首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The localization ofamyloid precursor protein (APP) in rat brain was studied with a cytoplasmic domain-specific antibody. Light microscopic immunocytochemistry demonstrated that APP is present in most neurons, in some oligodendrocytes, and in a population of cells with diameters less than 10 μm that may be glial. Marked differences in immunoreactivity among neurons were observed, and the strongest immunoreactivity was contained in larger neurons. Neurons with scant cytoplasm, such as granule cells in the olfactory bulb, dentate gyrus, and cerebellum, were weakly immunoreactive. Differences in neuropil immunoreactivity were also observed; this type of staining was strongest in the caudatoputamen, lateral septum, medial habenula, nucleus reticularis of the dorsal thalamus, and the lateral portion of the ventroposterior nucleus. Neuropil immunostaining was weakest in layer IV of cortex and in areas containing granule cells. The fact that APP seems to be present in the vast majority of neurons suggests that this protein plays a role common to all neurons. The fact that there is a great difference in the steady-state amount of APP among different types of neurons suggests that APP may play a specific role in the function of certain classes of neurons. © 1994 Wiley-Liss, Inc.  相似文献   

2.
The beta amyloid (Abeta) cascade has been at the forefront of the hypothesis used to describe the pathogenesis of Alzheimer's disease (AD). It is generally accepted that drugs that can regulate the processing of the amyloid precursor protein (APP) toward the non-amyloidogenic pathway may have a therapeutic potential. Previous studies have shown that protein kinase C (PKC) hypofunction has an important role in AD pathophysiology. Therefore, the effects of a new PKC activator, alpha-APP modulator [(2S,5S)-(E,E)-8-(5-(4-(trifluoromethyl)phenyl)-2,4-pentadienoylamino)benzolactam (TPPB)], on APP processing were investigated. Using PC12 cells and SH-SY5Y(APP695) cells, it was found that TPPB promoted the secretion of sAPPalpha without affecting full-length expression of APP. The increase in sAPPalpha by TPPB was blocked by inhibitors of PKC, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and tyrosine kinase, suggesting the involvement of these signal transduction pathways. TPPB increased alpha-secretase activity [a disintegrin and metalloproteinase (ADAM)10 and 17], as shown by direct fluorescence activity detection and Western blot analysis. TPPB-induced sAPPalpha release was blocked by the metalloproteinase inhibitor TAPI-2, furin inhibitor CMK and by the protein-trafficking inhibitor brefeldin. The results also showed that TPPB decreased beta-secretase activity, Abeta40 release and beta site APP-cleaving enzyme 1 (BACE1) expression, but did not significantly affect neprilysin (NEP) and insulin-degrading enzyme (IDE) expression. Our data indicate that TPPB could direct APP processing towards the non-amyloidogenic pathway by increasing alpha-secretase activity, and suggest its therapeutic potential in AD.  相似文献   

3.
The amyloid precursor protein (APP) metabolism is central to pathogenesis of Alzheimer's disease (AD). Parenchymal amyloid deposits, a neuropathological hallmark of AD, are composed of amyloid-beta peptides (Abeta). Abeta derives from the amyloid precursor protein (APP) by sequential cleavages by beta- and gamma-secretases. Gamma-secretase cleavage releases the APP intracellular domain (AICD), suggested to mediate a nuclear signaling. Physiologically, AICD is seldom detected and thus supposed to be rapidly degraded. The mechanisms responsible of its degradation remain unknown. We used a pharmacological approach and showed that several alkalizing drugs induce the accumulation of AICD in neuroblastoma SY5Y cell lines stably expressing APP constructs. Moreover, alkalizing drugs induce AICD accumulation in naive SY5Y, HEK and COS cells. This accumulation is not mediated by the proteasome or metallopeptidases and is not the result of an increased gamma-secretase activity since the gamma-secretase cleavage of Notch1 and N-Cadherin is not affected by alkalizing drug treatments. Altogether, our data demonstrate for the first time that alkalizing drugs induce the accumulation of AICD, a mechanism likely mediated by the endosome/lysosome pathway.  相似文献   

4.
5.
6.
BACKGROUND: Previous studies have demonstrated that mutant amyloid precursor protein (APP) or presenilin-1 (PS1) genes increase susceptibility to ischemic brain damage induced by middle cerebral artery occlusion. Possible mechanisms include over-production of beta-amyloid peptide (Aβ). OBJECTIVE: Because Aβ is over-produced in the APP/PS1 double-transgenic mouse, the present study focused on mechanisms of increased ischemic damage due to mutant APP and PS1 genes by measuring oxidative stress, mitochondrial function, and calcium homeostasis. DESIGN, TIME AND SETTING: The non-randomized, controlled, in vivo and in vitro experiments were performed at the Medical Research Center, Second Clinical College, Jinan University between May and October 2008. MATERIALS: Male APP transgenic mice carrying the mutant 695swe gene and female PS1 transgenic mice carrying the mutant Leu235Pro gene were donated from the University of Hong Kong. SHSY5Y human neureblastoma cells were purchased from ATCC (Manassas, VA, USA), and Aβ1-42 was obtained from Sigma-Aldrich (St. Louis, MO, USA). METHODS: APP transgenic mice were mated with PS1 transgenic mice to produce APP/PS1 double-transgenic mice and wildtype littermates mice. The photothrombotic stroke model was induced in six APP/PS1 double-transgenic and 6 wildtype littermates mice. SHSY5Y human neuroblastoma cells were cultured in vitro, and were divided into 4 groups: Aβ group, cells were exposed to 5 pmol/L Aβ for 24 hours; oxygen-glucose deprivation (OGD) group, cells were exposed to OGD for 1 hour after treatment with sterile, ultra-pure water for 24 hours; OGD+Aβ group, cells were exposed to OGD and Aβfor 1 hour after treatment with 5 pmol/L Aβ for 24 hours; sham control group: cells were exposed to sterile, ultra-pure water for 25 hours. OGD was achieved by exposing the cells to glucose-free DMEM and placing the cells in an anaerobic chamber flushed with 5% CO2 and 95% N2 (v/v) at 37 ℃ for 1 hour. MAIN OUTCOME MEASURES: TTC staining was used to measure infarct volume 7 days after photothrombotic stroke. Cell viability was evaluated using the MTT kit. Opening of the mitochondrial permeability transition pore, intracellular concentration of superoxide anion, and calcium after OGD were detected with fluorescence intensity of calcein-AM, hydroethidine, and fluo-3/AM. RESULTS: At 7 days after stroke, total infarct volume and cortical infarct volume were significantly greater in the APP/PS1 transgenic mice compared with the wildtype littermates mice (P 〈 0.01). Aβ, OGD, and Aβ + OGD significantly decreased cell viability and increased fluorescence intensity of hydroethidine and fluo-3/AM (P 〈 0.01). Compared with the Aβ or OGD group, Aβ + OGD significantly decreased cell viability (P 〈 0.01) and significantly increased fluorescence intensity of calcein-AM, hydroethidine, and fluo-3/AM (P 〈 0.01 or P 〈 0.05). CONCLUSION: The APP/PS1 double-transgenic mice were more vulnerable to ischemia. The possible mechanisms included enhanced opening of the mitochondrial permeability transition pore, overproduction of superoxide anion due to pore opening, and disturbed calcium homeostasis induced by excess superoxide anion.  相似文献   

7.
In order to clarify the distribution and pathological changes of the amyloid beta protein precursor (betaAPP), 10 Alzheimer's disease (AD) brains and seven normal control brains were examined by immunocytochemistry and in situ hybridization histochemistry. All betaAPP isoforms were distributed evenly in neuronal cell bodies and their axons and dendrites. The betaAPP-positive neuronal processes showed mesh-like networks. In AD brains, betaAPP-positive neurons and mesh-like networks were generally decreased in spite of some intensely labeled neurons. All betaAPP isoforms accumulated in neuronal processes, dystrophic neurites and senile plaques. In situ hybridization histochemistry confirmed that all isoforms of betaAPP were expressed in neurons in control brains. In AD brains, the betaAPP mRNA signal was generally decreased besides some intense signal neurons corresponding to immunostaining findings. Few astrocytes expressed betaAPP. Thus, uniform expression and distribution of betaAPP were disturbed in AD brains showing uneven decreases or increases of neuronal betaAPP expression in individual neurons and betaAPP accumulation in neurons, neuronal processes and abnormal structures including dystrophic neurites, senile plaques and neurofibrillary tangles.  相似文献   

8.
9.
The function of amyloid precursor protein (APP) was investigated in human neuroblastoma La-N-1 cells by stable transfection with a DNA construct encoding antisense APP mRNA. Levels of APP mRNA, as well as proteins, were reduced by 80-90% in antisense APP transfected (ASAT) cells. ASAT cells exhibited three main features as a result of APP gene expression deprivation: (1) a 30% reduction in cell proliferation, (2) reduced cell adhesion that could be reversed by the addition of La-N-1 conditioned media as a source of secreted APP, and (3) a two- and four-fold increase in neurite-bearing cells suggesting that cellular APP may be involved in neurite extension. The first two features confirm previously reported functions for APP in proliferation and adhesion of non-neuronal cell types but the use of neuroblastoma cells in this study disclose a novel role for cellular APP in neurite extension.  相似文献   

10.
11.
During all the life of a mammal, olfactory ensheathing glia (OEG) permit the entry and navigation of olfactory neuron axons from peripheral to central nervous system (CNS) territory. This physiological characteristic of OEG has been successfully used for promotion of axonal regeneration after CNS injury in animal models. However, cellular and molecular properties responsible for OEG regenerative ability remain to be unveiled. Two approaches may be followed: to carry out genomic or proteomic analysis to detect secreted and/or membrane bound molecules or to examine the expression of molecules previously described as neuritogenic. This is the case of amyloid precursor protein (APP), a neurite-promoting molecule. We have studied the expression of APP by OEG and OEG-derived clonal lines, immortalised with the large T antigen of SV40 (TEG lines). OEG express high levels of APP in vivo and in culture. TEG lines maintained high expression of APP. Western blot analysis showed the presence of high molecular weight forms of APP in OEG, corresponding probably to glycosylated forms and/or to higher expression of the full length APPs. The main APP isoforms present in OEG cultures were APP770 and 751. L-APP isoforms without the exon 15, which are those corresponding with proteoglycan forms, are predominant in glial cells. Our data showed that OEG had three times as much L-APP as astrocytes, which may correlate with OEG neuritogenic capacity. In conclusion APP, a neurite-promoting molecule, is produced by OEG. Its nexin activity, dependent on the Kunitz family of serine protease inhibitors (KPI) domain and/or in combination with its glycosylation level might contribute with other factors to the ability of these cells to foster axonal elongation.  相似文献   

12.
Huanglian Jiedu decoction(HLJDD) has been shown to improve cerebral blood flow,and reduce lipid peroxidation damage to the brain and its energy metabolism.The present study was designed to observe the cerebroprotective effect of HLJDD on an Alzheimer’s disease rodent model,prese-nilin-1/amyloid protein precursor double transgenic mice.HLJDD reduced serum interleukin-6 and interleukin-1β levels,decreased β-amyloid precursor protein gene and senile plaque expression,resisted oxidation,and reduced free radical-induced injury,thereby improving the learning and memory of these mice.Moreover,HLJDD at 433 mg/kg per day exhibited better effects compared with that at 865 or 216 mg/kg per day,and donepezil hydrochloride at 30 mg/kg per day.Thus,these results suggest that HLJDD may have protective effects against Alzheimer’s disease.  相似文献   

13.
We have recently shown that in utero treatment of guinea pigs with the DNA methylating substance methylazoxymethanol acetate (MAM) results in neocortical microencephalopathy, increased protein kinase C (PKC) activity and altered processing of the amyloid precursor protein (APP) in neocortex of offspring. Here we show that PKCα and PKCβ1 are the key regulators of α‐secretory APP processing in guinea pig neocortex under these experimental conditions in vivo. This conclusion is based on the selective translocation of PKCα and PKCβ1 isoforms to the cell membrane in MAM‐treated guinea pigs, as revealed by Western blot analysis and by immunocytochemistry. Additionally, we observed that [3H]phorbol ester binding to protein kinase C increased by 38% and enhanced basal PKC activity by 58% in the neocortex of microencephalic guinea pigs. Inhibition of PKCα/PKCβ1 by Gö6976 abolished this difference, suggesting that constitutive overactivation of these PKC isoforms accounts for the increase in total PKC activity. We also observed a strong positive correlation between levels of α‐secretase‐processed APP and PKC activity in the neocortex of individual animals, providing further evidence for a significant role of classical PKC isoforms in nonamyloidogenic APP processing.  相似文献   

14.
Summary. In Alzheimer’s disease amyloid β peptide (Aβ) produced from amyloid precursor protein (APP) is considered to induce cell death. To clarify the molecular mechanism underlying Aβ neurotoxicity, we established the cell line overexpressing wild or mutant (His684Arg) APP in human SH-SY5Y cells. This paper presents that overexpression of wild-APP in the cells (SH/w-APP) increased the levels of APP and Aβ1–40 but not Aβ1–42, and reduced Bcl-2 level and proteasome activity with increased susceptibility to oxidative stress. The intracellular levels of reactive oxygen species in SH/w-APP increased significantly by H2O2 treatment. The level of Bcl-2 protein, but not mRNA, was markedly decreased in SH/w-APP cells, which was inversely correlated with APP expression among subcloned SH/w-APP cells. These results indicate that increased expression of wild type APP renders neuronal cells more vulnerable to oxidative stress leading to cell death.  相似文献   

15.
The amyloid precursor protein (APP) is cleaved enzymatically by nonamyloidogenic and amyloidogenic pathways. alpha-Secretase (alpha-secretase), cleaves APP within the beta-amyloid (Abeta) sequence, resulting in the release of a secreted fragment of APP (alphaAPPs) and precluding Abeta generation. In this study, we investigated the effects of an acetylcholinesterase inhibitor, huperzine A (Hup A), on APP processing and Abeta generation in human embryonic kidney 293 cells transfected with human APP bearing the Swedish mutation (HEK293 APPsw). Hup A dose dependently (0-10 microM) increased alphaAPPs release and membrane-coupled APP CTF-C83, suggesting increased APP metabolism toward the nonamyloidogenic alpha-secretase pathway. The metalloprotease inhibitor TAPI-2 inhibited the Hup A-induced increase in alphaAPPs release, further suggesting a modulatory effect of Hup A on alpha-secretase activity. The synthesis of full-length APP and cell viability were unchanged after Hup A incubation, whereas the level of Abeta(Total) was significantly decreased, suggesting an inhibitory effect of Hup A on Abeta production. Hup A-induced alphaAPPs release was significantly reduced by the protein kinase C (PKC) inhibitors GF109203X and Calphostin C. These data, together with the finding that the PKCalpha level was enhanced prior to the increase of alphaAPPs secretion, indicate that PKC may be involved in Hup A-induced alphaAPPs secretion by HEK293 APPsw cells. Our data suggest alternative pharmacological mechanisms of Hup A relevant to the treatment of Alzheimer's disease.  相似文献   

16.
The cholesterol-lowering drug lovastatin enhances the secretion of the alpha-secretase cleavage product of amyloid precursor protein (APP). To investigate whether this effect is mediated via activation of alpha7 nicotinic acetylcholine receptors (nAChRs), we treated SH-SY5Y cells and PC12 cells with lovastatin and measured the levels of alpha7 nAChRs, the alpha-form of secreted APP (alphaAPPs), and lovastatin-related lipids, including cholesterol and ubiquinone. The results showed that low concentrations of lovastatin significantly induced up-regulation of alpha7 nAChRs. No effects of lovastatin were observed on alpha3-containing nAChRs, muscarinic receptors, or N-methyl-D-aspartate receptors. alphaAPPs levels increased in the culture medium of cells treated with lovastatin, whereas no change in whole APP was observed. The increase in alphaAPPs was inhibited by prior exposure of these cells to alpha-bungarotoxin, an antagonist of alpha7 nAChRs. The concentrations of lovastatin used in the study did not change the cholesterol content, but high doses can decrease the levels of ubiquinone and cell viability. These results indicate that lovastatin may play a neuronal role that is cholesterol independent. We also show that the up-regulation of alpha7 nAChRs stimulated by lovastatin is involved in a mechanism that enhances production of alphaAPPs during APP processing.  相似文献   

17.
The investigation of amyloid precursor protein (APP) has been mainly confined to its neuronal functions, whereas very little is known about its physiological role in astrocytes. Astrocytes exhibit a particular morphology with slender extensions protruding from somata and primary branches. Along these fine extensions, spontaneous calcium transients occur in spatially restricted microdomains. Within these microdomains mitochondria are responsible for local energy supply and Ca2+ buffering. Using two-photon in vivo Ca2+ imaging, we report a significant decrease in the density of active microdomains, frequency of spontaneous Ca2+ transients and slower Ca2+ kinetics in mice lacking APP. Mechanistically, these changes could be potentially linked to mitochondrial malfunction as our in vivo and in vitro data revealed severe, APP-dependent structural mitochondrial fragmentation in astrocytes. Functionally, such mitochondria exhibited prolonged kinetics and morphology dependent signal size of ATP-induced Ca2+ transients. Our results highlight a prominent role of APP in the modulation of Ca2+ activity in astrocytic microdomains whose precise functioning is crucial for the reinforcement and modulation of synaptic function. This study provides novel insights in APP physiological functions which are important for the understanding of the effects of drugs validated in Alzheimer's disease treatment that affect the function of APP.  相似文献   

18.
Summary. We have investigated the effect of ganstigmine (CHF2819), a novel geneserine derived acetylcholinesterase (AChE) inhibitor, on the expression and metabolism of the amyloid precursor protein (APP) in neuroblastoma cell line SH-SY5Y. The rationale was based on the suggestion that cholinergic activity may also be involved in the regulation of APP metabolism. We studied the acute effect on APP metabolism following the secretion of sAPP in the conditioned medium of cells. Following short term treatment (2h), ganstigmine promoted a slight increase in the release of sAPP, the maximal effect approaching on average 1.5 fold baseline value. The data obtained in the long term experiments demonstrate that continuous inhibition of AchE obtained with 100nM ganstigmine following an exposure of 24 hours did not influence APP isoforms expression. However, the compound appeared to increase the constitutive release of sAPP, with a mechanism that is derived from an indirect cholinergic stimulation.Received January 1, 2003; accepted March 3, 2003 Published online June 10, 2003  相似文献   

19.
BACE is an aspartyl protease that cleaves the amyloid precursor protein (APP) at the beta-secretase cleavage site and is involved in Alzheimer's disease. The aim of our study was to determine whether BACE affects the processing of the APP homolog APLP2. To this end, we developed BACE knockout mice with a targeted insertion of the gene for beta-galactosidase. BACE appeared to be exclusively expressed in neurons as determined by differential staining. BACE was expressed in specific areas in the cortex, hippocampus, cerebellum, pons, and spinal cord. APP processing was altered in the BACE knockouts with Abeta levels decreasing. The levels of APLP2 proteolytic products were decreased in BACE KO mice, but increased in BACE transgenic mice. Overexpression of BACE in cultured cells led to increased APLP2 processing. Our results strongly suggest that BACE is a neuronal protein that modulates the processing of both APP and APLP2.  相似文献   

20.
Parkin suppression induces accumulation of β-amyloid in mutant tau mice. We studied the effect of parkin suppression on behaviour and brain pathology in APPswe mutant mice. We produced double mutant mice with human mutated APPswe + partial (hemizygote) or total (homozygote) deletion of Park-2 gene. We studied the development, behaviour, brain histology, and biochemistry of 12- and 16-month-old animals in 6 groups of mice, with identical genetic background: wild-type (WT), APPswe overexpressing (APP), hemizygote and homozygote deletion of Park-2 (PK+/− and PK−/−, respectively), and double mutants (APP/PK+/− and APP/PK−/−).APP mice have reduced weight gain, decreased motor activity, and reduced number of entrances and of arm alternation in the Y-maze, abnormalities which were partially or completely normalized in APP/PK+/− and APP/PK−/− mice. The double mutants had similar number of mutant human APP transgene copies than the APP and levels of 40 and 80 kDa proteins; but both of them, APP/PK+/− and APP/PK−/− mice, had less plaques in cortex and hippocampus than the APP mice. APP mutant mice had increased apoptosis, proapoptotic Bax/Bcl2 ratios, and gliosis, but these death-promoting factors were normalized in APP/PK+/− and APP/PK−/− mice. APP mutant mice had an increased number of tau immunoreactive neuritic plaques in the cerebral cortex as well as increased levels of total and phosphorylated tau protein, and these changes were partially normalized in APP/PK+/− heterozygotic and homozygotic APP/PK−/− mice. Compensatory protein-degrading systems such as HSP70, CHIP, and macroautophagy were increased in APP/PK+/− and APP/PK−/−. Furthermore, the chymotrypsin- and trypsin-like proteasome activities, decreased in APP mice in comparison with WT, were normalized in the APP/PK−/− mice.We proposed that partial and total suppression of parkin triggers compensatory mechanisms, such as chaperone overexpression and increased autophagy, which improved the behavioural and cellular phenotype of APPswe mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号