首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanjundappa RH  Wang R  Xie Y  Umeshappa CS  Xiang J 《Vaccine》2012,30(24):3519-3525
The limitations of highly active anti-retroviral therapy have necessitated the development of alternative therapeutics for human immunodeficiency virus type-1 (HIV-1)-infected patients with dysfunctional dendritic cells (DCs) and CD4(+) T cell deficiency. We previously demonstrated that HIV-1 Gp120-specific T cell-based Gp120-Texo vaccine by using ConA-stimulated C57BL/6 (B6) mouse CD8(+) T (ConA-T) cells with uptake of pcDNA(Gp120)-transfected B6 mouse DC line DC2.4 (DC2.4(Gp120))-released exosomes (EXO(Gp120)) was capable of stimulating DC and CD4(+) T cell-independent CD8(+) cytotoxic T lymphocyte (CTL) responses detected in wild-type B6 mice using non-specific PE-anti-CD44 and anti-IFN-γ antibody staining by flow cytometry. To assess effectiveness of Gp120-Texo vaccine in transgenic (Tg) HLA-A2 mice mimicking the human situation, we constructed adenoviral vector AdV(Gp120) expressing HIV-1 GP120 by recombinant DNA technology, and generated Gp120-Texo vaccine by using Tg HLA-A2 mouse CD8(+) ConA-T cells with uptake of AdV(Gp120)-transfected HLA-A2 mouse bone marrow DC (DC(Gp120))-released EXO(Gp120). We then performed animal studies to assess Gp120-Texo-induced stimulation of Gp120-specific CTL responses and antitumor immunity in Tg HLA-A2 mice. We demonstrate that Gp120-Texo vaccine stimulates Gp120-specific CTL responses detected in Tg HLA-A2 mice using Gp120-specific PE-HLA-A2/Gp120 peptide (KLTPLCVTL) tetramer staining by flow cytometry. These Gp120-specific CTLs are capable of further differentiating into functional effectors with killing activity to Gp120 peptide-pulsed splenocytes in vivo. In addition, Gp120-Texo vaccine also induces Gp120-specific preventive, therapeutic (for 6 day tumor lung metastasis) and CD4(+) T cell-independent long-term immunity against B16 melanoma BL6-10(Gp120/A2Kb) expressing both Gp120 and A2Kb (α1 and α2 domains of HLA-A2 and α3 domain of H-2K(b)) in Tg HLA-A2 mice. Taken together, the novel CD8(+) Gp120-Texo vaccine capable of stimulating efficient CD4(+) T cell-independent Gp120-specific CD8(+) CTL responses leading to therapeutic and long-term immunity in Tg HLA-A2 mice may represent a new immunotherapeutic vaccine for treatment of HIV-1 patients with CD4(+) T cell deficiency.  相似文献   

2.
3.
《Vaccine》2018,36(11):1414-1422
DNA vaccines composed of heterologous human HER2 and rat neu sequences induce stronger antibody response and protective antitumor immunity than either HER2 or neu DNA vaccines in transgenic mice. We previously developed HER2-specific exosome-targeted T-cell vaccine HER2-TEXO capable of stimulating HER2-specific CD8+ T-cell responses, but only leading to partial protective immunity in double-transgenic HLA-A2/HER2 mice with self-immune tolerance to HER2. Here, we constructed an adenoviral vector AdVHuRt expressing HuRt fusion protein composed of NH2-HER21-407 (Hu) and COOH-neu408-690 (Rt) fragments, and developed a heterologous human/rat HER2-specific exosome-targeted T-cell vaccine HuRt-TEXO using polyclonal CD4+ T-cells uptaking exosomes released by AdVHuRt-transfected dendritic cells. We found that the HuRt-TEXO vaccine stimulates enhanced CD4+ T-cell responses leading to increased induction of HER2-specific antibody (∼70 µg/ml) compared to that (∼40 µg/ml) triggered by the homologous HER2-TEXO vaccine. By using PE-H-2Kd/HER223-71 tetramer, we determined that HuRt-TEXO stimulates stronger HER2-specific CD8+ T-cell responses eradicating 90% of HER2-specific target cells, while HER2-TEXO-induced CD8+ T-cell responses only eliminating 53% targets. Furthermore, HuRt-TEXO, but not HER2-TEXO vaccination, is capable of suppressing early stage-established HER2-expressing 4T1HER2 breast cancer in its lung metastasis or subcutaneous form in BALB/c mice, and of completely protecting transgenic HLA-A2/HER2 mice from growth of HLA-A2/HER2-expressing BL6-10A2/HER2 melanoma. HuRt-TEXO-stimulated HER2-specific CD8+ T-cells not only are cytolytic to trastuzumab-resistant HLA-A2/HER2-expressing BT474/A2 breast tumor cells in vitro but also eradicates pre-established BT474/A2 tumors in athymic nude mice. Therefore, our novel heterologous human/rat HER2-specific T-cell vaccine HuRt-TEXO, circumventing HER2 tolerance, may provide a new therapeutic alternative for patients with trastuzumab-resistant HER2+ breast tumor.  相似文献   

4.
Wick DA  Martin SD  Nelson BH  Webb JR 《Vaccine》2011,29(5):984-993
The development of vaccines that elicit robust CD8+ T cell immunity has long been a subject of intense investigation. Although whole exogenous protein has not historically been considered as useful for eliciting CD8+ T cell immunity, we report herein that whole, protein antigen is capable of eliciting profound levels of CD8+ T cell immunity if it is administered via repeated, daily subcutaneous immunization in combination with the TLR3 agonist poly(I:C). Mice immunized for four consecutive days with 100 μg of either whole exogenous OVA or whole HPV16 E7 protein combined with 10 μg of poly(I:C) mounted remarkable antigen-specific CD8+ T cell responses as measured by tetramer staining and ELISPOT analysis of splenocytes and peripheral blood, with up to 30% of peripheral CD8+ T cells being antigen specific within 7-8 days of vaccination. CD8+ T cell immunity elicited using this vaccination approach was critically dependent upon cross presentation, as either whole protein or long synthetic peptides were highly effective immunogens whereas minimal peptide epitopes were not. Vaccine-induced CD8+ T cells were also able to regress large, established tumors in vivo. Together these data suggest that ‘cluster’ vaccination with exogenous antigen combined with TLR3 agonist may constitute a profoundly important advancement in therapeutic vaccine design.  相似文献   

5.
The obligately intracellular bacteria Rickettsia infect endothelial cells and cause systemic febrile diseases that are potentially lethal. No vaccines are currently available and current knowledge of the effective immune response is limited. Natural and experimental rickettsial infections provide strong and cross-protective cellular immunity if the infected individual survives the acute infection. Although resistance to rickettsial infections is attributed to the induction of antigen-specific T cells, particularly CD8+ T cells, the identification and validation of correlates of protective cellular immunity against rickettsial infections, an important step toward vaccine validation, remains a gap in this field. Here, we show that after a primary challenge with Rickettsia typhi in the C3H mouse model, the peak of anti-Rickettsia CD8+ T cell-mediated responses occurs 7 days post-infection (dpi), which coincides with the beginning of rickettsial clearance. At this time point, both effector-type and memory-type CD8+ T cells are present, suggesting that 7 dpi is a valid time point for the assessment of CD8+ T cell responses of mice previously immunized with protective antigens. Based on our results, we suggest four correlates of cellular protection for the assessment of protective rickettsial antigens: (1) production of IFN-γ by antigen-experienced CD3+CD8+CD44high cells, (2) production of Granzyme B by CD27lowCD43low antigen-experienced CD8+ T cells, (3) generation of memory-type CD8+ T cells [Memory Precursor Effector Cells (MPECs), as well as CD127highCD43low, and CD27highCD43low CD8+ T cells], and (4) generation of effector-like memory CD8+ T cells (CD27lowCD43low). We propose that these correlates could be useful for the general assessment of the quality of the CD8+ T cell immune response induced by novel antigens with potential use in a vaccine against Rickettsia.  相似文献   

6.
《Vaccine》1999,17(7-8):720-727
DNA vaccination is highly efficient at inducing CD8+ T cell responses in animal models. Here we investigated whether DNA vaccine technology could be exploited to identify subdominant cytotoxic T lymphocytes (CTL) epitopes. Previous studies have shown that the Sendai virus HN protein does not induce a CD8+ T cell response in C57BL/6 mice. Thus, we vaccinated C57BL/6 mice with a DNA vaccine encoding Sendai virus hemagglutinin neuraminidase (HN) protein. The data show that this strategy elicited a potent Db-restricted CD8+ CTL response against at least one subdominant HN-derived epitope. These CTL were able to lyse Sendai virus-infected target cells, demonstrating that the epitope was appropriately processed and present at sufficient levels for T cell recognition. However, these cells did not confer protection against lethal challenge with Sendai virus. These data demonstrate the capacity of DNA vaccine to raise CTL responses to subdominant epitopes, but show that such responses may be limited in their efficacy against non-persistent viruses.  相似文献   

7.
Dengue is a global public health concern and this is aggravated by a lack of vaccines or antiviral therapies. Despite the well-known role of CD8+ T cells in the immunopathogenesis of Dengue virus (DENV), only recent studies have highlighted the importance of this arm of the immune response in protection against the disease. Thus, the majority of DENV vaccine candidates are designed to achieve protective titers of neutralizing antibodies, with less regard for cellular responses. Here, we used a mouse model to investigate CD8+ T cell and humoral responses to a set of potential DENV vaccines based on recombinant modified vaccinia virus Ankara (rMVA). To enable this study, we identified two CD8+ T cell epitopes in the DENV-3 E protein in C57BL/6 mice. Using these we found that all the rMVA vaccines elicited DENV-specific CD8+ T cells that were cytotoxic in vivo and polyfunctional in vitro. Moreover, vaccines expressing the E protein with an intact signal peptide sequence elicited more DENV-specific CD8+ T cells than those expressing E proteins in the cytoplasm. Significantly, it was these same ER-targeted E protein vaccines that elicited antibody responses. Our results support the further development of rMVA vaccines expressing DENV E proteins and add to the tools available for dengue vaccine development.  相似文献   

8.
Jang MJ  Kim JE  Chung YH  Lee WB  Shin YK  Lee JS  Kim D  Park YM 《Vaccine》2011,29(13):2400-2410
Gram-negative bacterial outer membrane proteins (Omps) have an important role in pathogenesis and signal reception. We previously reported that Acinetobacter OmpA (AbOmpA) induced maturation of bone marrow-derived dendritic cells (BMDCs) and that AbOmpA-primed DCs produced IL-12 which generated Th1 CD4+ T-cells. We analyzed the effects of Salmonella typhimurium OmpA (OmpA-Sal) on dendritic cell (DC) maturation in the present study, and determined that tumor antigen-pulsed DCs stimulated with OmpA-Sal induced anti-tumor responses in a mouse model. OmpA-Sal activated BMDCs by augmenting expression of MHC class II and of the co-stimulatory molecules CD80 and CD86. RT-PCR revealed that IL-12(p40) gene expression is highly augmented in OmpA-Sal-stimulated BMDCs. DNA (CRT/E7) vaccination combined with OmpA-Sal stimulation generated more antigen-specific CD8+ T-cells in the present study. Certain antigen-pulsed BMDCs stimulated with OmpA-Sal induced strong PADRE-specific CD4+ and E7-specific CD8+ T-cell responses. In addition, BMDCs stimulated with OmpA-Sal (OmpA-Sal-BMDCs) and pulsed with both E7 and PADRE peptide generated greater numbers of E7-specific CD8+ effector and memory T-cells than those pulsed with E7 peptide alone. E7- and PADRE-expressing OmpA-Sal-BMDC vaccines resulted in significant long-term protective anti-tumor effects in vaccinated mice. Our data suggested that E7- and PADRE-expressing BMDCs that were matured in the presence of OmpA-Sal might enhance anti-tumor immunity and support the therapeutic use of OmpA-Sal in DC-based immunotherapy.  相似文献   

9.
10.
Mycobacterium bovis BCG is an attractive vaccine vector against breast milk HIV transmission because it elicits Th1-type responses in newborns. However, BCG causes disease in HIV-infected infants. Genetically attenuated Mycobacterium tuberculosis (Mtb) mutants represent a safer alternative for immunocompromised populations. In the current study, we compared the immunogenicity in mice of three different recombinant attenuated Mtb strains expressing an HIV envelope (Env) antigen construct. Two of these strains (ΔlysA ΔpanCD Mtb and ΔRD1 ΔpanCD Mtb) failed to induce significant levels of HIV Env-specific CD8+ T cell responses. In striking contrast, an HIV-1 Env-expressing attenuated ΔlysA Mtb containing a deletion in secA2, which encodes a virulence-related secretion system involved in evading adaptive immunity, generated consistently measurable Env-specific CD8+ T cell responses that were significantly greater than those observed after immunization with BCG expressing HIV Env. Similarly, another strain of ΔlysA ΔsecA2 Mtb expressing SIV Gag induced Gag- and Mtb-specific CD8+ T cells producing perforin or IFNγ, and Gag-specific CD4+ T cells producing IFNγ within 3 weeks after immunization in adult mice; in addition, IFNγ-producing Gag-specific CD8+ T cells and Mtb-specific CD4+ T cells were observed in neonatal mice within 1 week of immunization. We conclude that ΔlysA ΔsecA2 Mtb is a promising vaccine platform to construct a safe combination HIV-TB vaccine for use in neonates.  相似文献   

11.
Differentiation marker, multifunctionality and magnitude analyses of specific-CD8+ memory T cells are crucial to improve development of HIV vaccines designed to generate cell-mediated immunity. Therefore, we fully characterized the HIV-specific CD8+ T cell responses induced in volunteers vaccinated with HIV lipopeptide vaccines for phenotypic markers, tetramer staining, cytokine secretion, and cytotoxic activities. The frequency of ex vivo CD8+ T cells elicited by lipopeptide vaccines is very rare and central-memory phenotype and functions of these cells were been shown to be important in AIDS immunity. So, we expanded them using specific peptides to compare the memory T cell responses induced in volunteers by HIV vaccines with responses to influenza (FLU) or Epstein Barr virus (EBV). By analyzing the differentiation state of IFN-γ-secreting CD8+ T cells, we found a CCR7CD45RACD28+int/CD28 profile (>85%) belonging to a subset of intermediate-differentiated effector T cells for HIV, FLU, and EBV. We then assessed the quality of the response by measuring various T cell functions. The percentage of single IFN-γ T cell producers in response to HIV was 62% of the total of secreting T cells compared with 35% for FLU and EBV, dual and triple (IFN-γ/IL-2/CD107a) T cell producers could also be detected but at lower levels (8% compared with 37%). Finally, HIV-specific T cells secreted IFN-γ and TNF-α, but not the dual combination like FLU- and EBV-specific T cells. Thus, we found that the functional profile and magnitude of expanded HIV-specific CD8+ T precursors were more limited than those of to FLU- and EBV-specific CD8+ T cells. These data show that CD8+ T cells induced by these HIV vaccines have a similar differentiation profile to FLU and EBV CD8+ T cells, but that the vaccine potency to induce multifunctional T cells needs to be increased in order to improve vaccination strategies.  相似文献   

12.
《Vaccine》2015,33(35):4313-4320
Identifying new molecular adjuvants that elicit effective vaccine-induced CD8+ T cell immunity may be critical for the elimination of many challenging diseases including Tuberculosis, HIV and cancer. Here, we report that co-administration of molecular adjuvant IL-33 during vaccination enhanced the magnitude and function of antigen (Ag)-specific CD8+ T cells against a model Ag, LCMV NP target protein. These enhanced responses were characterized by higher frequencies of Ag-specific, polyfunctional CD8+ T cells exhibiting cytotoxic characteristics. Importantly, these cells were capable of robust expansion upon Ag-specific restimulation in vivo and conferred remarkable protection against a high dose lethal LCMV challenge. In addition, we demonstrate the ability of IL-33 to amplifying the frequency of Ag-specific KLRG1+ effector CD8+ T cells. These data show that IL-33 is a promising immunoadjuvant at improving T cell immunity in a vaccine setting and suggest further development and understanding of this molecular adjuvant for strategies against many obstinate infectious diseases and cancer.  相似文献   

13.
The MHC class I family comprises both classical (class Ia) and non-classical (class Ib) members. While the prime function of classical MHC class I molecules (MHC class Ia) is to present peptide antigens to pathogen-specific cytotoxic T cells, non-classical MHC-I (MHC class Ib) antigens perform diverse array of functions in both innate and adaptive immunity. Vaccines against intracellular pathogens such as Mycobacterium tuberculosis need to induce strong cellular immune responses. Recent studies have shown that MHC class I molecules play an important role in the protective immune response to M. tuberculosis infection. Both MHC Ia-restricted and MHC class Ib-restricted M. tuberculosis -reactive CD8+ T cells have been identified in humans and mice, but their relative contributions to immunity is still uncertain. Unlike MHC class Ia-restricted CD8+ T cells, MHC class Ib-restricted CD8+ T cells are constitutively activated in naive animals and respond rapidly to infection challenge, hence filling the temporal gap between innate and adaptive immunity. The present review article summarizes the general host immunity against M. tuberculosis infection highlighting the possible role of MHC class Ib molecule, H2-M3 and their ligands (N-formylated peptides) in protection against tuberculosis.  相似文献   

14.
Chagas’ disease, caused by infection with the protozoan parasite Trypanosoma cruzi (T. cruzi), is intractable showing a high mortality rate, and the development of effective vaccines is much desired. To examine the efficacy of a new mode of recombinant viral vaccine, we constructed two non-transmissible Sendai viruses (rSeV/dF) encoding the full-length parasite antigen amastigote surface protein-2 (ASP2) or ASP2 fused with a mono-ubiquitin on its N-terminus (UASP2). C57BL/6 mice immunized intranasally with rSeV/dF expressing either ASP2 or UASP2 showed significantly suppressed parasitemia and could be protected from lethal T. cruzi challenge. Depletion of CD8+ T cells around the time of infection with T. cruzi completely abolished this protection, confirming that acquired immunity against the infection of T. cruzi is dependent on CD8+ T cells. We also demonstrated that the protective immunity correlated with higher secretion of interferon-γ (IFN-γ) by spleen cells on in vitro-specific or non-specific stimulation. Increased CTL activity was also confirmed by degranulation or CTL assays. Interestingly, the control virus, rSeV/dF-GFP, induced even a higher IFN-γ production from spleen cells following non-specific but not specific stimulation in vitro, suggesting that SeV may also be a good adjuvant when used as a vaccine vehicle. Taking together, the current findings indicate that recombinant Sendai virus expressing the ASP2 or UASP2 antigens of T. cruzi are interesting candidates for the development of a new mode of recombinant viral vaccine against Chagas’ disease.  相似文献   

15.
De novo ectopic lymphoid tissue formation is known to occur in certain disease and inflammatory settings. After an effective vaccination with dendritic cells (DC) charged with melanoma apoptotic/necrotic cells (Apo/Nec), a subcutaneous tertiary lymphoid structure was organized, where retained vaccine cells interacted with recruited inflammatory and T cells. In this work we report for the first time the recruitment of two morphologically different CD207+ cells to vaccination site. The time-course behavior of CD207+ cells was reciprocal between vaccination site and draining lymph nodes (DLNs). After 6–10 days, CD207+ cells localized at the paracortical region of DLNs, in close contact with T cell population. DLNs were enriched in a peculiar MHCII+ CD11c(−) CD207+ population, whose role remains to be determined. Whether CD207+ cells migration to the vaccination site can be associated with a differential anti-tumoral response remains as an open and exciting question.  相似文献   

16.
《Vaccine》2020,38(35):5665-5677
BackgroundTargeting antigens to dendritic cells (DCs) via nanoparticles is a powerful strategy which improves the efficacy of ex vivo antigen-pulsed DC vaccines.MethodsIn this study, liposomes were first decorated with gp10025-33 self-antigen and then characterized. Then, DCs were pulsed ex vivo with liposomal gp100 and injected subcutaneously in mice bearing B16F10 established melanoma tumors in combination with anti-PD-1 therapy.ResultsTreatment with liposomal pulsed DC vaccine elicited the strongest anticancer immunity and enhanced intratumoral immune responses based on infiltration of gp100-specific CD4+ and CD8+ T cells to the tumor leading to significant tumor growth regression and prolonged survival rate. Treatment with liposomal pulsed DC vaccine also markedly enhanced specific cytotoxic T lymphocytes (CTL) responses with a significant higher titer of IFN-γ in the spleen. Moreover, a significant increase of PD-1 expressing CD8+ tumor infiltrating lymphocytes (TILs) was detected in tumors.ConclusionOur results demonstrate an optimum dose of liposomal gp100 significantly increases the efficacy of anti-PD-1 therapy in mice and might be an effective strategy to overcome resistance to anti-PD-1 therapy.  相似文献   

17.
Improvement to the immunogenicity of DNA vaccines was evaluated in a Mycobacterium tuberculosis (MTB) infection mouse model examining the combined effects of nonlytic Fc-fused IL-7 DNA (IL-7-nFc) and Flt3-ligand fused Mtb32 (F-Mtb32) DNA. Mice were treated with conventional chemotherapy for 6 weeks from 4 weeks after aerosol infection of MTB. Following the start of chemotherapy, DNA immunizations were administered five times with 2-week intervals. Coadministration of IL-7-nFc and F-Mtb32 DNA given during chemotherapy synergistically enhanced the magnitude of Mtb32-specific T cell responses and sustained for one-year after the last immunization assessed by IFN-γ ELISPOT assay. After dexamethasone treatment, a significantly reduced MTB reactivation was observed in mice received both IL-7-nFc and F-Mtb32 DNA, compared with F-MTb32 DNA alone or with control mice. In addition, mice treated with IL-7-nFc and F-Mtb32 DNA together showed improved lung pathology and reduced pulmonary inflammation values relative to F-Mtb32 DNA or saline injected mice. Intracellular cytokine staining revealed that the protection levels induced by combination therapy with IL-7-nFc and F-Mtb32 DNA was associated with enhanced Mtb32-specific IFN-γ secreting CD4+ T cell responses and CD8+ T cell responses stimulated with CTL epitope peptide in the lungs and spleens. These data suggest that IL-7-nFc as a novel TB adjuvant may facilitate therapeutic TB DNA vaccine to the clinics through significant enhancement of codelivered DNA vaccine-induced T cell immunity.  相似文献   

18.
Understanding the requirements for protection against pneumococcal carriage and pneumonia will greatly benefit efforts in controlling these diseases. Several antigens, in addition to the polysaccharide capsule, have been implicated in both the virulence and protective immunity against Streptococcus pneumoniae; one of the best-studied S. pneumoniae antigens is pneumococcal surface protein A (PspA). Recently, it was shown that genetic polymorphisms could diminish CCL5 expression, which results in increased susceptibility to and progression of infectious diseases. We previously showed CCL5 blockade reduced PspA-specific humoral and cellular pneumococcal immunity, during S. pneumoniae strain EF3030-induced carriage, by diminishing IFN-γ and enhancing IL-10 secretion by effector T cells. We also identified immuno-dominant helper T lymphocyte (HTL) epitopes in PspA peptide 19-23 (PspA199-246), which caused comparatively more cytokine secretion and proliferation responses by splenic and cervical lymph node (CLN) CD4+ T cells from mice previously challenged with S. pneumoniae strain EF3030. In this study, we sought to determine if PspA199-246-specific CD4+ T cells responses were resistant to the effect of CCL5 deficiency. In short, T cell responses against these HTL epitopes were resistant to CCL5 inhibition, than compared to cells from control or naïve mice, and unaffected by reduced co-stimulatory molecule expression caused by CCL5 blockade. CCL5 deficiency also corresponded with a higher number of IL-10+ CD11b+ CD11cLo and CD11b+ CD11cHi cells and lower IFN-γ expression by similar cells, than compared to controls. These data confirm CCL5 is an essential factor for optimal pneumococcal adaptive immunity and show CD4+ T cell responses to PspA199-246 are largely resistant to CCL5 deficiency.  相似文献   

19.

Background

Despite the availability of Bacille Calmette Guérin (BCG) vaccines, Mycobacterium tuberculosis currently infects billions of people and millions die annually from tuberculosis (TB) disease. New TB vaccines are urgently needed.

Methods

We studied the ability of AERAS-402, a recombinant, replication-deficient adenovirus type 35 expressing the protective M. tuberculosis antigens Ag85A, Ag85B, and TB10.4, to boost BCG immunity in an area of low TB endemicity.

Results

In volunteers primed with BCG 3 or 6 months prior to AERAS-402 boosting, significant CD4+ and CD8+ T cell responses were induced. Ag85-specific responses were more strongly boosted than TB10.4-specific responses. Frequencies of TB-specific CD8+ T cells reached > 50 fold higher than pre-AERAS boosting levels, remarkably higher than reported in any previous human TB vaccine trial. Multiparameter flow cytometric assays demonstrated that AERAS-402-boosted CD4+ and CD8+ T cells were multifunctional, producing multiple cytokines and other immune effector molecules. Furthermore, boosted T cells displayed lymphoproliferative capacity, and tetramer analyses confirmed that antigen-specific CD8+ T cells were induced. BCG and AERAS-402 vaccinations given 3 and 6 months apart appeared equivalent.

Conclusions

Our results indicate that AERAS-402 is a promising TB vaccine candidate that can significantly enhance both CD4+ and CD8+ TB-specific T cell responses after BCG priming.ClinicalTrials.gov Identifier: NCT01378312.  相似文献   

20.
Cytotoxic CD8+ T lymphocytes (CTLs) play an important role in antiviral immunity. Several human HLA-A*0201 restricted CTL epitopes of severe acute respiratory syndrome (SARS) spike (S) protein have been identified in HLA-A*0201 transgenic (Tg) mice, but the mechanisms and properties of immune responses are still not well understood. In this study, HLA-A*0201 Tg mice were primed intramuscularly with SARS S DNA and boosted subcutaneously with HLA-A*0201 restricted peptides. The lymphocytes from draining lymph nodes, spleens and lungs were stimulated with the cognate peptides. Three different methods (ELISA, ELISPOT and FACS) were used to evaluate the immune responses during short and long periods of time after immunization. Results showed that peptide-specific CD8+ T cells secreted IFN-γ, TNF-α and IL-2 and expressed CD107a/b on cell surface. IFN-γ+CD8+ T cells and CD107a/b+CD8+ T cells distributed throughout the lymphoid and non-lymphoid tissues, but the frequency of peptide-specific CD8+ T cells was higher in lungs than in spleens and lymph nodes. The phenotype of the CD8+ T cells was characterized based on the expression of IFN-γ. Most of the HLA-A*0201 restricted peptide-specific CD8+ T cells represented a memory subset with CD45RBhigh and CD62Llow. Taken together, these data demonstrate that immunization with SARS S DNA and HLA-A*0201 restricted peptides can elicit antigen-specific CD8+ T cell immune responses which may have a significant implication in the long-term protection. We provide novel information in cellular immune responses of SARS S antigen-specific CD8+ T cells, which are important in the development of vaccine against SARS-CoV infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号