首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Energy balance is regulated by circulating leptin concentrations and hypothalamic leptin receptor (ObRb) signaling via STAT3 but is inhibited by SOCS3 and PTP1B. Leptin signaling enhances anorexigenic neuropeptides and receptor (POMC, MC3-R, MC4-R) activation while suppressing orexigenic neuropeptides (NPY, AgRP). We investigated in a sex-specific manner the early (PN2) and late (PN21) postnatal hypothalamic mechanisms in response to intrauterine (IUGR), postnatal (PNGR), and combined (IPGR) calorie and growth restriction. At PN2, both male and female IUGR were hypoleptinemic, but hypothalamic leptin signaling in females was activated as seen by enhanced STAT3. In addition, increased SOCS3 and PTP1B supported early initiation of leptin resistance in females that led to elevated AgRP but diminished MC3-R and MC4-R. In contrast, males demonstrated leptin sensitivity seen as a reduction in PTP1B and MC3-R and MC4-R with no effect on neuropeptide expression. At PN21, with adequate postnatal caloric intake, a sex-specific dichotomy in leptin concentrations was seen in IUGR, with euleptinemia in males indicative of persisting leptin sensitivity and hyperleptinemia in females consistent with leptin resistance, both with normal hypothalamic ObRb signaling, neuropeptides, and energy balance. In contrast, superimposition of PNGR upon IUGR (IPGR) led to diminished leptin concentrations with enhanced PTP1B and an imbalance in arcuate nuclear NPY/AgRP and POMC expression that favored exponential hyperphagia and diminished energy expenditure postweaning. We conclude that IUGR results in sex-specific leptin resistance observed mainly in females, whereas PNGR and IPGR abolish this sex-specificity, setting the stage for acquiring obesity after weaning.  相似文献   

2.
Bergen HT  Mizuno T  Taylor J  Mobbs CV 《Brain research》1999,851(1-2):198-203
Mechanisms mediating genetic susceptibility to diet-induced obesity have not been completely elucidated. Elevated hypothalamic neuropeptide Y (NPY) and decreased hypothalamic proopiomelanocortin (POMC) are thought to promote the development and maintenance of obesity. To assess the potential role of hypothalamic neuropeptide gene expression in diet-induced obesity, the present study examined effects of a high-fat diet on hypothalamic NPY and POMC mRNA in three strains of mice that differ in susceptibility to develop diet-induced obesity. C57BL/6J, CBA, and A/J mice were fed either normal rodent chow or a high-fat diet for 14 weeks after which hypothalamic gene expression was measured. On the high-fat diet, C57BL/6J mice gained the most weight, whereas A/J mice gained the least weight. On the high-fat diet, NPY mRNA significantly decreased as body weight increased in CBA and A/J mice, but not in C57BL/6J mice. In addition, POMC mRNA significantly increased as body weight increased in A/J mice, but not in CBA and C57BL/6J mice. Since decreased NPY mRNA and increased POMC mRNA would presumably attenuate weight gain, these results suggest that a high-fat diet produces compensatory changes in hypothalamic gene expression in mice resistant to diet-induced obesity but not in mice susceptible to diet-induced obesity.  相似文献   

3.
The aim of these experiments was to investigate the relationship between hypothalamic expression of orexin (also called hypocretin), neuropeptide Y (NPY) and pro-opiomelanocortin (POMC) mRNA and seasonal cycles of body weight and food intake in the Siberian hamster. Adult males were transferred from long days of 16 h light and 8 h dark to short days of 8 h light and 16 h dark, a procedure known to induce major reductions in food intake and body weight in this species. After 8 weeks of exposure to short days, while body weight was declining, hypothalamic NPY mRNA levels as assessed by in situ hybridization were slightly lower (P < 0.05) than in age-matched controls exposed to long days. After 12 weeks with short days, when body weight would be expected to have reached its seasonal nadir, POMC mRNA levels were lower (P < 0.05) than in hamsters under long days. At no stage did orexin mRNA levels in hamsters under short days differ significantly from levels in those under long days. To investigate further the role of these peptide systems in seasonal changes in body weight and food intake, two provocative tests were carried out. Firstly, a 48-h fast induced a significant increase (P < 0.025) in hypothalamic NPY mRNA levels in both long- and short-day conditions, but did not change hypothalamic POMC or orexin mRNA levels. Secondly, systemic (intraperitoneal) treatment with recombinant murine leptin (5 mg/kg body weight) significantly decreased (P < 0.01) food intake over a 6-h post-treatment period in both long- and short-day conditions. However, this acute leptin treatment did not induce significant changes in hypothalamic orexin, NPY or POMC mRNA abundance. The increase in NPY expression in both long- and short-day conditions following food restriction and the suppression of food intake by leptin in both conditions suggests that acute homeostatic mechanisms operate in both long-day (obese) and short-day (nonobese) conditions. The lack of major changes in orexin, NPY and POMC in such different metabolic states suggest that other central systems must play a greater role in generating these states. Such findings are consistent with the 'sliding set-point' hypothesis, that is, seasonal cycles in food intake and fat metabolism are brought about by as yet unknown central mechanisms that chronically alter the level ('set point') around which homeostasis occurs, rather than resulting from changes in the potency of the acute feedback mechanisms themselves.  相似文献   

4.
Interleukin (IL)-6 has been involved in the control of body weight and body fat. Nevertheless, the mechanisms underlying these effects are not completely understood because central and peripheral actions of IL-6 are plausible. To gain further insight into the central effects of IL-6, we used transgenic mice expressing the IL-6 gene under the control of the glial fibrillary acidic protein (GFAP) promoter (GFAP-IL-6 mice), therefore with central nervous system-restricted over-expression of IL-6, and we studied the expression of the main neuropeptides responsible for energy homeostasis in specific hypothalamic nuclei. Neuropeptide Y (NPY), agouti-related peptide (AgRP), melanin-concentrating hormone (MCH), prepro-orexin (preproOX) (orexigenic and anabolic neuropeptides), pro-opiomelanocortin (POMC) and corticotrophin-releasing hormone (CRH) (anorexigenic and catabolic peptides) mRNA levels were determined using in situ hybridisation in young (2-4 month-old) and old (10-12 month-old) female and male mice under different feeding conditions: normal diet (control) and high-fat diet (HFD), and 24 h-food deprivation. In GFAP-IL-6 females fed a control diet (GFAP-IL-6-control), we showed a significant decrease in NPY and AgRP mRNA levels at all ages, and a late increase in POMC expression (only significant in older animals). These differences were blunted in HFD mice. By contrast, GFAP-IL-6-control males showed a decrease in CRH mRNA content at early ages (2-4 months), and an increase in older mice (10-12 months). Interestingly, these differences were again blunted in HFD mice. Finally, central IL-6 was not able to counteract the effects of 24 h of fasting on body weight, plasma glucose levels and the mRNA content of the peptides evaluated in the present study. Our results demonstrate that IL-6 may regulate the expression of hypothalamic neuropeptides involved in the control of body weight and body fat acting at the central level in a gender- and age-dependent way.  相似文献   

5.
In order to identify novel genes involved in appetite and body weight regulation we have developed a microarray based method suitable for detecting small changes in gene expression in discrete groups of hypothalamic neurons. The method is based on a combination of stereological sampling, laser capture microdissection (LCM), PCR based amplification (SuperAmp), and one-color cDNA microarray analysis. To validate the method we assessed and compared fasting induced changes in mRNA levels of Neuropeptide Y (NPY) and proopiomelanocortin (POMC) in the hypothalamic arcuate nucleus (ARC) of diet-induced obese rats using cDNA microarrays, quantitative PCR and in situ hybridization. All methods revealed statistically significant fasting-induced changes in NPY and POMC expression. An additional 3480 differentially expressed probes (fold change >1.22, t-test p=0.05) were identified in the microarray analysis. Our findings demonstrate a consistent gene expression pattern across three different gene expression detection methods and strongly suggest that LCM coupled microarray analysis combined with SuperAmp can be used as a semi-quantitative mRNA profiling tool. Importantly, the sensitivity of the method greatly improves the usefulness of the microarray technology for gene expression profiling in non-homogeneous tissues such as the brain.  相似文献   

6.
Kim HJ  Lee JH  Choi SH  Lee YS  Jahng JW 《Neuropeptides》2005,39(6):272-594
This study was conducted to examine the effects of neonatal maternal separation on the hypothalamic expression of feeding peptides in later life. Pups in maternal separation (MS) groups were separated from their dam for 3 h daily from postnatal day (PND) 1-14, while pups in non-handled (NH) groups were left undisturbed. Rats were sacrificed on PND 60 to examine the gene expression of neuropeptide Y (NPY) and pro-opiomelanocortin (POMC) in the hypothalamic arcuate nucleus by mRNA in situ hybridization. Half of the rats from each group were food-deprived for 48 h before sacrifice. POMC mRNA expression increased in the free fed MS group compared with the free fed NH group. Food deprivation significantly decreased the arcuate POMC mRNA level in both groups. Body weight gain, basal levels of plasma corticosterone, leptin, and arcuate NPY mRNA were not modulated by experience of neonatal maternal separation. However, fasting-induced increases of plasma corticosterone and arcuate NPY expression were blunted in MS rats. These results suggest that neonatal maternal separation may increase the basal expression level of arcuate POMC mRNA, while inhibit the fasting-induced expression of arcuate NPY mRNA, later in life. Lastly, the altered expression of arcuate NPY mRNA, but not of arcuate POMC mRNA, appeared to be related with altered activity of the hypothalamic-pituitary-adrenal gland axis in offspring by neonatal maternal separation.  相似文献   

7.
Lin S  Storlien LH  Huang XF 《Brain research》2000,875(1-2):89-95
A high fat diet leads to progressive development of obesity and leptin resistance in C57 mice with a middle stage of peripheral, but not central, leptin resistance. This stage is characterized by increased fat accumulation despite relative hypophagia. At a later stage central leptin resistance ensues along with hyperphagia, rapid weight and fat gain. The aim of this study is to characterize the mRNA levels of leptin receptor (LR), neuropeptide Y (NPY) and pro-opiomelanocortin (POMC) in high fat (HFF) and low fat (LFF) fed groups of mice. The hypothalamic arcuate nucleus (Arc) was investigated, as was the choroid plexus (ChP) in the case of the leptin receptor. No differences between groups were seen in LR, NPY or POMC mRNA levels after 1 week of feeding. After 8 and 19 weeks, the HFF mice, compared to LFF controls, demonstrated a +45% (P<0. 003) and +84% (P<0.0001) increase in the ratio of visceral fat to body weight and +223% (P<0.0001) and +468% (P<0.0001) elevation in plasma leptin levels, respectively. At 8 weeks, LR mRNA expression showed a +98% (P<0.016) and +66% (P<0.0001) increase in ChP and Arc, respectively, while Arc NPY mRNA showed down-regulation by -45% (P<0. 006). Arc POMC mRNA showed no significant changes between groups at 8 weeks. However, after long-term (19 weeks) feeding, the HFF mice displayed significantly -26% (P<0.039) and -33% (P<0.0015) reduced LR mRNA in the ChP and Arc, respectively, with Arc POMC and NPY mRNAs down by -55% (P<0.004) and -32% (P<0.009), respectively. The present results suggest that in the middle stage of development of high fat-induced obesity, when central leptin sensitivity is maintained, the increased leptin receptor expression may play a role to defend against obesity which is overwhelmed as central leptin insensitivity develops. In this later stage the down-regulation of the POMC system may be important in the final breakdown of weight homeostasis.  相似文献   

8.
Ciliary neurotrophic factor (CNTF), a cytokine of the interleukin-6 superfamily, has been shown to induce hypophagia and weight loss. Neuropeptide Y (NPY) and orexin are potent orexigenic signals in the hypothalamus. Anorexia, normally seen in response to infection, injury and inflammation, may result from diminished hypothalamic orexigenic signalling caused by persistently elevated cytokines, including CNTF. To test this hypothesis, we first examined the effects of chronic intracerebroventricular (i.c.v.) infusion of CNTF for 6-7 days on food intake and body weight as well as hypothalamic NPY and orexin gene expression in male rats. Subsequently, the effectiveness of NPY replacement to counteract the effects of CNTF by coinfusion of NPY and CNTF was evaluated. Chronic i.c.v. infusion of CNTF (2.5 microg/day) reduced body weight (14.3% vs control) at the end of 7 days. Food intake remained suppressed for 5 days postinfusion and subsequently gradually returned to the control range by day 7. Serum leptin concentrations in these rats were in the same range seen in control rats. Chronic i.c.v. infusion of higher doses of CNTF (5.0 microg/day) produced sustained anorexia and body weight loss (29% vs controls) through the entire duration of the experiment. This severe anorexia was accompanied by markedly suppressed serum leptin concentrations. Furthermore, CNTF infusion alone significantly reduced hypothalamic NPY gene expression (P < 0. 05) without affecting orexin gene expression. As expected, in fusion of NPY alone (18 microg/day) augmented food intake (191.6% over the initial control, P < 0.05) and produced a 25.1% weight gain in conjunction with a 10-fold increase in serum leptin concentrations at the end of the 7-day period. Interestingly, coinfusion of this regimen of NPY with the highly effective anorectic and body reducing effects of CNTF (5.0 microg/day) not only prevented the CNTF-induced anorexia and weight loss, but also normalized serum leptin concentrations and hypothalamic NPY gene expression. These results demonstrate that chronic central infusion to produce a persistent elevation of the cytokine at pathophysiological levels (a situation that may normally manifest during infection, injury and inflammation) produced severe anorexia and weight loss in conjunction with reduction in both serum leptin concentrations and hypothalamic NPY gene expression. Reinstatement of hypothalamic NPY signalling by coinfusion of NPY counteracted these CNTF-induced responses.  相似文献   

9.
10.
11.
Pre‐ and postnatal calorie restriction is associated with postnatal growth restriction, reduced circulating leptin concentrations, and perturbed energy balance. Hypothalamic regulation of energy balance demonstrates enhanced orexigenic (NPY, AgRP) and diminished anorexigenic (POMC, CART) neuropeptide expression (PN21), setting the stage for subsequent development of obesity in female Sprague‐Dawley rats. Leptin replenishment during the early postnatal period (PN2‐PN8) led to reversal of the hypothalamic orexigenic:anorexigenic neuropeptide ratio at PN21 by reducing only the orexigenic (NPY, AgRP), without affecting the anorexigenic (POMC, CART) neuropeptide expression. This hypothalamic effect was mediated via enhanced leptin receptor (ObRb) signaling that involved increased pSTAT3/STAT3 but reduced PTP1B. This was further confirmed by an increase in body weight at PN21 in response to intracerebroventricular administration of antisense ObRb oligonucleotides (PN2‐PN8). The change in the hypothalamic neuropeptide balance in response to leptin administration was associated with increased oxygen consumption, carbon dioxide production, and physical activity, which resulted in increased milk intake (PN14) with no change in body weight. This is in contrast to the reduction in milk intake with no effect on energy expenditure and physical activity observed in controls. We conclude that pre‐ and postnatal calorie restriction perturbs hypothalamic neuropeptide regulation of energy balance, setting the stage for hyperphagia and reduced energy expenditure, hallmarks of obesity. Leptin in turn reverses this phenotype by increasing hypothalamic ObRb signaling (sensitivity) and affecting only the orexigenic arm of the neuropeptide balance. © 2015 Wiley Periodicals, Inc.  相似文献   

12.
EM66 is a conserved 66‐amino acid peptide derived from secretogranin II (SgII), a member of the granin protein family. EM66 is widely distributed in secretory granules of endocrine and neuroendocrine cells, as well as in hypothalamic neurones. Although EM66 is abundant in the hypothalamus, its physiological function remains to be determined. The present study aimed to investigate a possible involvement of EM66 in the hypothalamic regulation of feeding behaviour. We show that i.c.v. administration of EM66 induces a drastic dose‐dependent inhibition of food intake in mice deprived of food for 18 hours, which is associated with an increase of hypothalamic pro‐opiomelanocortin (POMC) and melanocortin‐3 receptor mRNA levels and c‐Fos immunoreactivity in the POMC neurones of the arcuate nucleus. By contrast, i.c.v. injection of EM66 does not alter the hypothalamic expression of neuropeptide Y (NPY), or that of its Y1 and Y5 receptors. A 3‐month high‐fat diet (HFD) leads to an important decrease of POMC and SgII mRNA levels in the hypothalamus, whereas NPY gene expression is not affected. Finally, we show that a 48 hours of fasting in HFD mice decreases the expression of POMC and SgII mRNA, which is not observed in mice fed a standard chow. Taken together, the present findings support the view that EM66 is a novel anorexigenic neuropeptide regulating hypothalamic feeding behaviour, at least in part, by activating the POMC neurones of the arcuate nucleus.  相似文献   

13.
In the arcuate nucleus which is richly innervated by both proopiomelanocortin (POMC) and neuropeptide Y (NPY) neurons, it has been shown that NPY fibers are in synaptic contact with POMC cell bodies. In order to determine whether NPY could influence POMC neuronal activity, we have studied the effects of NPY and some NPY analogs on POMC gene expression using quantitative in situ hybridization. The following peptides NPY, [Leu31, Pro34]-NPY (a Y1 receptor agonist), and NPY13–36 (a Y2 receptor agonist) were injected into the left lateral cerebral ventricle of adult male rats 4 h before being perfused for histological procedures. The intracerebroventricular injection of NPY and NPY13–36 induced a significant decrease in the number of grains overlying the labelled neurons. On the other hand, the Y1 receptor agonist [Leu31, Pro34]-NPY did not modify POMC mRNA levels. These data then strongly suggest that NPY negatively regulates the genetic expression of POMC neurons via the Y2 NPY receptor subtype.  相似文献   

14.
Neuropeptide Y (NPY) is an important hypothalamic orexigenic neuropeptide that acts in the brain. It has been established that the fasting-induced up-regulation of NPY expression is mainly caused by a reduction in the activity of leptin, which is a hormone secreted by adipose tissue. We have reported that in female rats hypothalamic NPY mRNA expression does not respond to fasting during the early neonatal period, but subsequently becomes sensitive to it later in the neonatal period. In this study, we compared the developmental changes in the responses of NPY and leptin expression to fasting between male and female rats during the neonatal to pre-pubertal period. Fasting was induced by maternal deprivation during the pre-weaning period (postnatal days 10 and 20) and by food deprivation during the post-weaning period (postnatal day 30). Hypothalamic NPY mRNA expression was not affected by fasting on postnatal day 10, whereas it was increased by fasting on postnatal day 20 and 30 in both males and females. On the other hand, the serum leptin level was decreased by fasting at all examined ages in both sexes. Namely, hypothalamic NPY mRNA expression was not correlated with the reduction in the serum leptin level at postnatal day 10 in either sex. Under the fasted conditions, the hypothalamic NPY mRNA levels of the males were higher than those of the females on postnatal days 20 and 30, whereas no such differences were observed under the normal nourishment conditions. The serum leptin levels observed under the fasted conditions did not differ between males and females at any examined age. These results suggest that some hypothalamic NPY functions develop during the neonatal period and that there is no major difference between the sexes with regard to the time when NPY neurons become sensitive to fasting. They also indicate that hypothalamic NPY expression is more sensitive to under-nutrition in male rats than in female rats, at least during the pre-pubertal period.  相似文献   

15.
16.
17.
Attention has recently been focused on lactation-induced modifications of activity of neuronal populations in the arcuate nucleus (ARC) of the mediobasal hypothalamus.The ARC hosts the tubero-infundibular dopaminergic (TIDA system) responsible for the neuroendocrine control of prolactin (PRL), and other non-neuroendocrine neuronal populations, such as neuropeptide Y (NPY)- and proopiomelanocortin (POMC)-containing systems that are important modulators of hypothalamic gonadoliberin (GnRH) secretion. Our longstanding interest in the functional anatomy of the ARC led us to investigate whether the suckling stimulus would trigger an expression of Fos-ir in specific arcuate neuronal populations and to possibly characterize responsive neurons by using double-labeling immunohistochemistry. Freely nursing lactating females expressed strong Fos-ir in neurons of the ARC compared to diestrous females. Fos-ir was encountered in neurons not belonging to the TIDA system and that was for a large proportion identical to the POMCergic neurons.We showed that, in lactating females submitted to suppression of the suckling stimulus by removal of the pups, the pattern of expression of Fos-ir is similar to that seen in diestrous females and that, a pattern of expression of Fos-ir indistinguishable from that observed during free lactation is reinstated a short time after the return of the pups and restoration of the suckling stimulus, suggesting that this expression of Fos-ir strictly depends upon the presence of the newborns and the suckling stimulus. By lowering circulating levels of the PRL with bromocryptine-or PRL antiserum-treatment, we noticed a decrease in the number of (β-endorphin+Fos)-ir neurons compared to non-injected freely nursing lactating females. By maintaining high levels of circulating PRL with haloperidol-treatment, we observed a number of colocalizations close to that observed in freely nursing lactating females. Our results suggest that during lactation a rostral subgroup of the arcuate POMCergic neuronal population is activated at least partially in response to the suckling-induced secretion of PRL and that this activation participates in maintaining the endocrine and/or metabolic demands of the lactational status.  相似文献   

18.
Interleukin-6 (IL-6) is a major cytokine controlling not only the immune system but also basic physiological variables such as body weight and metabolism. While central IL-6 is clearly implicated in the latter, the putative role of peripheral IL-6 controlling body weight remains unclear. We herewith report results obtained in muscle-specific IL-6 KO (mIL-6 KO) mice. mIL-6 KO male mice fed a high-fat diet (HFD, 58.4% kcal from fat) or a control diet (18%) gained less weight and body fat than littermate floxed male mice, while the opposite pattern was observed in female mice. Food intake was not affected by muscle IL-6 deficiency, but male and female mIL-6 KO mice were more and less active, respectively, in the hole-board test. Moreover, female mIL-6 KO mice did not control adequately their body temperature upon exposure to 4 °C, suggesting a role of muscle IL-6 in energy expenditure. At least part of this regulatory role of muscle IL-6 may be mediated by the hypothalamus, as IL-6 deficiency regulated the expression of critical hypothalamic neuropeptides (NPY, AgRP, POMC, CRH and preproOX). Leptin and insulin changes cannot explain the phenotype of these mice. In summary, the present results demonstrate that muscle IL-6 controls body weight and body fat in a sex-specific fashion, influencing the expression of the main neuropeptides involved in energy homeostasis.  相似文献   

19.
Antidepressant drugs have in common a delayed onset of clinical efficacy. In rats, long-term, daily administration of four different types of clinically effective antidepressant drugs results in decreased corticotropin releasing hormone (CRH) mRNA expression levels in the hypothalamic paraventricular nucleus (PVN). Because a subpopulation of neuropeptide Y (NPY) and proopiomelanocortin (POMC) neurons in the hypothalamic arcuate nucleus (Arc) projects to the PVN, we measured NPY and POMC mRNA expression in the Arc using in situ hybridization histochemistry at several time points following daily administration of four different antidepressant drugs. After 14 and 56 days of imipramine treatment, Arc NPY mRNA levels are decreased to 85% and 75% of control levels, but are unchanged compared to control after one or five days of treatment. Arc POMC mRNA levels are unchanged compared to controls at 1, 5, 14, or 56 days following imipramine treatment. Unlike after imipramine, Arc NPY and POMC mRNA levels are increased significantly to 134–172% of control following 56-day treatment with the antidepressant drugs fluoxetine, phenelzine, or idazoxan. The divergent effects of imipramine vs the other 3 antidepressant drugs on Arc NPY mRNA expression are similar to the pattern of changes in tyrosine hydroxylase (TH) mRNA expression levels in the locus coeruleus (LC) using the same experimental paradigm, but are different from the unidirectional depressive effects of all four drugs on CRH mRNA expression in the PVN. Thus, the Arc NPY and LC noradrenergic systems may act coordinately in mediating antidepressant effects. The present data are consistent with the delayed onset of clinical efficacy for antidepressant drugs, and suggest that Arc NPY and POMC neurotransmitter systems play a role in the pathophysiology of depression.  相似文献   

20.
Singer LK  Kuper J  Brogan RS  Smith MS  Grove KL 《Neuroreport》2000,11(5):1075-1080
Neuropeptide Y (NPY) is a potent orexigenic peptide. In the normal adult rat, hypothalamic NPY mRNA expression is limited to the arcuate nucleus (ARH). The purpose of this study was to characterize the developmental expression of NPY mRNA in the hypothalamus of the rat. In contrast to the normal adult rat, NPY mRNA was observed in the ARH, the dorsomedial hypothalamic nucleus (DMH) and the perifornical region (PFR) during development. NPY mRNA expression in all three regions increased progressively from postnatal days 0-4 (P0-4) to reach maximum levels at P16 and subsequently decreased to near adult levels by P30. The unique expression of NPY mRNA in the PFR and DMH may be important in establishing the proper management of energy homeostasis and body weight in the adult animal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号