首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的 探讨脊髓与背根神经节(DGR)细胞外信号调节蛋白激酶5(ERK5)信号通路在神经病理性疼痛中的作用。方法 选取SD大鼠通过坐骨神经结扎(CCI)建立神经病理性疼痛模型,对建模1、3、6 d脊髓与背根神经节p-ERK5进行免疫组化染色,分析其表达水平变化情况; 利用反义寡核苷酸技术并结合免疫印迹和免疫组化检测DGR中ERK5和p-CREB表达水平的变化; 分析鞘内注射反义寡核苷酸对CCI 大鼠机械缩足反射阈值(MWT)和热缩足反射潜伏期(TWL)的影响。结果 SD大鼠神经病理性疼痛模型建立后p-ERK5阳性神经节数量显著增加; 鞘内注射ERK5反义寡核苷酸可有效抑制脊髓与背根神经节ERK5的表达,同时可上调p-CREB的表达; 大鼠机械缩足反射阈值(MWT)和热缩足反射潜伏期(TWL)均明显下降。结论 脊髓与背根神经节ERK5可能在神经病理性疼痛过程中具有重要调节作用,并且ERK5通过CREB相关基因的表达来发挥其部分功能  相似文献   

2.
The Reelin signaling pathway in the brain involves the binding of Reelin to very-low-density lipoprotein receptors (VLDLR) and apolipoprotein E receptor 2 (ApoER2). After Reelin binds the lipoprotein receptors on migrating neurons, the intracellular adaptor protein Disabled-1 (Dab1) becomes phosphorylated, ultimately resulting in the proper positioning of cortical neurons. Previous work showed that Reelin also affects the positioning of sympathetic preganglionic neurons (SPN) in the spinal cord (Yip et al. [2000] Proc Natl Acad Sci USA 97:8612-8616). We asked in the present study whether components of the Reelin signaling pathway in the brain also function to control SPN migration in developing spinal cord. Results showed that Reelin and reelin mRNA are found adjacent to migrating SPN. In addition, dab1 mRNA and protein are expressed by migrating SPN, and dab1-null mice show abnormal SPN migration similar to that seen in reeler. Finally, vldlr and apoER2 are also expressed in migrating SPN, and mice lacking both vldlr and apoER2 show aberrant SPN location that is identical to that of reeler and dab1-null mice. Because molecules known to be involved in Reelin signaling in the brain are present in the developing spinal cord, it is likely that the Reelin signaling pathways in the brain and spinal cord function similarly. The relative simplicity of the organization of the spinal cord makes it a potentially useful model system with which to study the molecular and cellular function of the Reelin signaling pathway in control of neuronal migration.  相似文献   

3.

Background

Spinal cord injury (SCI) is a highly disabling condition in spinal surgery that leads to neuronal damage and secondary inflammation. Ferroptosis is a non-apoptotic type of cell death that has only recently been identified, which is marked primarily by iron-dependent and lipid-derived reactive oxygen species accumulation, and accompanied by morphological modifications such as mitochondrial atrophy and increase in membrane density. Dihydroorotate dehydrogenase (DHODH) is a powerful inhibitor of ferroptosis and has been demonstrated to inhibit cellular ferroptosis in tumor cells, but whether it can inhibit neuronal injury following spinal cord injury remains ambiguous.

Methods

In this study, the effect of DHODH on neuronal ferroptosis was observed in vivo and in vitro using a rat spinal cord injury model and erastin-induced PC12 cells, respectively. A combination of molecular and histological approaches was performed to assess ferroptosis and explore the possible mechanisms in vivo and in vitro.

Results

First, we confirmed the existence of neuronal ferroptosis after spinal cord injury and that DHODH attenuates neuronal damage after spinal cord injury. Second, we showed molecular evidence that DHODH inhibits the activation of ferroptosis-related molecules and reduces lipid peroxide production and mitochondrial damage, thereby reducing neuronal ferroptosis. Further analysis suggests that P53/ALOX15 may be one of the mechanisms regulated by DHODH. Importantly, we determined that DHODH inhibits ALOX15 expression by inhibiting P53.

Conclusions

Our findings reveal a novel function for DHODH in neuronal ferroptosis after spinal cord injury, suggesting a unique therapeutic target to alleviate the disease process of spinal cord injury.  相似文献   

4.
《Brain & development》2019,41(8):649-661
Apoptosis is a highly conservative energy demand program for non-inflammatory cell death, which is extremely significant in normal physiology and disease. There are many techniques used for studying apoptosis. MicroRNA (miRNA) is closely related to cell apoptosis, and especially microRNA-31 (miR-31) is involved in apoptosis by regulating a large number of target genes and signaling pathways. In many neurological diseases, cell apoptosis or programmed cell death plays an important role in the reduction of cell number, including the reduction of neurons in spinal cord injuries. In recent years, the phosphoinositol 3-kinase/AKT (PI3K/AKT) signal pathway, as a signal pathway involved in a variety of cell functions, has been studied in spinal cord injury diseases. The PI3K/AKT pathway directly or indirectly affects whether apoptosis occurs in a cell, thereby affecting a significant intracellular event sequence. This paper reviewed the interactions of miR-31 target sites in the PI3K/AKT signaling pathway, and explored new ways to prevent and treat spinal cord injury by regulating the effect of miR-31 on apoptosis.  相似文献   

5.
Calvo M  Zhu N  Grist J  Ma Z  Loeb JA  Bennett DL 《Glia》2011,59(4):554-568
Following peripheral nerve injury microglia accumulate within the spinal cord and adopt a proinflammatory phenotype a process which contributes to the development of neuropathic pain. We have recently shown that neuregulin-1, a growth factor released following nerve injury, activates erbB 2, 3, and 4 receptors on microglia and stimulates proliferation, survival and chemotaxis of these cells. Here we studied the intracellular signaling pathways downstream of neuregulin-1-erbB activation in microglial cells. We found that neuregulin-1 in vitro induced phosphorylation of ERK1/2 and Akt without activating p38MAPK. Using specific kinase inhibitors we found that the mitogenic effect of neuregulin-1 on microglia was dependant on MEK/ERK1/2 pathway, the chemotactic effect was dependant on PI3K/Akt signaling and survival was dependant on both pathways. Intrathecal treatment with neuregulin-1 was associated with microgliosis and development of mechanical and cold pain related hypersensitivity which was dependant on ERK1/2 phosphorylation in microglia. Spinal nerve ligation results in a robust microgliosis and sustained ERK1/2 phosphorylation within these cells. This pathway is downstream of neuregulin-1/erbB signaling since its blockade resulted in a significant reduction in microglial ERK1/2 phosphorylation. Inhibition of the MEK/ERK1/2 pathway resulted in decreased spinal microgliosis and in reduced mechanical and cold hypersensitivity after peripheral nerve damage. We conclude that neuregulin-1 released after nerve injury activates microglial erbB receptors which consequently stimulates the MEK/ERK1/2 pathway that drives microglial proliferation and contributes to the development of neuropathic pain.  相似文献   

6.
Electroacupuncture is beneficial for the recovery of spinal cord injury, but the underlying mechanism is unclear. The Rho/Rho-associated kinase(ROCK) signaling pathway regulates the actin cytoskeleton by controlling the adhesive and migratory behaviors of cells that could inhibit neurite regrowth after neural injury and consequently hinder the recovery from spinal cord injury. Therefore, we hypothesized electroacupuncture could affect the Rho/ROCK signaling pathway to promote the recovery of spinal cord injury. In our experiments, the spinal cord injury in adult Sprague-Dawley rats was caused by an impact device. Those rats were subjected to electroacupuncture at Yaoyangguan(GV3), Dazhui(GV14), Zusanli(ST36) and Ciliao(BL32) and/or monosialoganglioside treatment. Behavioral scores revealed that the hindlimb motor functions improved with those treatments. Real-time quantitative polymerase chain reaction, fluorescence in situ hybridization and western blot assay showed that electroacupuncture suppressed the m RNA and protein expression of Rho-A and Rho-associated kinase Ⅱ(ROCKⅡ) of injured spinal cord. Although monosialoganglioside promoted the recovery of hindlimb motor function, monosialoganglioside did not affect the expression of Rho-A and ROCKⅡ. However, electroacupuncture combined with monosialoganglioside did not further improve the motor function or suppress the expression of Rho-A and ROCKⅡ. Our data suggested that the electroacupuncture could specifically inhibit the activation of the Rho/ROCK signaling pathway thus partially contributing to the repair of injured spinal cord. Monosialoganglioside could promote the motor function but did not suppress expression of Rho A and ROCKⅡ. There was no synergistic effect of electroacupuncture combined with monosialoganglioside.  相似文献   

7.

Background

A growing body of research shows that drug monomers from traditional Chinese herbal medicines have antineuroinflammatory and neuroprotective effects that can significantly improve the recovery of motor function after spinal cord injury (SCI). Here, we explore the role and molecular mechanisms of Alpinetin on activating microglia-mediated neuroinflammation and neuronal apoptosis after SCI.

Methods

Stimulation of microglia with lipopolysaccharide (LPS) to simulate neuroinflammation models in vitro, the effect of Alpinetin on the release of pro-inflammatory mediators in LPS-induced microglia and its mechanism were detected. In addition, a co-culture system of microglia and neuronal cells was constructed to assess the effect of Alpinetin on activating microglia-mediated neuronal apoptosis. Finally, rat spinal cord injury models were used to study the effects on inflammation, neuronal apoptosis, axonal regeneration, and motor function recovery in Alpinetin.

Results

Alpinetin inhibits microglia-mediated neuroinflammation and activity of the JAK2/STAT3 pathway. Alpinetin can also reverse activated microglia-mediated reactive oxygen species (ROS) production and decrease of mitochondrial membrane potential (MMP) in PC12 neuronal cells. In addition, in vivo Alpinetin significantly inhibits the inflammatory response and neuronal apoptosis, improves axonal regeneration, and recovery of motor function.

Conclusion

Alpinetin can be used to treat neurodegenerative diseases and is a novel drug candidate for the treatment of microglia-mediated neuroinflammation.  相似文献   

8.
An increasing number of studies report that the Ras/Raf/extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway has a death-promoting apoptotic function in neural cells. We hypothesized that the Ras/Raf/ERK1/2 signaling pathway may be abnormally regulated in rat injured spinal cord models. The weight drop method was used to establish rat spinal cord injury at T9. Western blot analysis and immunohistochemical staining revealed Ras expression was dramatically elevated, and the phosphorylations of A-Raf, B-Raf and C-Raf were all upregulated in the injured spinal cord. Both mitogen-activated protein kinase kinase 1/2 and ERK1/2, which belong to the Ras/Raf signaling kinases, were upregulated. These results indicate that Ras/Raf/ERK1/2 signaling may be upregulated in injured spinal cord and are involved in recovery after spinal cord injury.  相似文献   

9.
10.
目的 探讨神经生长因子(Nerve growth factor, NGF)对创伤性脊髓损伤(Traumatic spinal cord injury, t-SCI)大鼠膀胱功能和脊髓神经轴突损伤修复的影响及其分子机制。方法 取30只雄性Sprague-Dawley(SD)大鼠,通过改良Allen’s击打法构建创伤性脊髓损伤模型,随机分为假手术组、损伤组和NGF组,每组各10只;采用血脑屏障(Blood-brain barrier, BBB)评分观察术前、术后大鼠的后肢运动功能;BL-420生物仪实验系统检测尿动力学;甲苯胺蓝染色吻合口远端截取的左侧腰6前根,计算有髓轴突数量;采用苏木精-伊红(Hematoxylin eosin, HE)染色大鼠膀胱组织;原位末端标记法(TdT-mediated dUTP nick and labeling, TUNEL)染色大鼠损伤严重的脊髓,观察脊髓神经细胞的凋亡率;蛋白免疫印迹法(Western blot)检测脊髓组织中原癌基因丝氨酸/苏氨酸蛋白激酶(proto-oncogene serine/threonine-protein kinase, R...  相似文献   

11.
Previous studies have shown that activation of p38 mitogen-activating kinase (MAPK) in spinal microglia participates in the generation of inflammatory and neuropathic pain in various rodent models. However, these studies focused on male mice to avoid confounding effects of the estrous cycle of females. Recent studies have shown that some spinal pro-inflammatory signaling such as Toll-like receptor 4-mediated signaling contributes to pain hypersensitivity only in male mice. In this study we investigated the distinct role of spinal p38 in inflammatory and neuropathic pain using a highly selective p38 inhibitor skepinone. Intrathecal injection of skepinone prevented formalin induced inflammatory pain in male but not female mice. Furthermore, intrathecal skepinone reduced chronic constriction injury (CCI) induced neuropathic pain (mechanical allodynia) in male mice on CCI-day 7 but not CCI-day 21. This male-dependent inhibition of neuropathic pain also occurred in rats following intrathecal skepinone. Nerve injury induced spinal p38 activation (phosphorylation) in CX3CR1-GFP+ microglia on CCI-day 7, and this activation was more prominent in male mice. In contrast, CCI induced comparable microgliosis and expression of the microglial markers CX3CR1 and IBA-1 in both sexes. Notably, intraperitoneal or local perineural administration of skepinone inhibited CCI-induced mechanical allodynia in both sexes of mice. Finally, skepinone only reduced the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) in lamina IIo neurons of spinal cord slices of males 7 days post CCI. Therefore, the sex-specific p38 activation and signaling is confined to the spinal cord in inflammatory and neuropathic pain conditions.  相似文献   

12.
Neuropathic pain produced by damage to or dysfunction of the nervous system is a common and severely disabling state that affects millions of people worldwide. Recent evidence indicates that activated microglia are key cellular intermediaries in the pathogenesis of neuropathic pain and that ATP serves as the mediator. However, the in vivo mechanism underlying the retention of activated microglia in the injured region has not yet been completely elucidated. Prostaglandin E(2) (PGE(2)) is the principal proinflammatory prostanoid and plays versatile roles by acting via four PGE receptor subtypes, EP1-EP4. In the present study, we investigated the role of PGE(2) in spinal microglial activation in relation to neuropathic pain by using genetic and pharmacological methods. Mice deficient in microsomal prostaglandin E synthase-1 impaired the activation of microglia and the NMDA-nitric oxide (NO) cascade in spinal neurons in the dorsal horn and did not exhibit mechanical allodynia after peripheral nerve injury. The intrathecal injection of indomethacin, a nonsteroidal anti-inflammatory drug, ONO-8713, a selective EP1 antagonist, or 7-nitroindole, a neuronal NO synthase inhibitor, attenuated mechanical allodynia and the increase in activated microglia observed in the established neuropathic-pain state. We further demonstrated that ATP-induced microglial migration was blocked in vitro by PGE(2) via EP2 and by S-nitrosoglutathione, an NO donor. Taken together, the present study suggests that PGE(2) participated in the maintenance of neuropathic pain in vivo not only by activating spinal neurons, but also by retaining microglia in the central terminals of primary afferent fibers via EP2 subtype and via EP1-mediated NO production.  相似文献   

13.
Resistance mechanisms of rho-associated kinase (ROCK) inhibitors are associated with the enhanced expression of cyclooxygenase-2 (COX-2). The therapeutic effects of ROCK on nervous system diseases might be enhanced by COX-2 inhibitors. This study investigated the synergistic effect of the combined use of the ROCK inhibitor fasudil and a COX-2 inhibitor celecoxib on spinal cord injury in a rat model established by transecting the right half of the spinal cord at T11. Rat models were orally administrated with celecoxib (20 mg/kg) and/or intramuscularly with fasudil (10 mg/kg) for 2 weeks. Results demonstrated that the combined use of celecoxib and fasudil significantly decreased COX-2 and Rho kinase II expression surrounding the lesion site in rats with spinal cord injury, improved the pathomorphology of the injured spinal cord, and promoted the recovery of motor function. Moreover, the effects of the drug combination were better than celecoxib or fasudil alone. This study demonstrated that the combined use of fasudil and celecoxib synergistically enhanced the functional recovery of injured spinal cord in rats.  相似文献   

14.
Axonal regeneration within the injured central nervous system (CNS) is hampered by multiple inhibitory molecules in the glial scar and the surrounding disrupted myelin. Many of these inhibitors stimulate, either directly or indirectly, the Rho intracellular signaling pathway, providing a strong rationale to target it following spinal cord injuries. In this study, we infused either control (PBS) or a ROCK inhibitor, Y27632 (2 mM or 20 mM, 12 microl/day for 14 days) into the intrathecal space of adult rats starting immediately after a cervical 4/5 dorsal column transection. Histological analysis revealed that high dose-treated animals displayed significantly more axon sprouts in the grey matter distal to injury compared to low dose-treated rats. Only the high dose regimen stimulated sprouting of the dorsal ascending axons along the walls of the lesion cavity. Footprint analysis revealed that the increased base of support normalized significantly faster in control and high dose-treated animals compared to low dose animals. Forepaw rotation angle, and the number of footslips on a horizontal ladder improved significantly more by 6 weeks in high dose animals compared to the other two groups. In a food pellet reaching test, high dose animals performed significantly better than low dose animals, which failed to recover. There was no evidence of mechanical allodynia in any treatment group; however, the slightly shortened heat withdrawal times normalized only with the high dose treatment. Collectively, our data support beneficial effects of high dose Y27632 treatment but indicate that low doses might be detrimental.  相似文献   

15.
16.
As the primary intrinsic immune effector cells of the central nervous system, microglia are involved in virtually all pathological processes of the brain and spinal cord including inflammatory, neurodegenerative, traumatic, neoplastic and vascular diseases. Despite this important role, there is a lack of data concerning microglial distribution and protein expression in the human spinal cord. In this study, we immunohistochemically investigated 10 normal human spinal cords to establish reference data and compared these results with 15 pathological human spinal cords deriving from distinct pathologies. Each spinal cord was evaluated at eight different levels for three white and two grey matter areas for both constitutive (MHC-II, CD68, IL-16, AIF-1, LCA, CD4) and reactive (MRP-8, MRP-14) microglial antigens. Whereas previous studies revealed significant regional differences in microglial distribution and protein expression in human brain, normal spinal cord displayed a uniform expression pattern, reaching levels of up to 17% MHC-II positive cells of the total cell population. This datum formed the basis for the further evaluation of microglia expression levels in pathological spinal cords, where levels of up to 45% positive cells were observed. Our results represent important reference values for future neuropathological diagnostic and therapeutical approaches in spinal cord pathologies.  相似文献   

17.
Brain-derived neurotrophic factor (BDNF) is involved in the modulation of synaptic transmission in the spinal cord, and several circumstantial lines of evidence suggest that it has the ability to modulate the activity of the NMDA receptor. Here we dissect the signalling mechanisms by which BDNF exerts its neuromodulatory role on the NMDA receptor subunit 1 (NR1). Using a preparation of adult isolated dorsal horn with dorsal roots attached, we found that electrical stimulation of roots induced a concomitant release of BDNF and an increased phosphorylation of NR1, which was partly prevented by the BDNF sequestering molecule, TrkB-IgG. Using a second approach in vitro, we confirmed that both exogenous glutamate and BDNF (but not other neurotrophins) were able to induce NR1 phosphorylation, in particular at residue Ser-897. NR1 phosphorylation induced by BDNF was blocked by a TrkB inhibitor, an ERK inhibitor and a PKC inhibitor but not a PKA inhibitor. Activation of PKC using exogenous PMA also led to NR1 phosphorylation. Together these data suggest that BDNF modulates the activity of the receptor by phosphorylation via the kinases ERK and PKC.  相似文献   

18.
Spinal cord injury(SCI) is a devastating condition that produces significant changes in the lifestyle of patients. Many molecular and cellular events are triggered after the initial physical impact to the cord. Two major phases have been described in the field of SCI: an acute phase and late phase. Most of the therapeutic strategies are focused on the late phase because this provides an opportunity to target cellular events like apoptosis, demyelination, scar formation and axonal outgrowth. In this mini-review, we will focus on two agents(tamoxifen and a Src kinase family inhibitor known as PP2) that have been shown in our laboratory to produce neuroprotective(increase cell survival) and/or regenerative(axonal outgrowth) actions. The animal model used in our laboratory is adult female rat(~250 g) with a moderate contusion(12.5 mm) to the spinal cord at the T10 level, using the MASCIS impactor device. Tamoxifen or PP2 was administered by implantation of a 15 mg pellet(Innovative Research of America, Sarasota, FL, USA) or by intraperitoneal injections(1.5 mg/kg, every 3 days), respectively, to produce a long-term effect(28 days). Tamoxifen and the Src kinase inhibitor, PP2, are drugs that in rats with a moderate spinal cord injury promote functional locomotor recovery, increase spared white matter tissue, and stimulate axonal outgrowth. Moreover, tamoxifen reduces the formation of reactive oxygen species. Therefore, these drugs are possible therapeutic agents that have a neuroprotective/regenerative activity in vertebrates with SCI.  相似文献   

19.
Recent attempts by other investigators to enhance repair processes in the spinal cord have involved the administration of X rays to spinal cord injury sites. Although some functional improvement has been reported, the underlying cellular changes within the irradiated spinal cords are not clear. Studies initiated recently in this laboratory examined the potential of X rays to modulate nonneuronal cell populations associated with an injury site in adult mammalian spinal cords. These studies revealed a unique and previously unreported radiosensitivity of the microglial cell population. Administration of X radiation to a unilateral dorsal lesion cavity in the cervical spinal cord revealed a significant decrease (approximately half) in numbers of microglia associated with the cavity. Even more unexpected were the significant decreases in microglial cells observed on the nonlesioned side of the spinal cord or in sham-operated spinal cords in irradiated rats. In contrast to reports of others, densitometric quantification of GFAP immunoreactive cells and processes indicated no differences in the astrocytic reactions associated with the lesion cavities between nonirradiated and irradiated groups in our studies. The demonstration that exposure of a spinal cord injury site to radiation modifies the responses of certain components of the glial environment to injury may offer a noninvasive approach for direct treatment of that site. Studies are in progress to determine if this altered glial environment enhances the extension of regrowing axons from a peripheral nerve graft across the interface with the irradiated lesion cavity and into the spinal cord parenchyma.  相似文献   

20.
《中国神经再生研究》2016,(7):1090-1098
Electroacupuncture(EA) has anti-oxidative and anti-inflammatory actions,but whether the neuroprotective effect of EA against cerebral ischemia-reperfusion(I/R) injury involves modulation of the extracellular regulated kinase 1/2(ERK1/2) signaling pathway is unclear.Middle cerebral artery occlusion(MCAO) was performed in Sprague-Dawley rats for 2 hours followed by reperfusion for 24 hours.A 30-minute period of EA stimulation was applied to both Baihui(DU20) and Dazhui(DU14) acupoints in each rat(10 mm EA penetration depth,continuous wave with a frequency of 3 Hz,and a current intensity of 1–3 m A) when reperfusion was initiated.EA significantly reduced infarct volume,alleviated neuronal injury,and improved neurological function in rats with MCAO.Furthermore,high m RNA expression of Bax and low m RNA expression of Bcl-2 induced by MCAO was prevented by EA.EA substantially restored total glutathione reductase(GR),glutathione(GSH) and glutathione peroxidase(GSH-Px) levels.Additionally,Nrf2 and glutamylcysteine synthetase(GCS) expression levels were markedly increased by EA.Interestingly,the neuroprotective effects of EA were attenuated when ERK1/2 activity was blocked by PD98059(a specific MEK inhibitor).Collectively,our findings indicate that activation of the ERK1/2 signaling pathway contributes to the neuroprotective effects of EA.Our study provides a better understanding of the regulatory mechanisms underlying the therapeutic effectiveness of EA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号