共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: As a cAMP-regulated Cl- channel, cystic fibrosis transmembrane conductance regulator (CFTR) plays a critical role in the active secretion of electrolytes and fluid in epithelial cells. Women with CFTR gene mutations are less fertile, generally assumed to be due to cervical factors. However, there is little known about CFTR protein expression in human endometrium and its possible roles in reproduction. METHODS AND RESULTS: CFTR protein and mRNA levels in human endometrium were analysed using immunohistochemical and in situ hybridization methods, respectively. Significant expression of CFTR protein was only seen in the glandular cells from late proliferative to all secretory phases, consistent with western blot analysis. High levels of CFTR mRNA were present only around the ovulatory period. In cultured glandular cells, the production of CFTR protein and mRNA was stimulated by estradiol and inhibited by progesterone. A forskolin-activated Cl- current in endometrial epithelial cells with a linear I-V relationship was detected by the whole-cell patch-clamp technique. CONCLUSIONS: (i) CFTR mRNA and protein were localized in human endometrial epithelial cells and the amounts varied in a cyclic manner; (ii) CFTR expression in cultured glandular cells was up- and downregulated by estradiol and progesterone, respectively; and (iii) CFTR in human endometrium functions as a cAMP-activated Cl- channel. 相似文献
2.
Regnier A Dannhoffer L Blouquit-Laye S Bakari M Naline E Chinet T 《Human pathology》2008,39(3):368-376
The determination of the expression of cystic fibrosis transmembrane conductance regulator (CFTR) in the lung is essential for a full understanding of the normal lung physiology and the pathogenesis of the lung disease in cystic fibrosis (CF). However, studies on the expression of CFTR in the distal adult human lung have yielded conflicting results despite functional evidence of expression of CFTR in bronchiolar and alveolar epithelial cells. We used 2 high-affinity monoclonal anti-CFTR antibodies, MAb24-1 and MAb13-1, to determine the expression of CFTR in samples of bronchiolar and alveolar tissues obtained from the same non-CF individuals. CFTR immunostaining was detected in the epithelium of bronchiolar and alveolar tissues. The staining pattern was similar with both antibodies. In bronchioles, CFTR labeling was present mostly in ciliated cells; in alveoli, CFTR labeling was detected in both type I and type II cells. We conclude that CFTR is expressed in human bronchiolar and alveolar epithelial cells. The potential importance of CFTR expression in alveoli should be further investigated, particularly with respect to the CF lung disease and the physiology of the alveolar region. 相似文献
3.
Ben-Chetrit A Antenos M Jurisicova A Pasyk EA Chitayat D Foskett JK Casper RF 《Molecular human reproduction》2002,8(8):758-764
Formation of the blastocyst is one of the first morphological changes in early embryonic development. Ion transport has been shown to be crucial for blastocoele cavity formation and expansion, although the mechanisms that underlie this process are presently unknown. As a transmembrane Cl(-) channel, the cystic fibrosis transmembrane conductance regulator (CFTR) may participate in ion transport and early blastocoele formation. CFTR mRNA was detected throughout preimplantation embryo development and in the unfertilized oocyte. Immunocytochemistry disclosed the presence of CFTR protein from the 8-cell stage, reaching maximum immunoreactivity at early blastocyst stage embryos. Patch clamp electrophysiology of morulae and blastocysts demonstrated typical CFTR Cl(-) channel activities in the apical membrane of trophectoderm cells. Thus CFTR is expressed both at mRNA and protein levels in human morulae and blastocysts, and functions as a cAMP-regulated apical membrane Cl(-) channel. These data suggest that CFTR may contribute to blastocoele formation in the early human embryo. 相似文献
4.
With the advent of numerous candidate drugs for therapy in cystic fibrosis (CF), there is an urgent need for easily interpretable assays for testing their therapeutic value. Defects in the cystic fibrosis transmembrane conductance regulator (CFTR) abolished beta-adrenergic but not cholinergic sweating in CF. Therefore, the beta-adrenergic response of the sweat gland may serve both as an in vivo diagnostic tool for CF and as a quantitative assay for testing the efficacy of new drugs designed to restore CFTR function in CF. Hence, with the objective of defining optimal conditions for stimulating beta-adrenergic sweating, we have investigated the components and pharmacology of sweat secretion using cell cultures and intact sweat glands. We studied the electrical responses and ionic mechanisms involved in beta-adrenergic and cholinergic sweating. We also tested the efficacy of different beta-adrenergic agonists. Our results indicated that in normal subjects the cholinergic secretory response is mediated by activation of Ca(2+)-dependent Cl(-) conductance as well as K(+) conductances. In contrast, the beta-adrenergic secretory response is mediated exclusively by activation of a cAMP-dependent CFTR Cl(-) conductance without a concurrent activation of a K(+) conductance. Thus, the electrochemical driving forces generated by beta-adrenergic agonists are significantly smaller compared with those generated by cholinergic agonists, which in turn reflects in smaller beta-adrenergic secretory responses compared with cholinergic secretory responses. Furthermore, the beta-adrenergic agonists, isoproprenaline and salbutamol, induced sweat secretion only when applied in combination with an adenylyl cyclase activator (forskolin) or a phosphodiesterase inhibitor (3-isobutyl-1-methylxanthine, aminophylline or theophylline). We surmise that to obtain consistent beta-adrenergic sweat responses, levels of intracellular cAMP above that achievable with a beta-adrenergic agonist alone are essential. beta-Adrenergic secretion can be stimulated in vivo by concurrent iontophoresis of these drugs in normal, but not in CF, subjects. 相似文献
5.
6.
Increased cystic fibrosis transmembrane conductance regulator (CFTR) expression in the human hydrosalpinx 总被引:4,自引:0,他引:4
Ajonuma LC Ng EH Chow PH Hung CY Tsang LL Cheung AN Brito-Jones C Lok IH J Haines C Chan HC 《Human reproduction (Oxford, England)》2005,20(5):1228-1234
BACKGROUND: Hydrosalpinx (HSP), characterized by abnormal fluid accumulation in the Fallopian tube, is one of the main causes of infertility in women; however, the mechanism underlying the formation of hydrosalpinx fluid (HF) remains elusive. The present study investigated the possible involvement of cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-dependent chloride channel, in the pathogenesis of hydrosalpinx. METHODS: Masson's trichrome staining was used to characterize epithelial transformation in human HSP; RT-PCR, immunohistochemistry and immunofluorescence staining were used for CFTR expression and localization. RESULTS: Masson's trichrome staining showed areas of epithelial transformation, focally attenuated and pseudostratified. Immunostaining showed enhanced CFTR immunoreactivity in the focally attenuated and pseudostratified areas of HSP epithelium. RT-PCR revealed that CFTR expression in HSP was significantly greater than that in normal Fallopian tubes. CONCLUSIONS: These results indicate that HSP epithelium undergoes epithelial transformation with elevated CFTR expression, which may lead to increased transepithelial electrolyte and fluid secretion resulting in HF formation. The present findings may lead to the development of new treatment strategies for infertile patients with HSP. 相似文献
7.
The cystic fibrosis transmembrane conductance regulator in reproductive health and disease 总被引:1,自引:1,他引:0
Hsiao Chang Chan Ye Chun Ruan Qiong He Min Hui Chen Hui Chen Wen Ming Xu Wen Ying Chen Chen Xie Xiao Hu Zhang Zhen Zhou 《The Journal of physiology》2009,587(10):2187-2195
The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel regulated by cAMP-dependent phosphorylation, which is expressed in epithelial cells of a wide variety of tissues including the reproductive tracts. Mutations in the gene encoding CFTR cause cystic fibrosis, a common genetic disease in Caucasian populations with a multitude of clinical manifestations including infertility/subfertility in both sexes. However, the physiological role of CFTR in reproduction and its involvement in the pathogenesis of reproductive diseases remain largely unknown. This review discusses the role of CFTR in regulating fluid volume and bicarbonate secretion in the reproductive tracts and their importance in various reproductive events. We also discuss the contribution of CFTR dysfunction to a number of pathological conditions. The evidence presented is consistent with an important role of CFTR in reproductive health and disease, suggesting that CFTR might be a potential target for the diagnosis and treatment of reproductive diseases including infertility. 相似文献
8.
Kunzelmann K Schreiber R Nitschke R Mall M 《Pflügers Archiv : European journal of physiology》2000,440(2):193-201
Cystic fibrosis transmembrane conductance regulator (CFTR) is an epithelial Cl- channel expressed in luminal membranes of secretory and reabsorptive epithelia. CFTR plays a predominant role in both cAMP- and Ca2+-activated secretion of electrolytes. Although Ca2+-dependent Cl- channels exist independent of CFTR in the airway epithelium, their physiological significance remains to be determined. However, CFTR seems to be the only relevant Cl- conductance in the colonic epithelium. Apart from its secretory function, CFTR also has a task in regulating the reabsorption of electrolytes by controlling the activity of the epithelial Na+ channel, ENaC. Accordingly, defects in CFTR causing the disease cystic fibrosis (CF) lead to disturbances of both the secretion and absorption of electrolytes. Therefore, it is unclear what is pathophysiologically more important for the development of CF lung disease, the impaired secretion of Cl- or the enhanced reabsorption of Na+ and consecutive hyperabsorption of electrolytes. The mechanisms of how CFTR and ENaC interact are unknown. Previous work has given rise to several interesting working hypothesis, such as direct protein interaction or interaction via cytoskeletal proteins. Recent studies demonstrate the importance of the first nucleotide binding fold of CFTR, not only for the inhibition of ENaC but also for the interaction with other ion channels. Further studies are required to demonstrate whether regulation of other ion channels and membrane transport by CFTR occur by a common mechanism. 相似文献
9.
1 CFTR基因突变及主要症状囊性纤维变性跨膜调节器 (cysticfibrosistrans membraneconductanceregulator,CFTR)基因于 1989年被发现 ,位于人的第 7染色体上。其编码的蛋白是一种膜蛋白 ,这种跨膜蛋白是一个Cl- 离子通道蛋白 ,受cAMP的调控。正常的CFTR由 14 80个氨基酸组成 ,含有两个结构区 ,每个结构区含有 6个跨膜片段[1] ,由称为R -结构域的多肽链连接 ,R -结构域上有大量的磷酸化位点 ,还有两个核苷酸结合位点(nucleotidebindingfolds ,N… 相似文献
10.
Gupta S Xie J Ma J Davis PB 《American journal of respiratory cell and molecular biology》2004,30(2):242-248
The function of the R domain of cystic fibrosis transmembrane conductance regulator (CFTR) has not yet been fully established. The cis-trans proline isomerase cyclophilin A stimulates channel activity, and stimulation depends on the presence of highly conserved prolines at positions 740, 750, and 759. When the prolines at these positions, which normally exist in the cis conformation, are locked into the trans conformation by mutation to alanine (the P3A mutant), the open probability of P3A is high and is not further increased by cyclophilin A. We speculated that one mechanism by which this could occur was by promoting CFTR dimerization, which has been shown to increase open probability, and that the P3A-CFTR might favor dimerization more strongly than the native sequence. To test the hypothesis that R-R interaction occurs and is stronger in the P3A-R mutants, we investigated R-R interactions. GST-R and StrepII-R proteins expressed in Escherichia coli could interact with R domain protein translated in vitro as well as with full-length CFTR. In similar assays, the P3A mutant of R domain also interacts with R domain and P3A-R. The P3A-R-P3A-R interaction is stronger than the R-R interaction, which corroborates our data from the channel study and supports our hypothesis. Studies of deletion constructs of the isolated R domain and of full-length CFTR localize the region of interaction to the C-terminal portion of R (after amino acid 708). Particularly, the last 22 a.a. residues (838-859) of R are essential for this binding. R-R interaction possibly plays a role in channel gating. 相似文献
11.
12.
13.
Differential localization of the cystic fibrosis transmembrane conductance regulator in normal and cystic fibrosis airway epithelium. 总被引:8,自引:0,他引:8
E Puchelle D Gaillard D Ploton J Hinnrasky C Fuchey M C Boutterin J Jacquot D Dreyer A Pavirani W Dalemans 《American journal of respiratory cell and molecular biology》1992,7(5):485-491
Deletion of the amino acid residue Phe 508 of the cystic fibrosis transmembrane conductance regulator (CFTR) protein represents the most common mutation identified in cystic fibrosis (CF) patients. A monoclonal and a polyclonal antibody directed against different regions of CFTR were used to localize the CFTR protein in normal and CF airway epithelium derived from polyps of non-CF and CF subjects homozygous for the delta Phe 508 CFTR mutation. To identify the cellular and subcellular localization of CFTR, immunofluorescent light microscopy, confocal scanning microscopy, and immunogold transmission electron microscopy were performed on cryofixed tissue. A markedly different subcellular distribution was identified between normal and CF airway epithelial cells. In normal epithelium, labeling was restricted to the surface apical compartment of the ciliated cells. In contrast, in the epithelium from homozygous delta Phe 508 CF patients, CFTR markedly accumulated in the cytosol of all the epithelial cells. These findings are consistent with the concept that the CFTR delta Phe 508 mutation modifies the intracellular maturation and trafficking of the protein, leading to an altered subcellular distribution of the delta Phe 508 mutant CFTR. 相似文献
14.
Incomplete rescue of cystic fibrosis transmembrane conductance regulator deficient mice by the human CFTR cDNA 总被引:2,自引:2,他引:2
Rozmahel R; Gyomorey K; Plyte S; Nguyen V; Wilschanski M; Durie P; Bear CE; Tsui LC 《Human molecular genetics》1997,6(7):1153-1162
We have used a mouse model to study the ability of human CFTR to correct
the defect in mice deficient of the endogenous protein. In this model,
expression of the endogenous Cftr gene was disrupted and replaced with a
human CFTR cDNA by a gene targeted 'knock-in' event. Animals homozygous for
the gene replacement failed to show neither improved intestinal pathology
nor survival when compared to mice completely lacking CFTR. RNA analyses
showed that the human CFTR sequence was transcribed from the targeted
allele in the respiratory and intestinal epithelial cells. Furthermore, in
vivo potential difference measurements showed that basal CFTR chloride
channel activity was present in the apical membranes of both nasal and
rectal epithelial cells in all homozygous knock-in animals examined. Ussing
chamber studies showed, however, that the cAMP-mediated chloride channel
function was impaired in the intestinal tract among the majority of
homozygous knock-in animals. Hence, failure to correct the intestinal
pathology associated with loss of endogenous CFTR was related to
inefficient functional expression of the human protein in mice. These
results emphasize the need to understand the tissue- specific expression
and regulation of CFTR function when animal models are used in gene therapy
studies.
相似文献
15.
Ai T Bompadre SG Sohma Y Wang X Li M Hwang TC 《Pflügers Archiv : European journal of physiology》2004,449(1):88-95
Anthracene-9-carboxylic acid (9-AC) has been reported to show both potentiation and inhibitory effects on guinea-pig cardiac cAMP-activated chloride channels via two different binding sites, and inhibition of Mg2+-sensitive protein phosphatases has been proposed for the mechanism of 9-AC potentiation effect. In this study, we examined the effects of 9-AC on wild-type and mutant human cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels expressed in NIH3T3 or CHO cells. 9-AC inhibits whole-cell CFTR current in a voltage-dependent manner, whereas the potentiation effect is not affected by membrane potentials. Anthracene-9-methanol, an electro-neutral 9-AC analog, fails to block CFTR, but shows a nearly identical potentiation effect, corroborating the idea that two chemically distinct sites are responsible, respectively, for potentiation and inhibitory actions of 9-AC. 9-AC also enhances the activity of R-CFTR, a constitutively active CFTR mutant whose R-domain is removed. In excised inside-out patches, 9-AC increases Po by prolonging the mean burst durations and shortening the interburst durations. We therefore conclude that two different 9-AC binding sites for potentiation and inhibitory effects on CFTR channels are located outside of the R-domain. We also speculate that 9-AC potentiates CFTR activity by directly affecting CFTR gating. 相似文献
16.
Regulation of epithelial ion channels by the cystic fibrosis transmembrane conductance regulator 总被引:2,自引:0,他引:2
R. Greger M. Mall M. Bleich D. Ecke R. Warth N. Riedemann K. Kunzelmann 《Journal of molecular medicine (Berlin, Germany)》1996,74(9):527-534
In most epithelia ion transport is tightly regulated. One major primary target of such regulation is the modulation of ion channels. The present brief review focuses on one specific example of ion channel regulation by the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR functions as a cAMP-regulated Cl- channel. Its defect leads to the variable clinical pictures of cystic fibrosis (CF), which today is understood as a primary defect of epithelial Cl- channels in a variety of tissues such as the respiratory tract, intestine, pancreas, skin, epididymis, fallopian tube, and others. Most recent findings suggest that CFTR also acts as a channel regulator. Three examples are discussed by which CFTR regulates other Cl- channels, K+ channels, and epithelial Na+ channels. From this perspective it is evident that CFTR may play a major role in the integration of cellular function.Abbreviations
CF
Cystic fibrosis
-
CFTR
Cystic fibrosis transmembrane conductance regulator
-
IBMX
Isobutylmethylxanthine
-
ICOR
Intermediate conductance outwardly rectifying
-
MDR
Multidrug resistance protein
Supported by DFG: Gr 480/11 相似文献
17.
18.
Linsdell P 《Experimental physiology》2006,91(1):123-129
The cystic fibrosis transmembrane conductance regulator (CFTR) functions as a Cl- channel important in transepithelial salt and water transport. While there is a paucity of direct structural information on CFTR, much has been learned about the molecular determinants of the CFTR Cl- channel pore region and the mechanism of Cl- permeation through the pore from indirect structure-function studies. The first and sixth transmembrane regions of the CFTR protein play major roles in forming the channel pore and determining its functional properties by interacting with permeating Cl- ions. Positively charged amino acid side-chains are involved in attracting negatively charged Cl- ions into the pore region, where they interact briefly with a number of discrete sites on the pore walls. The pore appears able to accommodate more than one Cl- ion at a time, and Cl- ions bound inside the pore are probably sensitive to one another's presence. Repulsive interactions between Cl- ions bound concurrently within the pore may be important in ensuring rapid movement of Cl- ions through the pore. Chloride ion binding sites also interact with larger anions that can occlude the pore and block Cl- permeation, thus inhibiting CFTR function. Other ions besides Cl- are capable of passing through the pore, and specific amino acid residues that may be important in allowing the channel to discriminate between different anions have been identified. This brief review summarizes these mechanistic insights and tries to incorporate them into a simple cartoon model depicting the interactions between the channel and Cl- ions that are important for ion translocation. 相似文献
19.
20.
Interaction between calcium-activated chloride channels and the cystic fibrosis transmembrane conductance regulator 总被引:3,自引:0,他引:3
L. Wei A. Vankeerberghen H. Cuppens J. Eggermont J.-J. Cassiman G. Droogmans B. Nilius 《Pflügers Archiv : European journal of physiology》1999,438(5):635-641
We investigated interactions between cystic fibrosis conductance regulator (CFTR) and endogenous Ca2+-activated Cl- channels (CaCC) in bovine pulmonary artery endothelium (CPAE). CPAE cells, which do not express CFTR, were transiently transfected with wild-type (WT) CFTR and the deletion mutant deltaF508 CFTR. Currents through CaCC were significantly reduced after expression of WT CFTR. This inhibition was increased by stimulation (isobutylmethylxanthine, forskolin) of CFTR in cells expressing WT CFTR. There were no such effects when deltaF508 mutant CFTR, which is retained in the endoplasmic reticulum, was expressed. It is concluded that CFTR and CaCC are functionally coupled probably through a direct channel-channel interaction. 相似文献