首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N-methyl-D-aspartate (NMDA) receptor function appears to be under complex control during physiological and pharmacological states. We have investigated the effects of acute administration of uncompetitive NMDA receptor antagonists on mRNA levels of NMDA receptor subunits and on molecules known to cluster or phosphorylate the receptor utilizing in situ hybridization on rat brain sections. A high dose (5 mg/kg; 4 hr) of dizocilpine (MK-801) decreased mRNA levels of NMDA receptor subunits NR2C and NR2B in the entorhinal and parietal cortices, respectively. MK-801 increased mRNA levels of synapse-associated protein-90/postsynaptic density-95 (SAP90/PSD-95) and a gamma-isoform of protein kinase C (PKCgamma) in cortical regions. Synapse-associated protein-97 (SAP97) mRNA levels were increased in the entorhinal cortex layer III after MK-801 or after relatively high doses of other uncompetitive NMDA receptor antagonists: phencyclidine (15 mg/kg; 6 hr) and memantine (50 mg/kg; 6 hr). Memantine also increased SAP97 mRNA expression in other cortical regions, but this effect was not observed with MK-801 or phencyclidine. NMDA receptor uncompetitive antagonists alter the expression of multiple receptor components and such events may ultimately play a role in adaptation or toxic responses.  相似文献   

2.
Noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonists such as phencyclidine, ketamine, and MK-801 produce schizophrenia-like psychosis in humans. The same NMDA antagonists injure retrosplenial cortical neurons in adult rats. We examined the effects of atypical antipsychotics and an inhibitor of nonreceptor tyrosine kinase pp60 (Src) on the cortical injury produced by MK-801. An atypical antipsychotic (either clozapine, ziprasidone, olanzapine, quetiapine, or risperidone) or vehicle was administered to adult female Sprague-Dawley rats. PP1 (Src inhibitor), PP3 (nonfunctional analog of PP1) or vehicle (DMSO) was administered to another group of animals. After pretreatment, animals were injected with MK-801, killed 24 h after the MK-801, and injury to retrosplenial cortex assessed by neuronal Hsp70 protein expression. All atypical antipsychotics examined significantly attenuated MK-801-induced cortical damage. PP1 protected compared to vehicle, whereas PP3 did not protect. The ED50s (decrease injury by 50%) were as follows: PP1 <0.1 mg/kg; olanzapine 0.8 mg/kg; risperdal 1 mg/kg; clozapine 3 mg/kg; ziprasidone 32 mg/kg; and quetiapine 45 mg/kg. The data show that the atypical antipsychotics tested as well as a Src kinase inhibitor prevent the injury produced by the psychomimetic MK-801, and the potency of the atypical antipsychotics for preventing cortical injury was roughly similar to the potency of these drugs for treating psychosis in patients.  相似文献   

3.
Abstract: N‐methyl‐D‐aspartate (NMDA) receptor function appears to be under complex control during physiological and pharmacological states. We have investigated the effects of acute administration of uncompetitive NMDA receptor antagonists on mRNA levels of NMDA receptor subunits and on molecules known to cluster or phosphorylate the receptor utilizing in situ hybridization on rat brain sections. A high dose (5 mg/kg; 4 hr) of dizocilpine (MK‐801) decreased mRNA levels of NMDA receptor subunits NR2C and NR2B in the entorhinal and parietal cortices, respectively. MK‐801 increased mRNA levels of synapse‐associated protein‐90/postsynaptic density‐95 (SAP90/PSD‐95) and a γ‐isoform of protein kinase C (PKCγ) in cortical regions. Synapse‐associated protein‐97 (SAP97) mRNA levels were increased in the entorhinal cortex layer III after MK‐801 or after relatively high doses of other uncompetitive NMDA receptor antagonists: phencyclidine (15 mg/kg; 6 hr) and memantine (50 mg/kg; 6 hr). Memantine also increased SAP97 mRNA expression in other cortical regions, but this effect was not observed with MK‐801 or phencyclidine. NMDA receptor uncompetitive antagonists alter the expression of multiple receptor components and such events may ultimately play a role in adaptation or toxic responses.  相似文献   

4.
5.
Repeated administrations of NMDA receptor antagonists induce behavioural changes which resemble the symptoms of schizophrenia in animals. ERK and GSK-3beta associated signalling pathways have been implicated in the pathogenesis of psychosis and in the action mechanisms of various psychotropic agents. Here, we observed the phosphorylations of ERK and GSK-3beta and related molecules in the rat frontal cortex after repeated intraperitoneal injections of MK-801, over periods of 1, 5, and 10 d. Repeated treatment with 0.5, 1, and 2 mg/kg MK-801 increased the phosphorylation levels of the MEK-ERK-p90RSK and Akt-GSK-3beta pathways and concomitantly and significantly increased CREB phosphorylation in the rat frontal cortex. However, single MK-801 treatment did not induce these significant changes. In addition, the immunoreactivities of HSP72, Bax, and PARP were not altered, which suggests that neuronal damage may not occur in the rat frontal cortex in response to chronic MK-801 treatment. These findings suggest that chronic exposure to MK-801 may induce pro-survival and anti-apoptotic activity without significant neuronal damage in the rat frontal cortex. Moreover, this adaptive change might be associated with the psychotomimetic action of MK-801.  相似文献   

6.
RATIONALE: Non-competitive NMDA receptor antagonists markedly increase neuronal activity in medial prefrontal cortex (mPFC), an effect which partly underlies their schizomimetic actions. Projection pyramidal neurons and local GABAergic interneurons in mPFC express 5-HT(1A) receptors, whose activation modulates dopaminergic (DA) and serotonergic (5-HT) activity in midbrain and the cortical release of both monoamines. OBJECTIVE: To examine whether the presence of 5-HT(1A) receptors can modulate the effect of NMDA receptor blockade with MK-801 (dizocilpine) on DA and 5-HT release in mouse mPFC. MATERIALS AND METHODS: Brain microdialysis and locomotor activity measures in wild-type and 5-HT(1A) receptor knockout mice. RESULTS: Systemic MK-801 administration (0.125, 0.25, 0.50, and 1 mg/kg i.p.) induced a dose-dependent increase in mPFC 5-HT output, which was independent of the genotype. MK-801 increased DA output in a dose-dependent manner with a significant effect of genotype on low doses (0.125, 0.25 mg/kg). These differences were not paralleled by differences in gross locomotor activity. Overall, MK-801 increased more markedly DA than 5-HT output in both genotypes. Finally, the local perfusion of MK-801 in mPFC (30, 100, 300 muM) by reverse dialysis did not elevate dialysate DA or 5-HT concentrations in mPFC. CONCLUSION: 5-HT(1A) receptors partly modulate the increase in mPFC DA (but not 5-HT) release produced by NMDA receptor blockade. The lack of effect observed after the local MK-801 application suggests that the change in cortical monoamines is mainly driven by subcortical NMDA receptor blockade, without a significant involvement of PFC 5-HT(1A) receptors.  相似文献   

7.
This study investigated the effect of MK-801 and ketamine, N-methyl-D-aspartate (NMDA) receptor antagonists which can induce schizophrenic symptoms and have neurotoxicity in human and animals, on hydroxyl radical (*OH) generation in the posterior cingulate and retrosplenial (PC/RS) cortex of free-moving mice using the salicylic acid trapping technique. MK-801 (0.6 mg/kg) or ketamine (50 mg/kg) acute administration significantly increased *OH levels in mouse PC/RS cortex. The basal *OH levels after MK-801 and ketamine administrations for 7 consecutive days were significantly increased compared with the naive basal levels. MK-801 (0.6 mg/kg) or ketamine (50 mg/kg) challenge after chronic administration further significantly increased dialysate levels of *OH. Our study also found that the release of *OH was secondary to stereotyped behavior, and the intensity of stereotyped behavior induced by MK-801 was more than that induced by ketamine. The results suggested that NMDA receptor antagonists participate in the generation of *OH in the PC/RS cortex of mouse, and oxidative stress, derived from the formation of free radicals, might play an important role in the pathophysiology of these two models of schizophrenia.  相似文献   

8.
The study compares effects of the competitive and non-competitive NMDA receptor antagonists, CGP 40116 and MK-801 respectively, on the metabolism of dopamine and on the density of D-1 and D-2 dopaminergic receptors in the rat ventral tegmental area and substantia nigra. The effects of CGP 40116 were tested in a range of doses which either were devoid of or had locomotor- or stereotypy-stimulating effects. It was found that (1) CGP 40116 given in a dose of 5 mg/kg enhanced the locomotor activity of rats and evoked a stereotypy-like activity; doses of 1.25 and 2.5 mg/kg were devoid of such effects; (2) CGP 40116 (5 mg/kg) enhanced the concentrations of dopamine, DOPAC and HVA in the ventral tegmental area, whereas the lowest dose, 1.25 mg/kg was without effect; a dose of 2.5 mg/kg increased the concentration of dopamine only; the only effect of CGP 40116 (5 mg/kg) observed in substantia nigra, was an increase in dopamine concentration; its doses of 1.25 and 2.5 mg/kg were ineffective. (3) MK-801 (0.2 and 0.4 mg/kg) enhanced the concentrations of dopamine, DOPAC and HVA in both structures. A dose of 0.1 mg/kg increased the dopamine concentration only. The effects of MK-801 in substantia nigra were quantitatively weaker than those observed in ventral tegmental area. (4) Both CGP 40116 (5 mg/kg) and MK-801 (0.4 mg/kg) evolved alterations in the density of dopaminergic receptors. D-2 receptors, were up-regulated by MK-801 in ventral tegmental area and subregions of substantia nigra, i.e. pars compacta and pars reticulata, whereas CGP 40116 evoked similar effects in ventral tegmental area only. D-1 receptors in pars compacta and pars reticulata of substantia nigra were down-regulated after administration of either drug.It is concluded that competitive NMDA receptor antagonists in doses which evoke hyperlocomotion and stereotypy-like activity, may have a substantial impact on the dopaminergic neurotransmission in the rat ventral tegmental area and substantia nigra, similar to that described for MK-801, a non-competitive NMDA receptor antagonist. The obtained results may suggest that CGP 40116 and, possibly, other competitive NMDA antagonists may have dopaminomimetic properties, and that their clinical potentials may be limited by the risk of evoking dopamine-dependent psychotomimetic and abusing effects, similar to those described for MK-801.  相似文献   

9.
RATIONALE: Several agents that stimulate the glycine site of N-methyl-D: -aspartate (NMDA) receptors have been reported to moderately improve both negative symptoms and cognitive dysfunctions in patients with schizophrenia. However, differences in efficacy have also been reported, and further comparative pharmacological studies are still needed. OBJECTIVES: We aimed to explore the effects of two glycine site agonists of the NMDA receptor, glycine and D: -serine, and a partial agonist, D: -cycloserine, on prepulse inhibition (PPI) deficits induced by a NMDA receptor antagonist, MK-801, in mice. Furthermore, we performed in vivo microdialysis and additional PPI measurements using a selective glycine site antagonist to verify if the beneficial effects observed after the systemic administration of glycine were due to glycine itself via its activity at the glycine site. RESULTS: High doses of glycine (1.6 g/kg) and D: -serine (1.8 and 2.7 g/kg) significantly attenuated MK-801-induced PPI deficits. In contrast, D: -cycloserine did not show any amelioration of MK-801-induced PPI deficits at doses ranging from 7.5 mg/kg to 60 mg/kg. The selective glycine site antagonist, L-701,324 (10 mg/kg), antagonized the effect of glycine on MK-801-induced PPI deficits. Furthermore, in vivo microdialysis demonstrated that intraperitoneal injection of glycine significantly increased glycine and L: -serine levels, but decreased D: -serine levels in the prefrontal cortex. CONCLUSIONS: The findings of the present study suggest that glycine and D: -serine but not D: -cycloserine could attenuate PPI deficits associated with NMDA receptor hypofunction via NMDA glycine sites in the brain.  相似文献   

10.
The aim of this study was to examine the role of cortical NMDA receptors in the antipsychotic action of neuroleptics. Haloperidol (1 mg/kg/day) and clozapine (30 mg/kg/day) were administered to rats in drinking water. Autoradiographic and saturation binding analyses showed that a 3-month treatment with both haloperidol and clozapine increased the density of NMDA receptors labelled with [3H]CGP 39653 (a competitive antagonist) in the parietal and insular cortices. Haloperidol additionally increased the binding of that ligand in the frontal cortex. None of those neuroleptics influenced the binding of [3H]MK-801, an uncompetitive antagonist of NMDA receptors, in the frontal, parietal or insular cortices. A 6-week and a 3-month treatment with haloperidol antagonized the deficit of prepulse inhibition induced by phencyclidine (5 mg/kg s.c.). In contrast, short-term (4-day) administration of that neuroleptic was ineffective. The present study suggests that the increased density of cortical NMDA receptors, induced by long-term neuroleptic administration, may overcome the deficit of sensorimotor gating induced by phencyclidine. However, contribution of such an effect to the antipsychotic activity needs to be established.  相似文献   

11.
Systemic administration of NMDA receptor antagonists elevates extracellular glutamate within prefrontal cortex. The cognitive and behavioral effects of NMDA receptor blockade have direct relevance to symptoms of schizophrenia, and recent studies demonstrate an important role for nitric oxide and GABA(B) receptors in mediating the effects of NMDA receptor blockade on these behaviors. We sought to extend those observations by directly measuring the effects of nitric oxide and GABA(B) receptor mechanisms on MK-801-induced glutamate release in the prefrontal cortex. Systemic MK-801 injection (0.3 mg/kg) to male Sprague-Dawley rats significantly increased extracellular glutamate levels in prefrontal cortex, as determined by microdialysis. This effect was blocked by pre-treatment with the nitric oxide synthase inhibitor l-NAME (60 mg/kg). Reverse dialysis of the nitric oxide donor SNAP (0.5-5 mM) directly into prefrontal cortex mimicked the effect of systemic MK-801, dose-dependently elevating cortical extracellular glutamate. The effect of MK-801 was also blocked by systemic treatment with the GABA(B) receptor agonist baclofen (5 mg/kg). In combination, these data suggest increased nitric oxide formation is necessary for NMDA antagonist-induced elevations of extracellular glutamate in the prefrontal cortex. Additionally, the data suggest GABA(B) receptor activation can modulate the NMDA antagonist-induced increase in cortical glutamate release.  相似文献   

12.
Rationale Our group has recently shown that methamphetamine (METH) (2.5 mg/kg) induced delayed increases in glutamate (Glu) levels in the rat nucleus accumbens (NAC), and that its repeated administration leads to behavioral cross-sensitization to a selective uncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist, dizocilpine (MK-801).Objectives The present study aims to examine whether valproate (VPA) would inhibit the delayed increases in Glu levels and prevent METH (2.5 mg/kg)-induced behavioral cross-sensitization to MK-801 (0.2 mg/kg).Materials and methods We examined the effects of post-treated VPA (50 mg/kg) on METH (2.5 mg/kg)-induced delayed increases in Glu levels. We injected VPA (50 mg/kg) at 120 min after each METH (2.5 mg/kg, once every other day, total of five times) administration and measured locomotor activity induced by challenge with MK-801 (0.2 mg/kg) or METH (0.15 mg/kg) after sufficient withdrawal period. Finally, we measured locomotion induced by MK-801 (0.2 mg/kg) after pretreatment of a competitive NMDA receptor antagonist, CPP (30 mg/kg). Effects of VPA on extracellular Glu levels were examined by using in vivo microdialysis. Locomotor activity was measured by using an infrared sensor.Results VPA administered 120 min after METH injection had no effect on METH-induced hyperlocomotion, and inhibited METH-induced delayed increases in Glu levels. Repeated VPA administration prevented METH-induced behavioral cross-sensitization to MK-801, but not sensitization to METH. MK-801-induced hyperlocomotion was enhanced when pretreated with the competitive NMDA receptor antagonist, CPP.Conclusions These results suggest that VPA inhibits high-dose METH-induced delayed increases in Glu levels to prevent development of behavioral cross-sensitization to an NMDA antagonist, but not sensitization to METH.  相似文献   

13.
MK-801 induces psychotomimetic behavioural changes in animals. ERKs play an important role in the pathogenesis of schizophrenia and in the action of antipsychotics and psychotomimetics. We observed phosphorylation of ERK-signalling-pathway-associated molecules in the rat frontal cortex and their association with rat behaviour after MK-801 administration. After injecting 0.25-1 mg/kg MK-801, ERK phosphorylation decreased compared to vehicle treatment, and rats showed increased locomotion. After 2 mg/kg treatment, ERK phosphorylation increased and rat motility started to decrease. After treating with 4-8 mg/kg, ERK phosphorylation once again decreased and rats showed hypomotility and ataxia. ERK phosphorylation levels were maintained from 15 min to 90 min after 1 or 2 mg/kg treatment. Ser338-c-Raf and MEK phosphorylation showed similar dose-dependent and temporal patterns to those of ERK. Taken together, Ser338-c-Raf-MEK-ERK phosphorylation by MK-801 in the rat frontal cortex showed a specific pattern and may be associated with behavioural changes induced by MK-801.  相似文献   

14.
Clinical evidence demonstrates altered glutamatergic neurotransmission in patients suffering from obsessive-compulsive disorder (OCD). We examined the effects of glutamate-related drugs on marble-burying behavior, which is an animal model of OCD. The uncompetitive N-methyl-d-aspartate (NMDA) antagonists memantine (10 mg/kg, i.p.) and amantadine (30 mg/kg, i.p.) significantly inhibited marble-burying behavior without affecting locomotor activity in mice. Similarly, the uncompetitive NMDA receptor antagonist 5R,10S-(+)-5-methyl-10,11-dihydro-5H-dibenzo(a,d)cyclohepten-5,10-imine hydrogen maleate (MK-801, 0.3 mg/kg, i.p.) inhibited marble-burying behavior. However, MK-801 at the same dose markedly increased locomotor activity. By contrast, the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor antagonist 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide (NBQX) and the glutamate release inhibitor riluzole showed no effect on marble-burying behavior and significant suppression of locomotor activity. MK-801 (0.3 mg/kg, i.p.) and memantine (10 mg/kg, i.p.) significantly disrupted prepulse inhibition as an operational measure of sensorimotor gating. By contrast, amantadine (30 mg/kg, i.p.) did not affect prepulse inhibition. These findings suggest that amantadine could be a useful drug for the treatment of OCD.  相似文献   

15.
In rats, olfactory bulbectomy (OBX) causes changes in glutamatergic function in the amygdala (AMG) and induces mouse-killing behavior (MKB). The medial AMG (mAMG) plays an important role in the initiation and maintenance of OBX-induced MKB. In the present study, systemic injection or intra-mAMG perfusion of (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK-801) was used to determine the effects of MK-801, a noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist, on the expression of OBX-induced MKB in male Wistar rats that had undergone OBX 1 month previously. The effects of MK-801 on locomotion in OBX rats were also examined using the open-field test. Intraperitoneal injection of MK-801 at doses of 0.10 and 0.15 mg/kg resulted in reversible suppression of MKB, the effect being maximal within 1 h after drug treatment, then gradually disappearing over 6 h. Locomotor distance in OBX rats was not affected using 0.10 mg/kg of MK-801, but increased after treatment with 0.15 mg/kg of MK-801; both doses, however, caused the rats to spend longer in the central area of the open field. MKB was also reversibly suppressed by local perfusion of 1 mM MK-801 at a rate of 1 microl/min into the mAMG through microdialysis probes. These results suggest that NMDA receptors, at least, in the mAMG, are involved in the expression of OBX-induced MKB.  相似文献   

16.
Proteomic analysis was carried out for neuronal vacuolation in rat retrosplenial cortex (RSC) induced by MK-801, a N-methyl-D-aspartate (NMDA) receptor antagonist. Female rats were given a single subcutaneous (sc) injection of either MK-801 (9 mg/kg in saline) or saline. Comparison of changes in proteins in the RSC region between MK-801- and saline-treated groups revealed that MK-801 induced changes in six proteins involved in vesicular transport (vesicle-fusing ATPase) and glycolysis (fructose-bisphosphate aldolase C, triosephosphate isomerase, and glyceraldehyde-3-phosphate dehydrogenase).  相似文献   

17.
Systemic administration of kainic acid results in the development of a characteristic convulsive syndrome, accompanied by neuropathological alterations and loss of transmitter markers in some forebrain regions. Since some of these effects appear to involve the N-methyl-D-aspartate (NMDA) subtype of excitatory amino acid receptors, the protection given by a non-competitive (MK-801) and a competitive (CGP 39551) NMDA receptor antagonist against the loss of glutamatergic and gamma-amino butyric acid (GABAergic) neurochemical markers was compared. Appropriate doses of both compounds (1 mg/kg MK-801 and 25 mg/kg CGP 39551) completely reversed the decrease of high affinity uptake of glutamate and activity of glutamate decarboxylase in the olfactory cortex, amygdala, hippocampus and lateral septum. In addition, they also essentially counteracted the increase of a glial marker, the enzyme glutamine synthetase, consequent to neuronal degeneration. The results confirmed that involvement of NMDA receptors is essential for the full expression of neuropathological effects of kainic acid. They also support the use of a competitive antagonist of the NMDA receptor, such as CGP 39551, to afford substantial protection against the excitotoxic damage, whilst giving fewer side effects and motor disturbances than MK-801.  相似文献   

18.
The aim of this study was to establish the antagonistic effects of 1-methyl-1,2,3,4-tetrahydroisoquinoline (1MeTIQ) on NMDA receptors and its neuroprotective abilities on primary cultures of rat cerebellar granule cells exposed for 30 min to 250 or 100 μM glutamate. Neuronal viability was tested after 24 h with propidium iodide or calcein/ethidium homodimer-1 staining. The neuroprotective potential of 100, 250 or 500 μM 1MeTIQ was compared with established uncompetitive NMDA receptor antagonists, 0.5 μM MK-801, or 5 μM memantine. These substances were applied for 30 min either together with glutamate, 24 or 48 h before glutamate, or 0.5 h, 1 h and 3 h after exposure to the excitotoxin. The results demonstrated that MK-801, memantine and 500 μM 1MeTIQ induced an almost complete neuroprotection when co-applied with glutamate, but lower concentrations of 1MeTIQ were slightly less effective. Similar effects for 1MeTIQ and the established NMDA receptor antagonists were observed in the pretreatment experiments, even with a 48-h lag between the application of the tested substances and the excitotoxic challenge. In the post-treatment experiments, MK-801 and memantine and 500 μM 1MeTIQ applied up to 3 h after the exposure to glutamate significantly reduced the excitotoxic lesion, but 1MeTIQ in lower concentrations was ineffective. These results indicate that 1MeTIQ shares neuroprotective abilities with established uncompetitive NMDA receptor antagonists, which suggests that its inhibitory effect on NMDA receptors plays a key role in its anti-excitotoxic activity. Moreover, our data disclose a new mechanism of 1MeTIQ-evoked neuroprotection based on the induction of neuronal tolerance to excitotoxicity.  相似文献   

19.
The behavioral and biochemical effects of the noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist, MK-801 [+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate) were compared with those of phencyclidine (PCP). In the dose range used in this study, MK-801 (0.125-0.5 mg/kg i.p.) produced ataxia and other behavioral responses which were similar to PCP (5-10 mg/kg i.p.). However, turning and backpedalling induced by MK-801 were not dose-dependent and less intense at the dose producing approximately the same level of ataxia as PCP. Neurochemically, MK-801 (0.5 mg/kg i.p.) increased dopamine turnover in the cortex and striatum, but had no effect on 5-HT systems. It was also 3.4 times less potent in inhibiting 5-HT uptake than PCP. These results suggest that the behavioral responses induced by MK-801 involve primarily the PCP receptor and the dopamine system, and that the differences from PCP reflect a reduced effect on the 5-HT neuronal system.  相似文献   

20.
Interactions between excitatory amino acids and opioids were examined by studying the ability of the noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 to affect morphine catalepsy and lethality. MK-801 (0.3 mg/kg) reduced the ED50 for morphine-induced catalepsy from approximately 30 mg/kg to less than 10 mg/kg, and reduced the LD50 for morphine from approximately 100 mg/kg to approximately 10 mg/kg. Lower doses of MK-801 did not affect morphine catalepsy or lethality. MK-801, in the absence of morphine, produced no catalepsy or lethality at doses up to 3.0 mg/kg; at 0.3 mg/kg MK-801 caused weaving, body rolling and ataxis, as previously described, while at 3.0 mg/kg animals appeared to lose muscle tone, becoming limp. These results demonstrate that blockade of NMDA receptors can dramatically potentiate morphine catalepsy and lethality, and suggest a potential dangerous interaction with opioids in the clinical use of NMDA receptor antagonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号