首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
2.

Background

Src homology 2 domain-containing protein tyrosine phosphatase substrate (SHPS)-1 is known to have regulatory effects on myeloid cells. However, its role in macrophage activation is not clearly understood.

Methods and results

In order to investigate the role of SHPS-1 in Toll-like receptor (TLR)-mediated activation, human monocytic cell lines were treated with anti-SHPS-1 monoclonal antibody. The triggering of SHPS-1 blocked the expression of IL-8 and TNF-α in cells treated with a TLR4 ligand that induces a signaling pathway involving myeloid differentiation factor 88 (MyD88) and Toll-interleukin-1 receptor (TIR)-domain-containing adapter-inducing interferon-β (TRIF). Interestingly, SHPS-1 inhibited TLR9/MyD88-mediated, but not TLR3/TRIF-mediated, expression of IL-8. Accordingly, a synthetic peptide representing the immunoreceptor tyrosine-based inhibition motif (ITIM) of SHPS-1 suppressed only the MyD88 pathway. Utilization of specific inhibitors and Western blot analysis indicated that the inhibitory effects were mediated by Src homology 2 domain-containing phosphatases (SHPs) and phosphoinositide 3-kinase (PI3K).

Conclusion

SHPS-1 negatively regulates the MyD88-dependent TLR signaling pathway through the inhibition of NF-κB activation.  相似文献   

3.
Zymosan is a particulate yeast preparation that elicits high levels of IL-2 and IL-10 from dendritic cells (DC) and engages multiple innate receptors, including the Syk-coupled receptor dectin-1 and the MyD88-coupled receptor TLR2. Here, we show that induction of IL-2 and IL-10 by zymosan requires activation of ERK MAP kinase in murine DC. Surprisingly, ERK activation in response to zymosan is completely blocked in Syk-deficient DC and unaffected by MyD88 deficiency. Conversely, ERK activation in response to the TLR2 agonist Pam3Cys is completely MyD88 dependent and unaffected by Syk deficiency. The inability of TLR2 ligands in zymosan to couple to ERK may explain the Syk dependence of the IL-2 and IL-10 response in DC and emphasises the importance of Syk-coupled pattern recognition receptors such as dectin-1 in the detection of yeasts. Furthermore, the lack of receptor compensation observed here suggests that responses induced by complex innate stimuli cannot always be predicted by the signalling pathways downstream of individual receptors.  相似文献   

4.
Toll-like receptors (TLRs) signal through two main pathways: a myeloid differentiation factor (MyD)88-dependent pathway that acts via nuclear factor kappaB (NF-kappaB) to induce proinflammatory cytokines such as tumour necrosis factor-alpha (TNF-alpha) and a MyD88-independent pathway that acts via type I interferons to increase the expression of interferon-inducible genes. Repeated signalling through TLR4 and a number of other TLRs has been reported to result in a reduction in the subsequent proinflammatory cytokine response, a phenomenon known as TLR tolerance. In this study we have shown that, whilst NF-kappaB activation and production of TNF-alpha and interleukin-12 by murine RAW264.7 and J774.2 cells in response to stimulation by TLR4, -5, -7 or -9, was reduced by prior stimulation with TLR4, -5, -7 or -9 ligands, the primary stimulation of TLR3, which does not use the MyD88 pathway, did not reduce the TNF-alpha or interleukin-12 responses to subsequent TLR stimulation. The response to TLR3 stimulation was not diminished by prior TLR ligand exposure. Furthermore, the production of interferon-beta (IFN-beta) following stimulation of TLR3 or -4, which is MyD88-independent, was increased by prior activation of TLR4, -5, -7 or -9. In contrast, TLR9 ligand-induced IFN-beta production, which is MyD88-dependent, was tolerized by prior TLR stimulation. These results are consistent with differential regulation of MyD88-dependent and MyD88-independent cytokine production following serial activation of TLRs.  相似文献   

5.
We investigated the roles of Toll-like receptor 2 (TLR2) and myeloid differentiation factor 88 (MyD88) in the course of a lymphocytic choriomeningitis virus (LCMV) infection and revealed the following: (i) studies of transfected cells and murine peritoneal macrophages demonstrated that TLR2 and MyD88 are essential for the initial pro-inflammatory cytokine response (human IL-8, mouse IL-6) to LCMV; (ii) TLR2 knockout (KO) mice and MyD88 KO mice challenged with LCMV produced less IL-6 and monocyte chemotactic protein-1 in the serum than wild-type mice; (iii) in contrast to inflammatory cytokines, the production of type 1 IFN (IFN-alpha) in response to LCMV was MyD88 independent; (iv) MyD88 plays an essential role in antiviral CD8(+) T cell responses, CD8(+) T cells in MyD88 KO mice were defective in their expression of intracellular antiviral cytokines; and (v) the failure of MyD88 KO mice to activate CD8(+) T cells was accompanied by persistent viral infection in MyD88 KO mice. We demonstrate that TLR-mediated responses are important in the innate immune response to LCMV and that MyD88 is essential for the control of the LCMV infection and the maturation/activation of virus-specific CD8(+) T cells.  相似文献   

6.
The mucosal host defence discriminates pathogens from commensals, and prevents infection while allowing the normal flora to persist. Paradoxically, Toll-like receptors (TLR) control the mucosal defence against pathogens, even though the TLR recognise conserved molecules like LPS, which are shared between pathogens and commensals. This study proposes a mechanism of pathogen-specific mucosal TLR4 activation, involving adhesive ligands and their host cell receptors. TLR4 signalling was activated in CD14-negative, LPS-unresponsive epithelial cells by P fimbriated, uropathogenic Escherichia coli but not by a mutant lacking fimbriae. Epithelial TLR4 signalling in vivo involved the glycosphingolipid receptors for P fimbriae and the adaptor proteins Toll/IL-1R (TIR) domain-containing adaptor inducing IFN-beta (TRIF)/TRIF-related adaptor molecule (TRAM), but myeloid differentiation protein 88 (MyD88)/TIR domain-containing adaptor protein were not required for the epithelial response. Substituting the P fimbriae with type 1 fimbriae changed TLR4 signalling from the TRIF to the MyD88 adaptor pathway. In addition, the adaptor proteins and the fimbrial type were found to influence bacterial clearance. Trif(-/-) and Tram(-/-) mice remained infected with P fimbriated E. coli but cleared the type 1 fimbriated strain, while Myd88(-/-) mice became carriers of both the P and the type 1 fimbriated bacteria. Thus, TLR4 may be engaged specifically by pathogens, when the proper cell surface receptors are engaged by virulence ligands.  相似文献   

7.
Interleukin (IL)-10 is an essential suppressive cytokine and plays a key role in peripheral T cell tolerance to allergens, autoantigens, transplantation antigens and tumor antigens. However, the molecular mechanisms of direct T cell suppression by IL-10 are not fully understood. Here, we demonstrate that IL-10 directly inhibits CD2 signaling in T cells. T cell stimulation via CD2 alone induces activation and proliferation, when endogenous IL-10 sources are eliminated from cultures. IL-10 utilizes the src-homology-2 domain containing tyrosine phosphatase (SHP-1) to directly suppress T cell activation. The role of SHP-1 in IL-10-mediated suppression of CD2 co-stimulation on T cells is demonstrated by using dominant-negative SHP-1 over-expressing T cells and silencing endogenous SHP-1 by small inhibitory RNA. Findings are confirmed using both SHP-1-deficient mice and IL-10-deficient mice. CD2-induced proliferation is suppressed by exogenous IL-10 in IL-10-deficient, but not SHP-1-deficient murine T cells. In conclusion, SHP-1-mediated inhibition of CD2 signaling represents a novel mechanism for direct T cell suppression by IL-10.  相似文献   

8.
Haematopoiesis is crucial for immunity because it results in the production of leucocytes. Bacterial and viral infections alter leucocyte production by promoting granulopoiesis or lymphopoiesis. Recent studies suggest that changes in leucocyte production may be caused by the effects of inflammatory responses on the differentiation of haematopoietic progenitors in the bone marrow. We investigated the mechanisms through which infection regulates the formation of bone marrow‐derived dendritic cells (BMDCs) in vitro. We mimicked infection by stimulating developing cells with molecules associated with bacteria and viruses and with inactivated influenza viruses. We showed that toll‐like receptor (TLR) ligands act as modulators of haematopoiesis, and that signalling through different TLRs results in differing effects on the production of BMDCs. We demonstrated that ligands for TLR3 and influenza viruses reduce the production of BMDCs, resulting in increased neutrophil numbers, and that ligands for TLR4 and TLR9 drive the production of plasmacytoid dendritic cells. Furthermore, there are distinct signalling mechanisms involved in these effects. Signalling pathways triggered by TLR4 and TLR9 involve MyD88 and are partially mediated by the cytokine tumour necrosis factor‐α (TNF‐α). Mechanisms activated by TLR3 were Tir‐domain‐containing adaptor‐inducing interferon dependent. Haematopoietic modulation induced by inactivated influenza viruses was associated with the activation of an antiviral pathway mediated by type‐1 interferons.  相似文献   

9.
Recent studies on endotoxin/lipopolysaccharide (LPS)-induced acute inflammatory response in the lung are reviewed. The acute airway inflammatory response to inhaled endotoxin is mediated through Toll-like receptor 4 (TLR4) and CD14 signalling as mice deficient for TLR4 or CD14 are unresponsive to endotoxin. Acute bronchoconstriction, tumour necrosis factor (TNF), interleukin (IL)-12 and keratinocyte-derived chemokine (KC) production, protein leak and neutrophil recruitment in the lung are abrogated in mice deficient for the adaptor molecules myeloid differentiation factor 88 (MyD88) and Toll/Interleukin-1 receptor (TIR)-domain-containing adaptor protein (TIRAP), but independent of TIR-domain-containing adaptor-inducing interferon-beta (TRIF). In particular, LPS-induced TNF is required for bronchoconstriction, but dispensable for inflammatory cell recruitment. Lipopolysaccharide induces activation of the p38 mitogen-activated protein kinase (MAPK). Inhibition of pulmonary MAPK activity abrogates LPS-induced TNF production, bronchoconstriction, neutrophil recruitment into the lungs and broncho-alveolar space. In conclusion, TLR4-mediated, bronchoconstriction and acute inflammatory lung pathology to inhaled endotoxin are dependent on TLR4/CD14/MD2 expression using the adapter proteins TIRAP and MyD88, while TRIF, IL-1R1 or IL-18R signalling pathways are dispensable. Further downstream in this axis of signalling, TNF blockade reduces only acute bronchoconstriction, while MAPK inhibition abrogates completely endotoxin-induced inflammation.  相似文献   

10.
An H  Zhao W  Hou J  Zhang Y  Xie Y  Zheng Y  Xu H  Qian C  Zhou J  Yu Y  Liu S  Feng G  Cao X 《Immunity》2006,25(6):919-928
The Toll-like receptor 3 (TLR3) and TLR4-signaling pathway that involves the adaptor protein TRIF activates type I interferon (IFN) and proinflammatory cytokine expression. Little is known about how TRIF pathway-dependent gene expression is regulated. SH2-containing protein tyrosine phosphatase 2 (SHP-2) is a widely expressed cytoplasmic tyrosine phosphatase. Here we demonstrate that SHP-2 negatively regulated TLR4- and TLR3-activated IFN-beta production. SHP-2 inhibited TLR3-activated but not TLR2-, TLR7-, and TLR9-activated proinflammatory cytokine IL-6 and TNF-alpha production. SHP-2 inhibited poly(I:C)-induced cytokine production by a phosphatase activity-independent mechanism. C-terminal domain of SHP-2 directly bound TANK binding kinase (TBK1) by interacting with the kinase domain of TBK1. SHP-2 deficiency increased TBK1-activated IFN-beta and TNF-alpha expression. TBK1 knockdown inhibited poly(I:C)-induced IL-6 production in SHP-2-deficient cells. SHP-2 also inhibited poly(I:C)-induced activation of MAP kinase pathways. These results demonstrate that SHP-2 specifically negatively regulate TRIF-mediated gene expression in TLR signaling, partially through inhibiting TBK1-activated signal transduction.  相似文献   

11.
Toll-like receptor (TLR)-mediated recognition of pathogens represents one of the most important mechanisms of innate immunity. A proximal signaling event of TLR is the direct binding of an adaptor protein MyD88 to TLR and recruitment of the IL-1R-associated kinase (IRAK). In the present study, we examined the effect of several TLR ligands on protein tyrosine phosphorylation in rat macrophages. Macrophage-activating lipopeptide-2 kDa (MALP2) and lipoarabinomannan were used as activators of TLR2, while lipopolysaccharides (LPS) and lipoteichoic acid were used as TLR4 ligands. All these ligands induced tyrosine phosphorylation of proline-rich tyrosine kinase 2 (Pyk2) and its substrate paxillin, an integrin-associated focal adhesion adaptor protein, in the macrophages. PP2, an inhibitor of Src family tyrosine kinases, prevented the TLR-induced phosphorylation of paxillin and Pyk2 without affecting TLR-induced IRAK activation. MALP2 failed to induce paxillin phosphorylation in the macrophages from MyD88-knockout mice. In contrast, the effect of LPS weakened, but was still observed even in the MyD88-deficient cells. Thus, TLR regulate the function of paxillin in an Src family-dependent mechanism through both MyD88-dependent and MyD88-independent pathways.  相似文献   

12.
Triggering receptor expressed on myeloid cells (TREM)‐1 plays an important role in myeloid cell‐activated inflammatory responses. Although TLR ligands such as LPS and lipoteichoic acid have been shown to upregulate TREM‐1 expression in macrophage and neutrophils, the role of specific TLR in inducing the expression of TREM‐1 remains unclear. In this study, we investigated whether the presence of TLR is necessary for the expression of TREM‐1. We show that BM‐derived macrophages from TLR4 and TLR2 KO mice failed to induce expression of TREM‐1 message and protein in response to their specific ligands. Interestingly, the expression of TREM‐1 in response to LPS is not altered in myeloid differentiation factor 88 (MyD88) KO macrophages, suggesting that downstream of TLR a MyD88‐independent pathway induces the expression of TREM‐1. Inhibiting toll/IL‐1R domain‐containing adaptor‐inducing IFN‐β (TRIF) expression by siRNA decreased TREM‐1 expression in response to LPS, suggesting that the expression of TREM‐1 in response to LPS was mediated by the TRIF signaling pathway. On the other hand, the expression of TREM‐1 in response to lipoteichoic acid is dependent on MyD88 expression. These data indicate that the expression of TREM‐1 in response to TLR ligands occurs secondary to downstream signaling events and that the presence of TLR is necessary for the expression of TREM‐1 in response to their specific ligands. However, the downstream signaling required for the expression of TREM‐1 is dependent on the stimulus and the surface receptor through which the signaling is initiated.  相似文献   

13.
Leishmania donovani promastigotes evade the induction of a proinflammatory response during their invasion of naive macrophages. However, their entry into IFN-gamma-primed macrophages is accompanied by the secretion of nitric oxide (NO) and proinflammatory cytokines. In the present study, we addressed the hypothesis that priming with IFN-gamma induces the expression of a receptor that enables mouse macrophages to recognize L. donovani promastigotes. We observed that in IFN-gamma-primed macrophages, L. donovani promastigotes stimulated Interleukin-1 receptor-associated kinase-1 (IRAK-1) activity. We next showed that Toll-like receptor (TLR)3 is barely detectable in naive macrophages but is expressed in IFN-gamma-treated macrophages. Silencing of TLR3, TLR2, IRAK-1 and myeloid differentiation factor 88 (MyD88) expression by RNA interference revealed that both TLR are involved in the secretion of NO and TNF-alpha induced by L. donovani promastigotes. Using L. donovani mutants, we showed that TLR2-mediated responses are dependent on Galbeta1,4Manalpha-PO(4)-containing phosphoglycans, whereas TLR3-mediated responses are independent of these glycoconjugates. Furthermore, our data indicate a participation of TLR2 and TLR3 in the phagocytosis of L. donovani promastigotes and a role for TLR3 in the leishmanicidal activity of the IFN-gamma-primed macrophages. Collectively, our data are consistent with a model where recognition of L. donovani promastigotes depends on the macrophage activation status and requires the expression of TLR3.  相似文献   

14.
Mycobacterium indicus pranii (MIP) is an atypical mycobacterial species possessing strong immunomodulatory properties. It is a potent vaccine candidate against tuberculosis, promotes Th1 immune response and protects mice from tumours. In previous studies, we demonstrated higher protective efficacy of MIP against experimental tuberculosis as compared with bacillus Calmette–Guérin (BCG). Since macrophages play an important role in the pathology of mycobacterial diseases and cancer, in the present study, we evaluated the MIP in live and killed form for macrophage activation potential, compared it with BCG and investigated the underlying mechanisms. High levels of tumour necrosis factor-α, interleukin-12p40 (IL-12p40), IL-6 and nitric oxide were produced by MIP-stimulated macrophages as compared with BCG-stimulated macrophages. Prominent up-regulation of co-stimulatory molecules CD40, CD80 and CD86 was also observed in response to MIP. Loss of response in MyD88-deficient macrophages showed that both MIP and BCG activate the macrophages in a MyD88-dependent manner. MyD88 signalling pathway culminates in nuclear factor-κB/activator protein-1 (NF-κB/AP-1) activation and higher activation of NF-κB/AP-1 was observed in response to MIP. With the help of pharmacological inhibitors and Toll-like receptor (TLR) -deficient macrophages, we observed the role of TLR2, TLR4 and intracellular TLRs in MIP-mediated macrophage activation. Stimulation of HEK293 cells expressing TLR2 in homodimeric or heterodimeric form showed that MIP has a distinctly higher level of TLR2 agonist activity compared with BCG. Further experiments suggested that TLR2 ligands are well exposed in MIP whereas they are obscured in BCG. Our findings establish the higher macrophage activation potential of MIP compared with BCG and delineate the underlying mechanism.  相似文献   

15.
Exposure of macrophages to lipopolysaccharide (LPS) induces a hypo-responsive state to a second challenge with LPS that is termed LPS tolerance. LPS tolerance is also induced by pre-exposure to lipopeptides and lipoteichoic acid, which trigger Toll-like receptor (TLR) 2-mediated signaling. LPS signaling involves at least two pathways: a MyD88-dependent cascade that is essential for production of inflammatory cytokines and a MyD88-independent cascade that mediates the expression of IFN-inducible genes. We analyzed the induction of LPS tolerance by several microbial components in mouse peritoneal macrophages. Pre-exposure to LPS led to impaired activation of both the pathways. In contrast, mycoplasmal lipopeptides did not affect the MyD88-independent pathway, but impaired the MyD88-dependent signaling by inhibiting LPS-mediated activation of IL-1 receptor-associated kinase (IRAK) 1. The induction of LPS tolerance by recently identified TLR ligands was analyzed. Pretreatment with double-stranded RNA, which triggers the activation of TLR3, led to defective activation of the MyD88-independent, but not the MyD88-dependent, pathway. Imidazoquinoline compounds, which are recognized by TLR7, had no effect on the MyD88-independent pathway, but inhibited LPS-induced activation of MyD88-dependent signaling through down-regulation of IRAK1 expression. Thus, each microbial component induced LPS tolerance in macrophages.  相似文献   

16.
17.
18.
Recognition of Gram-positive bacteria by Toll-like receptor 2 (TLR2) induces activation of proinflammatory pathways. In mice, sensitization with the Gram-positive Propionibacterium acnes followed by a challenge with the TLR4 ligand, lipopolysaccharide (LPS), results in fulminant hepatic failure. Here, we investigated the role of TLR2 in liver sensitization to LPS-induced injury. Stimulation of Chinese hamster ovary cells and peritoneal macrophages with heat-killed P. acnes required expression of TLR2 but not of TLR4, suggesting that P. acnes was a TLR2 ligand. Cell activation by P. acnes was myeloid differentiation primary-response protein 88 (MyD88)-dependent, and it was augmented by coexpression of CD14 in mouse peritoneal macrophages. In vitro, P. acnes behaved as a TLR2 ligand and induced TLR4 hetero- and TLR2 homotolerance in peritoneal macrophages. In vivo priming of wild-type mice with P. acnes, but not with the selective TLR2 ligands peptidoglycan and lipotheicoic acid, resulted in hepatocyte necrosis, hyperelevated serum levels of tumor necrosis factor alpha (TNF-alpha), interleukin (IL)-6, interferon-gamma (IFN-gamma), and IL-12 (p40/p70), and increased RNA expression of proinflammatory cytokines (IL-12p40, IL-1alpha, IL-6, IL-1beta, IL-18, IFN-gamma) in the liver after a LPS challenge. Furthermore, P. acnes priming sensitized TLR2-deficient (TLR2-/-) but not MyD88-/- mice to LPS-induced injury, evidenced by hepatocyte necrosis, increased levels of serum TNF-alpha, IFN-gamma, IL-6, and liver proinflammatory cytokine mRNA expression. IFN-gamma, a cytokine sensitizing to endotoxin, was induced by P. acnes in splenocytes of TLR2-/- and TLR9-/- but not MyD88-/- mice. These results suggest that although P. acnes triggers TLR2-mediated cell activation, TLR2-independent but MyD88-dependent mechanisms mediate in vivo sensitization by P. acnes for LPS-induced liver injury.  相似文献   

19.
Recognition of pathogens by Toll-like receptors (TLRs) triggers innate immune responses through signaling pathways mediated by Toll-interleukin 1 receptor (TIR) domain-containing adaptors such as MyD88, TIRAP and TRIF. MyD88 is a common adaptor that is essential for proinflammatory cytokine production, whereas TRIF mediates the MyD88-independent pathway from TLR3 and TLR4. Here we have identified a fourth TIR domain-containing adaptor, TRIF-related adaptor molecule (TRAM), and analyzed its physiological function by gene targeting. TRAM-deficient mice showed defects in cytokine production in response to the TLR4 ligand, but not to other TLR ligands. TLR4- but not TLR3-mediated MyD88-independent interferon-beta production and activation of signaling cascades were abolished in TRAM-deficient cells. Thus, TRAM provides specificity for the MyD88-independent component of TLR4 signaling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号