than the control group. At 12-month follow-up, the three SMA analysis samples achieved reductions from baseline ranging from 0.16 % points (p = 0.12) to 0.29 % points (p = .06) greater than the control group.ConclusionsDiabetes SMAs as implemented in real-life diverse clinical practices improve glycemic control more than usual care immediately after the SMAs, but relative gains are not maintained. Our findings suggest the need for further study of whether a longer term SMA model or other follow-up strategies would sustain relative clinical improvements associated with this intervention.Trial RegistrationClinicalTrials.gov ID NCT02132676Supplementary InformationThe online version contains supplementary material available at 10.1007/s11606-020-06570-y.KEY WORDS: shared medical appointment, peer support, disease management, implementation, diabetes mellitus, pragmatic clinical trial  相似文献   

7.
8.
Owing to the world population aging, biomedical materials, such as shape memory alloys (SMAs) have attracted much attention. The biocompatible Ti–Au–Ta SMAs, which also possess high X–ray contrast for the applications like guidewire utilized in surgery, were studied in this work. The alloys were successfully prepared by physical metallurgy techniques and the phase constituents, microstructures, chemical compositions, shape memory effect (SME), and superelasticity (SE) of the Ti–Au–Ta SMAs were also examined. The functionalities, such as SME, were revealed by the introduction of the third element Ta; in addition, obvious improvements of the alloy performances of the ternary Ti–Au–Ta alloys were confirmed while compared with that of the binary Ti–Au alloy. The Ti3Au intermetallic compound was both found crystallographically and metallographically in the Ti–4 at.% Au–30 at.% Ta alloy. The strength of the alloy was promoted by the precipitates of the Ti3Au intermetallic compound. The effects of the Ti3Au precipitates on the mechanical properties, SME, and SE were also investigated in this work. Slight shape recovery was found in the Ti–4 at.% Au–20 at.% Ta alloy during unloading of an externally applied stress.  相似文献   

9.

Objective

To examine patient and staff satisfaction, billing charges, and programmatic feasibility of shared medical appointments (SMA) in a nurse practitioner-managed heart failure (HF) clinic in a community cardiology practice.

Methods

Twenty patients were scheduled among four SMAs for this pilot study. All aspects of a usual clinic appointment were utilized during the SMA, but an additional 20-minute teaching session was presented. All patients completed a satisfaction questionnaire. The office staff completed satisfaction questionnaires about the SMA. Billing charges, cancellations and missed appointments without cancellation for SMAs were compared to usual clinic appointment days.

Results

Satisfaction was high among patients and office staff. Rates for no-shows were similar for SMAs versus usual appointments (15% versus 5.5%), but there were fewer cancellations among SMAs (0% versus 28%). This may be a reflection of the personalized appointment reminder calls that were made to the patients scheduled for SMAs. Billing charges were not significantly different for SMAs versus usual appointments.

Conclusion

SMAs are a feasible option in a community cardiology practice.  相似文献   

10.
In order to improve the energy dissipation capacity and to reduce the residual deformation of civil structures simultaneously, this paper puts forwards an innovative self-centering shape memory alloy (SMA) brace that is based on the design concepts of SMA’s superelasticity and low friction slip. Seven self-centering SMA brace specimens were tested under cyclic loading, and the hysteresis curves, bond curves, secant stiffness, energy dissipation coefficient, equivalent damping coefficient, and the self-centering capacity ratio of these specimens were investigated, allowing us to provide an evaluation of the effects of the loading rate and initial strain on the seismic performance. The test results show that the self-centering SMA braces have an excellent energy dissipation capacity, bearing capacity, and self-centering capacity, while the steel plates remain elastic, and the SMA in the specimens that are always under tension are able to return to the initial state. The hysteresis curves of all of the specimens are idealized as a flag shape with low residual deformation, and the self-centering capacity ratio reached 89.38%. In addition, both the loading rate and the initial strain were shown to have a great influence on the seismic performance of the self-centering SMA brace. The improved numerical models combined with the Graesser model and Bouc–Wen model in MATLAB were used to simulate the seismic performance of the proposed braces with different loading rates and initial strains, and the numerical results are consistent with the test results under the same conditions, meaning that they can accurately predict the seismic performance of the self-centering SMA brace proposed here.  相似文献   

11.
The aim of this study was to evaluate the tooth movement efficacy of retraction springs made of a new β-titanium alloy, “gum metal”, which has a low Young’s modulus and nonlinear super elasticity. Using double loop springs incorporated into an archwire made of gum metal (GUM) and titanium molybdenum alloy (TMA), the maxillary anterior teeth were moved distally to close an extraction space. The long-term movements were simulated by the finite element method. Its procedure was constructed of two steps, with the first step being the calculation of the initial tooth movement produced by elastic deformation of the periodontal ligament, and in the second step, the alveolar socket was moved by the initial tooth movement. By repeating these steps, the tooth moved by accumulating the initial tooth movement. The number of repeating calculations was equivalent to an elapsed time. In the GUM and TMA springs, the anterior teeth firstly tipped lingually, and then became upright. As a result of these movements, the canine could move bodily. The amount of space closure in GUM spring was 1.5 times that in TMA spring. The initial tipping angle of the canine in the GUM spring was larger than that in the TMA spring. The number of repeating calculations required for the bodily movement in the GUM spring was about two times that in the TMA spring. It was predicted that the speed of space closure in the GUM spring was smaller than that in the TMA spring.  相似文献   

12.
Post-earthquake investigation shows that numerous reinforced concrete (RC) bridges were demolished because of large residual displacements. Improving the self-centering capability and hence resilience of these bridges located in earthquake-prone regions is essential. In this regard, a resilient bridge system incorporating engineered cementitious composites (ECC) reinforced piers and shape memory alloy (SMA) energy dissipation components, i.e., SMA washers, is proposed to enhance its resilience when subjected to strong earthquakes. This study commences with a detailed introduction of the resilient SMA-washer-based rocking bridge system with ECC-reinforced piers. Subsequently, a constitutive model of the ECC material is implemented into OpenSees and the constitutive model is validated by test data. The working principle and constitutive model of the SMA washers are also introduced. A series of dynamic analysis on the conventional and resilient rocking bridge systems with ECC-reinforced piers under a suite of ground motions at E1 and E2 earthquake levels are conducted. The analysis results indicate that the resilient rocking bridge system with ECC-reinforced piers has superior resilience and damage control capacities over the conventional one.  相似文献   

13.
Self-healing materials have the potential to create a paradigm shift in the life cycle design of engineered structures, by changing the relation between material damage and structural failure, affecting structures’ lifetime, safety, and reliability. However, the knowledge of self-healing capabilities in metallic materials is still in its infancy compared to other material systems because of challenges in the synthesis of organized and complex structures. This paper presents a study of a metal matrix composite system that was synthesized with an off-eutectic Tin (Sn)-Bismuth (Bi) alloy matrix, reinforced with Nickel–Titanium (NiTi) shape memory alloy (SMA) wires. The ability to close cracks, recover bulk geometry, and regenerate strength upon the application of heat was investigated. NiTi wires were etched and coated in flux before being incorporated into the matrix to prevent disbonding with the matrix. Samples were subjected to large deformations in a three-point bending setup. Subsequent thermo-mechanical testing of the composites confirmed the materials’ ability to restore their geometry and recover strength, without using any consumable components. Self-healing was accomplished through a combination of activation of the shape memory effect in the NiTi to recover the samples’ original macroscopic geometry, closing cracks, and melting of the eutectic material in the matrix alloy, which resealed the cracks. Subsequent testing indicated a 92% strength recovery.  相似文献   

14.
Superelastic shape memory alloy (SMA) wires exhibit superb hysteretic energy dissipation and deformation capabilities. Therefore, they are increasingly used for the vibration control of civil engineering structures. The efficient design of SMA-based control devices requires accurate material models. However, the thermodynamically coupled SMA behavior is highly sensitive to strain rate. For an accurate modelling of the material behavior, a wide range of parameters needs to be determined by experiments, where the identification of thermodynamic parameters is particularly challenging due to required technical instruments and expert knowledge. For an efficient identification of thermodynamic parameters, this study proposes a machine-learning-based approach, which was specifically designed considering the dynamic SMA behavior. For this purpose, a feedforward artificial neural network (ANN) architecture was developed. For the generation of training data, a macroscopic constitutive SMA model was adapted considering strain rate effects. After training, the ANN can identify the searched model parameters from cyclic tensile stress–strain tests. The proposed approach is applied on superelastic SMA wires and validated by experiments.  相似文献   

15.
The spinal muscular atrophies (SMAs) include a group of disorders characterized by progressive weakness of the lower motor neurons. Several types of SMAs have been described based on age onset of clinical features: Acute infantile (SMA type I), chronic infantile (SMA type II), chronic juvenile (SMA type III), and adult onset (SMA type IV) forms. The incidence is about 1:6,000 live births with a carrier frequency of 1:40 for the severe form and 1:80 for the juvenile form. The mortality and/or morbidity rates of SMAs are inversely correlated with the age at onset. SMAs are believed to only affect skeletal muscles; however, new data on SMA mice models suggest they may also impact the heart. Aim of the study was to retrospectively examine the cardiological records of 37 type molecularly confirmed II/III SMA patients, aged 6 to 65 years, in order to evaluate the onset and evolution of the cardiac involvement in these disorders. All patients had a standard ECG and a routine echocardiography. The parameters analysed were the following: Heart rate (HR), PQ interval, PQ segment, Cardiomyopathic Index (ratio QT/PQs), ventricular and supraventricular ectopic beats, pauses > or = 2,5 msec, ventricle diameters, wall and septum thickness, ejection fraction, fiber shortening. The results showed that HR and the other ECG parameters were within the normal limits except for the Cardiomyopathic Index that was higher than the normal values (2,6-4,2) in 2 patients. Left ventricular systolic function was within the normal limits in all patients. A dilation of the left ventricle without systolic dysfunction was observed in only 2 patients, aged respectively 65 and 63 years; however they were hypertensive and/or affected by coronary artery disease. Data here reported contribute to reassure patients and their clinicians that type II/III SMAs do not present heart dysfunction.  相似文献   

16.
A Belleville spring is usually used in mechanical systems to obtain large loads for small distances of travel. Such a spring has a non-linear load-length curve. Moreover, Belleville springs are commonly stacked together in series or in parallel or both. Thus, defining a design that uses Belleville springs is not an easy matter. The existing assistance tool only checks whether a proposed design is acceptable or not. To improve design assistance, we show how optimization processes can be used in order to build a tool that interactively proposes an optimal design directly from the designer’s requirements. The tool presents both an optimal design using a Belleville spring taken from a catalogue and an optimal custom design. An illustrative example is presented to highlight the benefits of using such an assistance tool.  相似文献   

17.
The study of the bifurcation, random vibration, chaotic dynamics, and control of laminated composite beams are research hotspots. In this paper, the parametric random vibration of an axially moving laminated shape memory alloy (SMA) beam was investigated. In light of the Timoshenko beam theory and taking into consideration axial motion effects and axial forces, a random dynamic equation of laminated SMA beams was deduced. The Falk’s polynomial constitutive model of SMA was used to simulate the nonlinear random dynamic behavior of the laminated beam. Additionally, the numerical of the probability density function and power spectral density curves was obtained through the Monte Carlo simulation. The results indicated that the large amplitude vibration character of the beam can be caused by random perturbation on axial velocity.  相似文献   

18.
This paper presents an active accelerator pedal system based on an integrated sensor and actuator using shape memory alloy (SMA) for speed control and to create haptics in the accelerator pedal. A device named sensaptics is developed with a pair of bi-functional SMA wires instrumented in a synergistic configuration function as an active sensor for positioning the accelerator pedal (pedal position sensing) to control the vehicle speed through electronic throttle and as a variable impedance actuator to generate active force (haptic) feedback to the driver. The reaction force emanated from the pedal alerts the driver and takes appropriate control action by slowing down the vehicle, in harmony with the road’s condition. The design is developed as a proof-of-concept device and is tested and evaluated in a real-time common rail diesel system for rail pressure regulation and over speeding tests, and the responses and performances are found to be promising.  相似文献   

19.
20.
Sn is a promising candidate anode material with a high theoretical capacity (994 mAh/g). However, the drastic structural changes of Sn particles caused by their pulverization and aggregation during charge–discharge cycling reduce their capacity over time. To overcome this, a TiNi shape memory alloy (SMA) was introduced as a buffer matrix. Sn/TiNi SMA multilayer thin films were deposited on Cu foil using a DC magnetron sputtering system. When the TiNi alloy was employed at the bottom of a Sn thin film, it did not adequately buffer the volume changes and internal stress of Sn, and stress absorption was not evident. However, an electrode with an additional top layer of room-temperature-deposition TiNi (TiNi(RT)) lost capacity much more slowly than the Sn or Sn/TiNi electrodes, retaining 50% capacity up to 40 cycles. Moreover, the charge-transfer resistance decreased from 318.1 Ω after one cycle to 246.1 Ω after twenty. The improved cycle performance indicates that the TiNi(RT) and TiNi-alloy thin films overall held the Sn thin film. The structure was changed so that Li and Sn reacted well; the stress-absorption effect was observed in the TiNi SMA thin films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号