首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PURPOSE: PS-341 (bortezomib, Velcade), the first proteasome inhibitor approved by the Food and Drug Administration for the treatment of patients with relapsed multiple myeloma, induces apoptosis in human cancer cell lines. Vitamin C (ascorbic acid) is an essential water-soluble vitamin required for many normal physiologic functions and has to be obtained through diet or supplemental tablets in humans. Here we studied the potential effect of vitamin C on the anticancer activity of PS-341 in human cancer cell lines. EXPERIMENTAL DESIGN: The effects of vitamin C on apoptosis induction by PS-341 alone and by PS-341 combined with tumor necrosis factor-related apoptosis-inducing ligand were studied. In addition, the effects of vitamin C and other antioxidants on PS-341-mediated proteasome inhibition were also examined. Finally, the direct chemical interaction between vitamin C and PS-341 was determined. RESULTS: Vitamin C abrogated the ability of PS-341 to induce apoptosis in various human cancer cell lines, to induce G(2)-M arrest, and to augment apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand. Moreover, vitamin C suppressed PS-341-mediated inhibition of proteasome activity. PS-341 itself did not induce generation of intracellular reactive oxygen species whereas other antioxidants failed to abrogate its biological activity. Importantly, we detected a direct chemical interaction between vitamin C and PS-341. CONCLUSION: Vitamin C directly binds to PS-431, thus inactivating PS-341 independent of its antioxidant activity. Our findings suggest that vitamin C may have a negative effect on PS-341-mediated anticancer activity.  相似文献   

2.
3.
Increased nuclear factor kappaB (NF-kappaB) activity is associated with increased tumor cell survival in multiple myeloma. The function of NF-kappaB is inhibited through binding to its inhibitor, IkappaB. Release of activated NF-kappaB follows proteasome-mediated degradation of IkappaB resulting from phosphorylation of the inhibitor and, finally, conjugation with ubiquitin. We report that myeloma cells have enhanced IkappaBalpha phosphorylation and increased NF-kappaB activity compared with normal hematopoietic cells. The proteasome inhibitor PS-341 blocked nuclear translocation of NF-kappaB, blocked NF-kappaB DNA binding, and demonstrated consistent antitumor activity against chemoresistant and chemosensitive myeloma cells. The sensitivity of chemoresistant myeloma cells to chemotherapeutic agents was markedly increased (100,000-1,000,000-fold) when combined with a noncytotoxic dose of PS-341 without affecting normal hematopoietic cells. Similar effects were observed using a dominant negative super-repressor for IkappaBalpha. Thus, these results suggest that inhibition of NF-kappaB with PS-341 may overcome chemoresistance and allow doses of chemotherapeutic agents to be markedly reduced with antitumor effects without significant toxicity.  相似文献   

4.
Increased nuclear factor (NF)-kappaB activity is associated with enhanced tumor cell survival in multiple myeloma (MM). The function of NF-kappaB is inhibited through binding to its inhibitor, IkappaB. Release of activated NF-kappaB follows proteasome-mediated degradation of IkappaBalpha resulting from phosphorylation of the inhibitor and finally conjugation with ubiquitin. We report that myeloma tumor cells show enhanced NF-kappaB activity. In addition, these patients possess polymorphisms of IkappaBalpha at sites important in the degradation of the inhibitor protein. Exposure of myeloma cells to chemotherapy leads to an increase in IkappaBalpha phosphorylation and reduces the levels of this inhibitor of NF-kappaB function. Chemoresistant myeloma cell-lines have increased NF-kappaB activity compared to sensitive lines. An inhibitor of NF-kappaB activity, the proteasome inhibitor PS-341 (Millenium Inc, Boston, MA), showed consistent antitumor activity against chemoresistant and sensitive myeloma cells. The sensitivity of chemoresistant myeloma cells to chemotherapeutic agents was markedly increased (100,000- to 1,000,000-fold) when combined with a noncytotoxic dose of PS-341. In contrast, this combination had little growth inhibitory effect on normal hematopoietic cells. Similar effects were observed using a dominant negative super-repressor for IkappaBalpha. These results suggest that inhibition of NF-kappaB with PS-341 may overcome chemoresistance and allow doses of chemotherapeutic agents to be markedly reduced with antitumor effects without significant toxicity.  相似文献   

5.
PURPOSE: NF-kappaB is activated by tumor necrosis factor, certain chemotherapeutic agents, and ionizing radiation, leading to inhibition of apoptosis. NF-kappaB activation is regulated by phosphorylation of IkappaB inhibitor molecules that are subsequently targeted for degradation by the ubiquitin-proteasome pathway. PS-341 is a specific and selective inhibitor of the proteasome that inhibits NF-kappaB activation and enhances cytotoxic effects of chemotherapy in vitro and in vivo. The objective of this study was to determine if proteasome inhibition leads to enhanced radiation sensitivity. METHODS AND MATERIALS: Inhibition of NF-kappaB activation in colorectal cancer cells was performed by treatment of LOVO cells with PS-341 or infection with an adenovirus encoding IkappaB super-repressor, a selective NF-kappaB inhibitor. Cells were irradiated at 0, 2, 4, 6, 8, and 10 Gy with or without inhibition of NF-kappaB. NF-kappaB activation was determined by electrophoretic mobility gel shift assay, and apoptosis was evaluated using the TUNEL assay. Growth and clonogenic survival data were obtained to assess effects of treatment on radiosensitization. In vitro results were tested in vivo using a LOVO xenograft model. RESULTS: NF-kappaB activation was induced by radiation and inhibited by pretreatment with either PS-341 or IkappaBalpha super-repressor in all cell lines. Inhibition of radiation-induced NF-kappaB activation resulted in increased apoptosis and decreased cell growth and clonogenic survival. A 7-41% increase in radiosensitivity was observed for cells treated with PS-341 or IkappaBalpha. An 84% reduction in initial tumor volume was obtained in LOVO xenografts receiving radiation and PS-341. CONCLUSIONS: Inhibition of NF-kappaB activation increases radiation-induced apoptosis and enhances radiosensitivity in colorectal cancer cells in vitro and in vivo. Results are encouraging for the use of PS-341 as a radiosensitizing agent in the treatment of colorectal cancer.  相似文献   

6.
7.
Liu X  Yue P  Chen S  Hu L  Lonial S  Khuri FR  Sun SY 《Cancer research》2007,67(10):4981-4988
The proteasome inhibitor PS-341 (bortezomib or Velcade), an approved drug for treatment of patients with multiple myeloma, is currently being tested in clinical trials against various malignancies, including lung cancer. Preclinical studies have shown that PS-341 induces apoptosis and enhances tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in human cancer cells with undefined mechanisms. In the present study, we show that PS-341 induced caspase-8-dependent apoptosis, cooperated with TRAIL to induce apoptosis, and up-regulated death receptor 5 (DR5) expression in human non-small cell lung cancer (NSCLC) cells. DR5 induction correlated with the ability of PS-341 to induce apoptosis. Blockage of PS-341-induced DR5 up-regulation using DR5 small interfering RNA (siRNA) rendered cells less sensitive to apoptosis induced by either PS-341 or its combination with TRAIL, indicating that DR5 up-regulation mediates PS-341-induced apoptosis and enhancement of TRAIL-induced apoptosis in human NSCLC cells. We exclude the involvement of c-FLIP and survivin in mediating these events because c-FLIP (i.e., FLIP(S)) and survivin protein levels were actually elevated on exposure to PS-341. Reduction of c-FLIP with c-FLIP siRNA sensitized cells to PS-341-induced apoptosis, suggesting that c-FLIP elevation protects cells from PS-341-induced apoptosis. Thus, the present study highlights the important role of DR5 up-regulation in PS-341-induced apoptosis and enhancement of TRAIL-induced apoptosis in human NSCLC cells.  相似文献   

8.
9.
We have shown that activation of nuclear factor-kappa B (NF-kappa B) promotes cell survival and expression of cytokines such as growth-regulated oncogene-alpha, which can modulate angiogenesis, growth, and metastasis of squamous cell carcinoma (SCC). Activation of NF-kappa B and cytoprotective genes in cancer may result from signal-induced phosphorylation and proteasome-dependent degradation of inhibitor-kappa B. In this study, we examined the effects of the novel proteasome inhibitor PS-341 on activation of NF-kappa B and cell survival, growth, and angiogenesis in murine and human SCC cell lines. PS-341 inhibited activation of NF-kappa B DNA binding and functional reporter activity at concentrations between 10(-8) and 10(-7) M. Cytotoxicity was observed at 10(-7) M in four murine and two human SCC lines, and followed early cleavage of poly(ADP-ribose) polymerase, a marker of caspase-mediated apoptosis. In vivo, PS-341 inhibited growth of murine and human SCC in mice at doses of 1--2 mg/kg given three times weekly, and dose-limiting toxicity was encountered at 2 mg/kg. Tumor growth inhibition was associated with a marked decrease in vessel density. PS-341 inhibited expression of the proangiogenic cytokines growth-regulated oncogene-alpha and vascular endothelial growth factor by SCC in the range at which PS-341 inhibits NF-kappa B. We conclude that PS-341 inhibits activation of NF-kappa B pathway components related to cell survival, tumor growth, and angiogenesis in SCC.  相似文献   

10.
HTLV-I associated adult T-cell leukemia (ATL) and HTLV-I-negative peripheral T-cell lymphomas are associated with poor prognosis. Using pharmacological concentrations of the proteasome inhibitor PS-341, we demonstrate inhibition of cell proliferation and induction of apoptosis in fresh ATL cells, HTLV-I transformed and HTLV-I-negative malignant T cells, while normal resting or activated T lymphocytes were resistant. Combination of PS-341 and doxorubicin or etoposide resulted in an additive growth inhibition. In HTLV-I-negative malignant cells, PS-341 treatment significantly downregulated the antiapoptotic protein X-IAP and to a lesser extent c-IAP-1 and bcl-X(L) and resulted in caspase-dependent apoptosis. In HTLV-I transformed cells, the inhibition of the proteasomal degradation of Tax by PS-341 likely explains the relative protection of HTLV-I infected cells against caspase-dependent apoptosis. PS-341 treatment of these cells stabilized IkappaBalpha, IkappaBbeta, IkappaBvarepsilon, p21, p27 and p53 proteins and selectively inhibited Rel-A DNA binding NF-kappaB complexes. In both HTLV-I-positive and -negative cells, PS-341 treatment induced ceramide accumulation that correlated with apoptosis. We conclude that PS-341 affects multiple pathways critical for the survival of HTLV-I-positive and -negative malignant T cells supporting a potential therapeutic role for PS-341 in both ATL and HTLV-I-negative T-cell lymphomas, whether alone or in combination with chemotherapy.  相似文献   

11.
Overexpression of CD30 and constitutive NF-kappaB activation characterizes tumor cells of Hodgkin's disease (HD), Hodgkin and Reed-Sternberg (H-RS) cells. We report that in H-RS cells overexpression of CD30 leads to self-aggregation, recruitment of TRAF2 and TRAF5, and NF-kappaB activation, independent of CD30 ligand. CD30 and TRAF proteins co-localized in H-RS cell lines and in lymph nodes of HD. An adenovirus-vector carrying a decoy CD30 lacking the cytoplasmic region or a dominant negative IkappaBalpha mutant blocks NF-kappaB activation, down regulates IL-13 expression and induces apoptosis. Thus, in H-RS cells, ligand-independent activation of CD30 signaling drives NF-kappaB activation and this leads to constitutive cytokine expression, which provides a molecular basis for HD. Inhibition of NF-kappaB activation by adenovirus vector-mediated gene transfer may provide a novel strategy of cell- and target molecule-specific therapy for patients with HD.  相似文献   

12.
A common characteristic of malignant cells derived from patients with Hodgkin's disease (HD) is a high level of constitutive nuclear NF-kappaB/Rel activity, which stimulates proliferation and confers resistance to apoptosis. We have analysed the mechanisms that account for NF-kappaB activation in a panel of Hodgkin/Reed-Sternberg (H-RS) cell lines. Whereas two cell lines (L428 and KMH-2) expressed inactive IkappaBalpha, no significant changes in NF-kappaB or IkappaB expression were seen in other H-RS cells (L591, L1236 and HDLM-2). Constitutive NF-kappaB was susceptible to inhibition by recombinant IkappaBalpha, suggesting that neither mutations in the NF-kappaB genes nor posttranslational modifications of NF-kappaB were involved. Endogenous IkappaBalpha was bound to p65 and displayed a very short half-life. IkappaBalpha degradation could be blocked by inhibitors of the NF-kappaB activating pathway. Proteasomal inhibition caused an accumulation of phosphorylated IkappaBalpha and a reduction of NF-kappaB activity in HDLM-2 and L1236 cells. By in vitro kinase assays we demonstrate constitutive IkappaB kinase (IKK) activity in H-RS cells, indicating ongoing signal transduction. Furthermore, H-RS cells secrete one or more factor(s) that were able to trigger NF-kappaB activation. We conclude that aberrant activation of IKK's, and in some cases defective IkappaBs, lead to constitutive nuclear NF-kappaB activity, which in turn results in a growth advantage of Hodgkin's disease tumor cells.  相似文献   

13.
Adult T-cell leukemia (ATL) is a fatal neoplasm derived from CD4-positive T-lymphocytes, and regardless of intensive chemotherapy, its mean survival time is less than 1 year. Nuclear factor-kappaB (NF-kappaB) activation was reported in HTLV-I associated cells, and has been implicated in oncogenesis and resistance to anticancer agents and apoptosis. We studied the effect of a proteasome inhibitor, bortezomib (formerly known as PS-341), on ATL cells in vitro and in vivo. Bortezomib could inhibit the degradation of IkappaBalpha in ATL cells, resulting in suppression of NF-kappaB and induction of cell death in ATL cells in vitro. Susceptibilities to bortezomib were well correlated with NF-kappaB activation, suggesting that suppression of the NF-kappaB pathway was implicated in the cell death induced by bortezomib. Although the majority of the cell death was apoptosis, necrotic cell death was observed in the presence of a caspase inhibitor, z-VAD-fmk. When bortezomib was administered into SCID mice bearing tumors, it suppressed tumor growth in vivo, showing that bortezomib was effective against ATL cells in vivo. These studies revealed that bortezomib is highly effective against ATL cells in vitro and in vivo by induction of apoptosis, and its clinical application might improve the prognosis of patients with this fatal disease.  相似文献   

14.
NF-kappaB is constitutively activated in adult T-cell leukemia (ATL) and is considered responsible for cell growth and prevention of cell death. In this study, we demonstrate that NF-kappaB is constitutively activated in various HTLV-1-infected T-cell lines and ATL-derived cell lines irrespectively of Tax expression as evidenced by the phosphorylation of IkappaBalpha and p65 subunit of NF-kappaB, activation of NF-kappaB DNA binding, and upregulation of various target genes including bcl-xL, bcl-2, XIAP, c-IAP1, survivin, cyclinD1, ICAM-1 and VCAM-1. The effects of a novel IkappaB kinase (IKK) inhibitor, 2-amino-6-[2-(cyclopropylmethoxy)-6-hydroxyphenyl]-4-piperidin-4-yl nicotinonitrile (ACHP), were examined on cell growth of these cell lines and fresh ATL leukemic cells. We found that ACHP could inhibit the phosphorylation of IkappaBalpha and p65, as well as NF-kappaB DNA-binding, associated with downregulation of the NF-kappaB target genes and induce cell growth arrest and apoptosis in these cells. When Tax-active and Tax-inactive cell lines were compared, ACHP could preferentially inhibit cell growth of Tax-active cells. Moreover, ACHP exhibited strong apoptosis-inducing activity in fresh ATL cells. These findings indicate that ACHP and its derivatives are effective in inducing ATL cell death and thus feasible candidates for the treatment of ATL.  相似文献   

15.
16.
Proteasome inhibitors: a novel class of potent and effective antitumor agents.   总被引:78,自引:0,他引:78  
The ubiquitin-proteasome pathway plays a critical role in the regulated degradation of proteins involved in cell cycle control and tumor growth. Dysregulating the degradation of such proteins should have profound effects on tumor growth and cause cells to undergo apoptosis. To test this hypothesis, we developed a novel series of proteasome inhibitors, exemplified by PS-341, which we describe here. As determined by the National Cancer Institute in vitro screen, PS-341 has substantial cytotoxicity against a broad range of human tumor cells, including prostate cancer cell lines. The PC-3 prostate cell line was, therefore, chosen to further examine the antitumor activity of PS-341. In vitro, PS-341 elicits proteasome inhibition, leading to an increase in the intracellular levels of specific proteins, including the cyclin-dependent kinase inhibitor, p21. Moreover, exposure of such cells to PS-341 caused them to accumulate in the G2-M phase of the cell cycle and subsequently undergo apoptosis, as indicated by nuclear condensation and poly(ADP-ribose) polymerase cleavage. Following weekly i.v. treatment of PS-341 to mice bearing the PC-3 tumor, a significant decrease (60%) in tumor burden was observed in vivo. Direct injection of PS-341 into the tumor also caused a substantial (70%) decrease in tumor volume with 40% of the drug-treated mice having no detectable tumors at the end of the study. Studies also revealed that i.v. administration of PS-341 resulted in a rapid and widespread distribution of PS-341, with highest levels identified in the liver and gastrointestinal tract and lowest levels in the skin and muscle. Modest levels were found in the prostate, whereas there was no apparent penetration of the central nervous system. An assay to follow the biological activity of the PS-341 was established and used to determine temporal drug activity as well as its ability to penetrate tissues. As such, PS-341 was shown to penetrate PC-3 tumors and inhibit intracellular proteasome activity 1.0 h after i.v. dosing. These data illustrate that PS-341 not only reaches its biological target but has a direct effect on its biochemical target, the proteasome. Importantly, the data show that inhibition of this target site by PS-341 results in reduced tumor growth in murine tumor models. Together, the results highlight that the proteasome is a novel biochemical target and that inhibitors such as PS-341 represent a unique class of antitumor agents. PS-341 is currently under clinical evaluation for advanced cancers.  相似文献   

17.
Antitumor effects of bortezomib (PS-341) on primary effusion lymphomas.   总被引:16,自引:0,他引:16  
J An  Y Sun  M Fisher  M B Rettig 《Leukemia》2004,18(10):1699-1704
Primary effusion lymphomas (PELs) are a rare type of non-Hodgkin's lymphoma that are resistant to cytotoxic chemotherapy. PELs manifest constitutive activation of nuclear factor kappa B (NF-kappaB), and inhibition of NF-kappaB induces apoptosis of PELs and sensitizes to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced death. Bortezomib (PS-341), a peptidyl boronic acid inhibitor of the proteasome, is a potent agent against a wide range of hematologic malignancies and has been shown to inhibit NF-kappaB. Thus, we examined the cytotoxic effects of bortezomib alone and in combination with various drugs. Bortezomib potently inhibited NF-kappaB in PEL cells in a dose-dependent manner. In addition, bortezomib inhibited growth and induced apoptosis of PEL cell lines (IC(50) values of 3.4-5.0 nM). Results of drug interactions between bortezomib and chemotherapy (doxorubicin and Taxol) were schedule-dependent: synergistic interactions were generally observed when PEL cells were pretreated with bortezomib prior to chemotherapy, whereas additive or even antagonistic interactions occurred with chemotherapy pretreatment or simultaneous treatment with bortezomib and chemotherapy. Most schedules of bortezomib and dexamethasone were synergistic, although pretreatment with dexamethasone resulted in additive interactions. Effects of combinations of bortezomib and TRAIL were generally additive. Thus, bortezomib represents a promising potential therapy for the treatment of PEL.  相似文献   

18.
PS-341, a potent and selective proteasome inhibitor, is the prototype for a new class of therapeutics that targets the ubiquitin-proteasome pathway. It is active as a single agent and potentiates chemotherapy and radiation in pre-clinical models. Early phase clinical studies have demonstrated tolerability and activity in multiple myeloma, lymphoma, prostate cancer and lung cancer. By its mechanism of inhibiting protein degradation, PS-341 targets a wide-range of pathways that are relevant to tumor progression and therapy resistance, and can directly modulate expression of cyclins, p27(Kip1), p53, NF-kappaB, Bcl-2 and Bax. PS-341 is currently in phase I/II clinical development in lung cancer. This paper will review the pre-clinical and clinical experience with PS-341 as it relates to lung cancer.  相似文献   

19.
PURPOSE: Malignant cells from Hodgkin's disease have been reported to be defective in regulation of NF-kappaB activity. Ionizing radiation is known to activate NF-kappaB, and it has been suggested that this pathway may protect cells from apoptosis following exposure to radiation and other therapeutic agents. Defective NF-kappaB regulation in Hodgkin cells could therefore dictate the response of this disease to therapy, as well as be responsible for maintaining the malignant phenotype. The purpose of this study was to explore whether NF-kappaB activity could be modulated in Hodgkin cells and whether it determines the response of these cells to treatment with ionizing radiation and/or dexamethasone. METHODS AND MATERIALS: Activation of NF-kappaB in cells is accomplished in large part by degradation of its inhibitor IkappaB through the 26s proteasome. HD-My-Z Hodgkin cells were treated with the proteasome inhibitor MG-132 or transduced with a dominant negative super-repressor IkappaBalpha. Clonogenic survival, apoptosis, proteasome activity, and NF-kappaB binding activity were monitored in response to ionizing radiation and/or dexamethasone treatment. RESULTS: HD-My-Z Hodgkin cells had modest NF-kappaB levels but, unlike other cell types, did not decrease their level of constitutively active NF-kappaB in response to proteasome inhibition with MG-132. In contrast, transduction with a non-phosphorable IkappaBalpha construct abolished expression. MG-132 did, however, induce apoptosis in HD-My-Z cells and sensitized them to ionizing radiation. Dexamethasone treatment had no effect on NF-kappaB activity or clonogenic survival of Hodgkin cells, but protected them from irradiation. CONCLUSION: We conclude that inhibition of 26s proteasome activity can induce apoptosis in HD-My-Z Hodgkin cells and radiosensitize them, in spite of the fact that their constitutively active NF-kappaB levels are unaltered. The proteasome may be a promising new therapeutic target for intervention in this disease. In contrast, the use of glucocorticoids in conjunction with radiation treatment for this tumor may require re-evaluation.  相似文献   

20.
PURPOSE: To define the toxicities, pharmacodynamics, and clinical activity of the proteasome inhibitor, PS-341 (bortezomib), in patients with advanced malignancies. PATIENTS AND METHODS: Twenty-eight patients (14 male and 14 female) received PS-341 twice weekly for 4 of 6 weeks (schedule I). Because toxicity necessitated dose omissions on this schedule, 16 additional patients (12 male and 4 female) received PS-341 twice weekly for 2 of every 3 weeks (schedule II). A total of 73 courses of treatment was given (median, 2; range, 1-4). Inhibition of 20S proteasome activity in peripheral blood mononuclear cells (PBMC) and accumulation of proteasome-targeted polypeptides in tumor tissue were evaluated as pharmacodynamic markers of PS-341 activity. RESULTS: The most common toxicity was thrombocytopenia, which was dose limiting at 1.7 mg/m2 (schedule I) and 1.6 mg/m2 (schedule II), respectively. Sensory neuropathy was dose-limiting in a patient in schedule I. Grade > or =3 toxicities for schedule I were constipation, fatigue, myalgia, and sensory neuropathy. Grade > or =3 toxicities for schedule II were dehydration resulting from diarrhea, nausea and vomiting, fatigue, hypoglycemia, and hypotension. The maximum tolerated dose was 1.5 mg/m2 for both schedules. Reversible dose-dependent decreases in 20S proteasome activity in PBMCs were observed, with 36% inhibition at 0.5 mg/m2, 52% at 0.9 mg/m2, and 75% at 1.25 mg/m2. Accumulation of proteasome-targeted polypeptides was detected in tumor samples after treatment with PS-341. A patient with multiple myeloma had a partial response. CONCLUSION: PS-341 given 1.5 mg/m2 twice weekly for 2 of every 3 weeks is well tolerated and should be further studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号