首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Understanding the intrinsic and extrinsic signals that regulate the molecular basis of the pluripotent state may improve our understanding of mammalian embryogenesis, different states of pluripotency, and our ability to tailor lineage differentiation. Although the role of the PI3K/Akt pathway in the self-renewal and maintenance of mESCs is well-established, the specific contribution of the pathway or of its negative regulator, PTEN, in the maintenance of the human pluripotent state is less understood. To explore the PI3K/AKT pathway in human embryonic stem cell (hESC) pluripotency and differentiation, we generated stable PTEN knockdown (KD) hESCs using short hairpin RNA. Similar to mESCs, we found that PTEN KD hESCs have increased self-renewal, cell survival, and proliferation over multiple passages compared to control cells. However, in contrast to mESCs, in vitro, PTEN KD hESCs differentiated inefficiently in directed differentiation assays, in part due to the continued maintenance of OCT4 and NANOG expression. In teratoma assays, PTEN KD hESCs generated tissues from the three germ layers, although with a bias toward neuroectoderm differentiation. These results demonstrate that PTEN is a key regulator of hESC growth and differentiation, and manipulation of this pathway may improve our ability to regulate and understand the pluripotent state.  相似文献   

5.
6.
Human embryonic stem cells (hESC) hold huge promise in modern regenerative medicine, drug discovery, and as a model for studying early human development. However, usage of embryos and derivation of hESC for research and potential medical application has resulted in polarized ethical debates since the process involves destruction of viable developing human embryos. Here we describe that not only developing embryos (morulae and blastocysts) of both good and poor quality but also arrested embryos could be used for the derivation of hESC. Analysis of arrested embryos demonstrated that these embryos express pluripotency marker genes such OCT4, NANOG, and REX1. Derived hESC lines also expressed specific pluripotency markers (TRA-1-60, TRA-1-81, SSEA4, alkaline phosphatase, OCT4, NANOG, TERT, and REX1) and differentiated under in vitro and in vivo conditions into derivates of all three germ layers. All of the new lines, including lines derived from late arrested embryos, have normal karyotypes. These results demonstrate that arrested embryos are additional valuable resources to surplus and donated developing embryos and should be used to study early human development or derive pluripotent hESC.  相似文献   

7.
8.
9.
10.
11.
12.
Human embryonic stem cells (hESCs) are derived from the inner cell mass of preimplantation embryos; they can be cultured indefinitely and differentiated into many cell types in vitro. These cells therefore have the ability to provide insights into human disease and provide a potential unlimited supply of cells for cell-based therapy. Little is known about the factors that are important for maintaining undifferentiated hESCs in vitro, however. As a tool to investigate these factors, transfected hES clonal cell lines were generated; these lines are able to express the enhanced green fluorescent protein (EGFP) reporter gene under control of the OCT4 promoter. OCT4 is an important marker of the undifferentiated state and a central regulator of pluripotency in ES cells. These OCT4-EGFP clonal cell lines exhibit features similar to parental hESCs, are pluripotent, and are able to produce all three embryonic germ layer cells. Expression of OCT4-EGFP is colocalized with endogenous OCT4, as well as the hESC surface antigens SSEA4 and Tra-1-60. In addition, the expression is retained in culture for an extensive period of time. Differentiation of these cells toward the neural lineage and targeted knockdown of endogenous OCT4 expression by RNA interference downregulated the EGFP expression in these cell lines, and this correlates closely with the reduction of endogenous OCT4 expression. Therefore, these cell lines provide an easy and noninvasive method to monitor expression of OCT4 in hESCs, and they will be invaluable for studying not only OCT4 function in hESC self-renewal and differentiation but also the factors required for maintenance of undifferentiated hESCs in culture.  相似文献   

13.
14.
15.
AIMS: NANOG is a key regulator of embryonic stem cell (ESC) self-renewal and pluripotency. Our recent genome-wide gene expression profiling study of the precursor of testicular germ cell tumours, carcinoma in situ testis (CIS), showed close similarity between ESC and CIS, including high NANOG expression. In the present study we analysed the protein expression of NANOG during normal development of human testis and in a large series of neoplastic/dysgenetic specimens. METHODS AND RESULTS: We detected abundant expression of NANOG in CIS and in CIS-derived testicular tumours with marked differences; seminoma and embryonal carcinoma were strongly positive, differentiated somatic elements of teratoma were negative. We provide evidence for the fetal origin of testicular cancer as we detected strong expression of NANOG in fetal gonocytes up to gestational week 20, with subsequent down-regulation occurring earlier than for OCT-4. We detected no expression at the protein level in normal testis. CONCLUSIONS: NANOG is a new marker for testicular CIS and germ cell tumours and the high level of NANOG along with OCT-4 are determinants of the stem cell-like pluripotency of the preinvasive CIS cell. Timing of NANOG down-regulation in fetal gonocytes suggests that NANOG may act as a regulatory factor up-stream to OCT-4.  相似文献   

16.
Human embryonic stem cells (hESCs) self-renew indefinitely while maintaining pluripotency. The molecular mechanism underlying hESCs self-renewal and pluripotency is poorly understood. To identify the signaling pathway molecules that maintain the proliferation of hESCs, we performed a microarray analysis comparing an aneuploid H1 hESC line (named H1T) versus euploid H1 hESC line because the H1T hESC line demonstrates a self-renewal advantage while maintaining pluripotency. We find differential gene expression for the Nodal/Activin, fibroblast growth factor (FGF), Wnt, and Hedgehog (Hh) signaling pathways in the H1T line, which implicates each of these molecules in maintaining the undifferentiated state, whereas the bone morphogenic protein (BMP) and Notch pathways could promote hESCs differentiation. Experimentally, we find that Activin A is necessary and sufficient for the maintenance of self-renewal and pluripotency of hESCs and supports long-term feeder and serum-free growth of hESCs. We show that Activin A induces the expression of Oct4, Nanog, Nodal, Wnt3, basic FGF, and FGF8 and suppresses the BMP signal. Our data indicates Activin A as a key regulator in maintenance of the stemness in hESCs. This finding will help elucidate the complex signaling network that maintains the hESC phenotype and function.  相似文献   

17.
Human embryonic stem cells (hESCs) can be maintained in vitro as immortal pluripotent cells but remain responsive to many differentiation-inducing signals. Investigation of the initial critical events involved in differentiation induction would be greatly facilitated if a specific, robust, and quantitative assay for pluripotent hESCs with self-renewal potential were available. Here we describe the results of a series of experiments to determine whether the formation of adherent alkaline phosphatase-positive (AP(+)) colonies under conditions optimized for propagating undifferentiated hESCs would meet this need. The findings can be summarized as follows. (a) Most colonies obtained under these conditions consist of >or=30 AP(+) cells that coexpress OCT4, NANOG, SSEA3, SSEA4, TRA-1-60, and TRA-1-81. (b) Most such colonies are derived from SSEA3(+) cells. (c) Primary colonies contain cells that produce secondary colonies of the same composition, including cells that initiate multilineage differentiation in embryoid bodies (EBs). (d) Colony formation is independent of plating density or the colony-forming cell (CFC) content of the test population over a wide range of cell concentrations. (e) CFC frequencies decrease when differentiation is induced by exposure either to retinoic acid or to conditions that stimulate EB formation. Interestingly, this loss of AP(+) clonogenic potential also occurs more rapidly than the loss of SSEA3 or OCT4 expression. The CFC assay thus provides a simple, reliable, broadly applicable, and highly specific functional assay for quantifying undifferentiated hESCs with self-renewal potential. Its use under standardized assay conditions should enhance future elucidation of the mechanisms that regulate hESC propagation and their early differentiation.  相似文献   

18.
Human primordial germ cells (PGCs) have proven to be a source of pluripotent stem cells called embryonic germ cells (EGCs). However, the developmental potency of these cells in the fetal gonad still remains elusive. Thus, this study provides a comprehensive analysis of pluripotent and germ cell marker expression in human fetal testis 7-15 weeks postfertilization (pF) and compares this expression to their ability to derive EGCs. Although the majority of germ cells expressed stem cell markers stage-specific embryonic antigen (SSEA) 1, SSEA4, EMA-1, and alkaline phosphatase, only a small percentage of those (<1%) expressed OCT4, CKIT, and NANOG. Specifically, the number of OCT4(+)/CKIT(+)/NANOG(+) cells significantly increased in the developing cords during weeks 7-9, followed by a gradual decline into week 15 pF. By week 15 pF, the remaining OCT4(+)/CKIT(+)/NANOG(+) cells were found in the cords surrounding the periphery of the testis, and the predominant germ cells, CKIT(+) cells, no longer expressed OCT4 or NANOG. Based on morphology and early germ cell marker expression, including VASA, PUM2, and DAZL, we suggest these cells are mitotically active gonocytes or prespermatogonia. Importantly, the number of OCT4(+) cells correlated with an increase in the number of EGC colonies derived in culture. Interestingly, two pluripotent markers, Tra-1-60 and Tra-1-81, although highly expressed in EGCs, were not expressed by PGCs in the gonad. Together, these results suggest that PGCs maintain expression of pluripotent stem cell markers during and after sexual differentiation of the gonad, albeit in very low numbers.  相似文献   

19.
Analysis of gene expression in single cells is required to understand somatic cell reprogramming into human induced pluripotent stem cells (iPSCs). To facilitate this, we established intermediately reprogrammed stem cells (iRSCs), pre‐iPSC lines. The iRSC‐iPSC conversion system enables the reproducible monitoring of reprogramming events and the analysis of progressive gene expression profiles using single‐cell microarray analysis and genome editing. Here, single‐cell microarray analysis showed the stage‐specific sequential gene activation during the conversion of iRSCs into iPSCs, using OCT4, TDGF1 and E‐CADHERIN as marker genes. Out of 75 OCT4‐related genes, which were significantly up‐regulated after the activation of OCT4, and entry into the mesenchymal‐to‐epithelial transition (MET), LIN28 (LIN28A) and FOXO1 were selected for applying to gene expression visualization. Multicolored visualization was achieved by the genome editing of LIN28 or FOXO1 with mCherry into OCT4‐GFP iRSCs. Fluorescent analysis of gene activity in individual cells showed that OCT4 was dispensable for maintenance, but required for activation, of the LIN28 and FOXO1 expression in reprogramming.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号