首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Jia Z  Wang H  Yang T 《Hypertension》2012,59(1):122-128
Microsomal prostaglandin E synthase 1 (mPGES-1) is a cytokine-inducible enzyme responsible for generation of prostaglandin E(2) (PGE(2)) during the inflammatory response. In the present study, we investigated the role of mPGES-1 in the development of chronic renal failure in mice with 5/6 nephrectomy (Nx). After 4 weeks of Nx, wild-type mice with renal mass reduction exhibited increased blood urea nitrogen, plasma creatinine and phosphorus concentrations, and defective urine concentrating capability, all of which were significantly attenuated by mPGES-1 deletion. The Nx wild-type mice developed a 2.6-fold increase in urinary albumin excretion, accompanied by glomerulosclerosis and reduction of nephrin and wild-type 1 expression in the remnant kidney. In contrast, the Nx KO mice had normal albuminuria with improvement of glomerular injury. Nx-induced increases in circulating and renal tumor necrosis factor 1α and renal interleukin 1β and monocyte chemoattractant protein 1 expressions were all remarkably attenuated or abolished by mPGES-1 deletion. Paradoxically, the Nx knockout mice developed worsened anemia, accompanied by impaired erythropoietin synthesis. The coinduction of mPGES-1 and cyclooxygenase 2 but not cyclooxygenase 1 mRNA expressions, along with increased PGE(2) synthesis, was demonstrated in the remnant kidney of wild-type mice. mPGES-1 deletion remarkably reduced renal PGE(2) content and urinary PGE(2) excretion after renal ablation but had a limited effect on the baseline PGE(2) production. We conclude that mPGES-1 deletion ameliorates chronic renal failure in the mouse model of renal mass reduction, and mPGES-1 deletion paradoxically exacerbates anemia in this model likely via suppression of erythropoietin synthesis.  相似文献   

2.
Thioredoxin (TRX) plays important biological roles both in intra- and extracellular compartments, including in regulation of various intracellular molecules via thiol redox control. We produced TRX overexpressing mice and confirmed that there were no anatomical and physiological differences between wild-type (WT) mice and TRX transgenic (Tg) mice. In the present study we subjected mice to focal brain ischemia to shed light on the role of TRX in brain ischemic injury. At 24 hr after middle cerebral artery occlusion, infarct areas and volume were significantly smaller in Tg mice than in WT mice. Moreover neurological deficit was ameliorated in Tg mice compared with WT mice. Protein carbonyl content, a marker of cellular protein oxidation, in Tg mice showed less increase than did that of WT mice after the ischemic insult. Furthermore, c-fos expression in Tg mice was stronger than in WT mice 1 hr after ischemia. Our results suggest that transgene expression of TRX decreased ischemic neuronal injury and that TRX and the redox state modified by TRX play a crucial role in brain damage during stroke.  相似文献   

3.
Infection during the neonatal period commonly induces apnea episodes, and the proinflammatory cytokine IL-1beta may serve as a critical mediator between these events. To determine the mechanism by which IL-1beta depresses respiration, we examined a prostaglandin E(2) (PGE(2))-dependent pathway in newborn mice and human neonates. IL-1beta and transient anoxia rapidly induced brainstem-specific microsomal prostaglandin E synthase-1 (mPGES-1) activity in neonatal mice. Furthermore, IL-1beta reduced respiratory frequency during hyperoxia and depressed hypoxic gasping and autoresuscitation in mPGES-1 wild-type mice, but not in mPGES-1 knockout mice. In wild-type mice, PGE(2) induced apnea and irregular breathing patterns in vivo and inhibited brainstem respiratory rhythm generation in vitro. Mice lacking the EP3 receptor (EP3R) for PGE(2) exhibited fewer apneas and sustained brainstem respiratory activity, demonstrating that PGE(2) exerts its respiratory effects via EP3R. In human neonates, the infectious marker C-reactive protein was correlated with elevated PGE(2) in the cerebrospinal fluid, and elevated central PGE(2) was associated with an increased apnea frequency. We conclude that IL-1beta adversely affects breathing and its control by mPGES-1 activation and PGE(2) binding to brainstem EP3 receptors, resulting in increased apnea frequency and hypoxia-induced mortality.  相似文献   

4.
Most preterm deliveries are associated with infection and inflammation. Prostaglandin E2 (PGE2) is one of the most important mediators in the processes of inflammation, and is converted from PGH2 by various kinds of PGE synthases (PGESs). Among PGESs, microsomal PGES-1 (mPGES-1) is known to be the most important subtype in the processes of inflammation. To evaluate the role of PGESs in preterm delivery, we used mPGES-1 knockout mice in a lipopolysaccharide (LPS)-induced preterm labor model. Unexpectedly, the duration of labor after LPS treatment was not statistically different between C57BL6 wild-type mice and mPGES-1 knockout mice. In wild-type mice, mPGES-1 mRNA and protein expression increased in the myometrium and fetal membrane after LPS treatment. In contrast, the expression of mPGES-2 or cytosolic PGES was not changed by LPS treatment. On mPGES-1 knockout mice, mPGES-2 increased by LPS treatment in myometrium. The present data indicate that mPGES-1 may be involved in LPS-induced preterm labor, but inhibition of mPGES-1 alone may not prevent preterm delivery, because mPGES-2 might compensate for the role of mPGES-1.  相似文献   

5.
6.
OBJECTIVE: Prostaglandins (PGs) are found in high levels in the synovial fluid of patients with rheumatoid arthritis, and nonsteroidal blockade of these bioactive lipids plays a role in patient care. The aim of this study was to explore the relative contribution of cyclooxygenase (COX) isoforms and PG species in the autoantibody-driven K/BxN serum-transfer arthritis. METHODS: The prostanoid content of arthritic ankles was assessed in ankle homogenates, and the importance of this pathway was confirmed with pharmacologic blockade. The presence of COX isoforms was assessed by Western blotting and their functional contribution was compared using COX-1-/- and COX-2-/- mice as well as isoform-specific inhibitors. The relative importance of PGE2 and PGI2 (prostacyclin) was determined using mice deficient in microsomal PGE synthase 1 (mPGES-1) and in the receptors for PGI2. RESULTS: High levels of PGE2 and 6-keto-PGF1alpha (a stable metabolite of PGI2) were detected in arthritic joint tissues, correlating strongly with the intensity of synovitis. Pharmacologic inhibition of PG synthesis prevented arthritis and ameliorated active disease. While both COX isoforms were found in inflamed joint tissues, only COX-1 contributed substantially to clinical disease; COX-1-/- mice were fully resistant to disease, whereas COX-2-/- mice remained susceptible. These findings were confirmed by isoform-specific pharmacologic inhibition. Mice lacking mPGES-1 (and therefore PGE2) developed arthritis normally, whereas mice incapable of responding to PGI2 exhibited a significantly attenuated arthritis course, confirming a role of PGI2 in this arthritis model. CONCLUSION: These findings challenge previous paradigms of distinct "housekeeping" versus inflammatory functions of the COX isoforms and highlight the potential pathogenic contribution of prostanoids synthesized via COX-1, in particular PGI2, to inflammatory arthritis.  相似文献   

7.
This study attempts to address an important clinical issue by identifying potential candidates of VEGF signaling through Flt-1 receptor that trigger angiogenic signal under ischemic stress. To determine the significance of VEGF-Flt-1 (VEGFR1) signaling in ischemic preconditioned (PC) myocardium, we used heterozygous Flt-1 knockout (KO) mice to dissect the pathway and identify candidate genes involved in VEGF signaling. DNA microarrays were employed to detect, characterize and distinguish altered myocardial gene expression by comparing between wild type (WT) CD-1 and heterozygous Flt-1 KO mice when exposed to ischemia (30 min) and reperfusion (2 h). Moreover, KO mice demonstrated reduced beneficial effects of PC when compared to the WT with PC. In the KO and WT mice, the % recovery of the left ventricular developed pressure and the maximum first derivative of the developed pressure after ischemia/reperfusion without PC were similar. However, when animals were subjected to PC, the left ventricular functional recovery throughout the reperfusion period was significantly lower in KO mice than in WT mice. These results indicate for the first time that in the heterozygous Flt-1 KO mice, PC is not as effective as that found in WT. This observation may be due to downregulation of several important genes such as growth-regulated oncogene 1 (Gro1), heat shock proteins (HSP), I kappa B kinase beta (IKK beta), colony-stimulating factor-1 (CSF-1) and annexin A7, suggesting the importance of VEGF-Flt-1 receptor signaling during PC.  相似文献   

8.
9.
OBJECTIVE: Microsomal prostaglandin E synthase 1 (mPGES-1) catalyzes the formation of PGE(2) from cyclooxygenase-derived PGH(2). Microsomal PGES-1 is induced by proinflammatory cytokines and is strongly linked to conditions that result in high PGE(2) biosynthesis. PGE(2) contributes to the pathogenesis of rheumatoid arthritis (RA), acting as a mediator of inflammation and promoting bone destruction. Induction of mPGES-1 in rheumatoid synoviocytes by proinflammatory cytokines has been demonstrated in vitro, indicating an important role in RA pathogenesis. Recent studies using mPGES-1-deficient mice demonstrated the importance of this gene in chronic inflammation. The aim of this study was to investigate the expression and localization of mPGES-1 in synovial biopsy specimens obtained from patients with RA. METHODS: Synovial tissue samples from 24 patients with RA were obtained, and immunohistologic analysis was performed using polyclonal antibodies against mPGES-1. Double immunofluorescence staining was performed with antibodies to CD3, CD19, CD20, CD68, CD163, and prolyl 4-hydroxylase. RESULTS: Intracellular mPGES-1 staining was observed in synovial membranes from all of the RA patients studied. Specifically, strong expression of mPGES-1 was detected in synovial lining cells. In sublining mononuclear and fibroblast-like cells, the extent of mPGES-1 staining was less than that in the synovial lining cells. In some patients, positive staining was observed in endothelial cells. With the double immunofluorescence technique, mPGES-1 production was detected in synovial macrophages and fibroblasts, while mPGES-1 expression was not observed in lymphocytes. CONCLUSION: The demonstration of mPGES-1 expression in synovial tissues from patients with RA suggests a role for mPGES-1 in the RA disease process. Microsomal PGES-1 might be a potential new target for treatment strategies to control PGE(2) synthesis in patients with RA, without the systemic side effects associated with cyclooxygenase inhibitors.  相似文献   

10.
OBJECTIVE: Microsomal prostaglandin E synthase 1 (mPGES-1) is up-regulated in experimental arthritis and markedly expressed in synovial tissue biopsy samples from patients with rheumatoid arthritis (RA). This study was carried out to determine the effects of tumor necrosis factor (TNF) blockers and glucocorticoids on mPGES-1 and cyclooxygenase (COX) expression, as well as biosynthesis of PGE(2) in rheumatoid joints. METHODS: In vitro effects of TNF blockers and dexamethasone on the PGE(2) biosynthetic pathway were examined in RA synovial fluid mononuclear cells (SFMCs) by flow cytometry. PGE(2) levels in culture supernatants were measured by enzyme immunoassay. Expression of enzymes responsible for PGE(2) synthesis ex vivo was evaluated by immunohistochemistry in synovial biopsy samples obtained from 18 patients before and after treatment with TNF blockers and from 16 patients before and after intraarticular treatment with glucocorticoids. Double immunofluorescence was performed using antibodies against mPGES-1, COX-1, COX-2, and CD163. RESULTS: Double immunofluorescence revealed that mPGES-1 and COX-2 were colocalized in SFMCs as well as in RA synovial tissue cells. The addition of either TNF blockers or dexamethasone suppressed lipopolysaccharide-induced mPGES-1 and COX-2 expression in synovial fluid monocyte/macrophages in vitro and decreased the production of PGE(2). Intraarticular treatment with glucocorticoids significantly reduced both mPGES-1 and COX-2 expression in arthritic synovial tissue ex vivo. The number of COX-1-expressing cells in synovial tissue was also significantly decreased by glucocorticoid treatment. In contrast, neither mPGES-1 nor COX-2 expression in synovial tissue was significantly suppressed by anti-TNF therapy. CONCLUSION: These data are the first to demonstrate the effects of antirheumatic treatments on mPGES-1 expression in RA and suggest that the inhibition of PGE(2) biosynthesis, preferably by targeting mPGES-1, might complement anti-TNF treatment for optimal antiinflammatory results in RA.  相似文献   

11.
Osteopontin (OPN), an extracellular matrix protein, is expressed in the myocardium with hypertrophy and failure. We tested the hypothesis that OPN plays a role in left ventricular (LV) remodeling after myocardial infarction (MI). Accordingly, OPN expression and LV structural and functional remodeling were determined in wild-type (WT) and OPN knockout (KO) mice 4 weeks after MI. Northern analysis showed increased OPN expression in the infarcted region, peaking 3 days after MI and gradually decreasing over the next 28 days. In the remote LV, OPN expression was biphasic, with peaks at 3 and 28 days. In situ hybridization and immunohistochemical analyses showed increased OPN mRNA and protein primarily in the interstitium. Infarct size, heart weight, and survival were similar in KO and WT mice after MI (P=NS), whereas the lung wet weight/dry weight ratio was increased in the KO mice (P<0.005 versus sham-operated mice). Peak LV developed pressure was reduced to a similar degree after MI in the KO and WT mice. The number of terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL)-positive myocytes was similar in KO and WT mice after MI. In contrast, post-MI LV chamber dilation was approximately twice as great in KO versus WT mice (P<0.001). Myocyte length increased after MI in WT mice (P<0.001) but not in KO mice. Electron microscopy showed increased collagen content in WT mice after MI but not in KO mice after MI. Type I collagen content was increased approximately 3-fold and approximately 7-fold in remote and infarcted regions, respectively, of WT hearts after MI but not in KO hearts (P<0.01 versus WT hearts). Likewise, Northern analyses showed increased collagen I(alpha(1)) mRNA after MI in remote regions of WT hearts but not in KO hearts. Thus, increased OPN expression plays an important role in regulating post-MI LV remodeling, at least in part, by promoting collagen synthesis and accumulation.  相似文献   

12.
BACKGROUND: Tumor necrosis factor (TNF)-alpha is linked to the pathogenesis of cardiovascular diseases, but how it affects myocardial infarction (MI), so the present study examined the effects of TNF-alpha and the involvement of intercellular adhesion molecule (ICAM)-1 on MI. METHODS AND RESULTS: Left coronary arteries of C57BL/6 wild type (WT) and TNF-alpha knockout (KO) mice were ligated and the mice were killed 1, 3, and 7 days later. Fractional shortening on echocardiography of the KO mice was significantly higher than that of the WT mice from day 1 to 7 (p<0.01). The ICAM-1 mRNA in the infarcted area of the KO mice was significantly lower than that of the WT from day 1 (p<0.01) to 7. In immunohistochemistry, the expression of ICAM-1 was weaker in the KO than in the WT mice. The number of neutrophils in the KO mice peaked at day 1, but even this peak level failed to reach the levels in the infarcted (p<0.01) and peri-infarcted areas (p<0.05) in the WT. The number of macrophages in the KO mice peaked at day 7, but this peak level failed to reach the levels in the infarcted (p<0.01) and peri-infarcted areas (p<0.05) in the WT. CONCLUSION: In a permanent occlusion model of MI TNF-alpha decreased cardiac function and ameliorated myocardial remodeling through the induction of ICAM-1.  相似文献   

13.
Prostaglandin (PG) D2 has been proposed to be essential for the initiation and maintenance of the physiological sleep of rats because intracerebroventricular administration of selenium tetrachloride (SeCl4), a selective inhibitor of PGD synthase (PGDS), was shown to reduce promptly and effectively the amounts of sleep during the period of infusion. However, gene knockout (KO) mice of PGDS and prostaglandin D receptor (DP1R) showed essentially the same circadian profiles and daily amounts of sleep as wild-type (WT) mice, raising questions about the involvement of PGD2 in regulating physiological sleep. Here we examined the effect of SeCl4 on the sleep of WT and KO mice for PGDS and DP1R and that of a DP1R antagonist, ONO-4127Na, on the sleep of rats. The i.p. injection of SeCl4 into WT mice decreased the PGD2 content in the brain without affecting the amounts of PGE2 and PGF(2alpha). It inhibited sleep dose-dependently and immediately after the administration during the light period when mice normally sleep, increasing the wake time; and the treatment with this compound resulted in a distinct sleep rebound during the following dark period. The SeCl4-induced insomnia was observed in hematopoietic PGDS KO mice but not at all in lipocalin-type PGDS KO, hematopoietic and lipocalin-type PGDS double KO or DP1R KO mice. Furthermore, the DP1R antagonist ONO-4127Na reduced sleep of rats by 30% during infusion into the subarachnoid space under the rostral basal forebrain at 200 pmol/min. These results clearly show that the lipocalin-type PGDS/PGD2/DP1R system plays pivotal roles in the regulation of physiological sleep.  相似文献   

14.
姚莉  王洪涛  刘军  殷玥  卜艳  马恒  郑强荪 《心脏杂志》2014,26(3):254-258
目的:探讨心肌线粒体去乙酰化酶SIRT3对急性缺血再灌注(I/R)所致心律失常的影响。方法:以24只SIRT3基因敲除型小鼠为实验对象,用24只野生型小鼠为对照,两种小鼠均随机各分为对照组、假手术组、I/R模型组及I/R+烟酰胺腺嘌呤二核苷酸(NAD+)治疗组,每组6只小鼠(n=6)。采用冠脉左前降支结扎缺血30 min再灌注2 h建立在体大鼠急性心肌I/R模型,于术中监测心电指标。取心肌组织检测SIRT3、锰超氧化物歧化酶(MnSOD)和过氧化氢酶(Catalase)蛋白的表达和心肌内氧自由基(ROS)的水平。结果:与野生型对照小鼠相比,SIRT3基因敲除型小鼠心肌中SIRT3、MnSOD和Catalase蛋白表达的水平显著降低。心律失常评分的结果显示,SIRT3基因敲除型小鼠的假手术组即可观察到心律失常。SIRT3基因敲除可导致小鼠心肌I/R所致心律失常显著加重(与野生型模型组相比,P<0.05)。心肌I/R后,SIRT3基因敲除型小鼠心肌中ROS的增加程度明显高于野生型模型组小鼠(P<0.05)。预先采用NAD+治疗,可显著提高野生型I/R小鼠心肌SIRT3的活性(与野生型小鼠模型组相比,P<0.05),显著增加心肌MnSOD的活性,进而有效地抑制I/R小鼠心肌中ROS的水平,有效缓解I/R所致心律失常(与野生型小鼠模型组相比,均P<0.05)。但是,SIRT3基因敲除后,NAD+治疗引起的上述心肌保护作用基本消失。结论:心肌中SIRT3表达的降低可能是加重心肌I/R过程中氧化应激损伤并促发心律失常的重要机制。SIRT3正常活性的维持有助于对抗心肌I/R损伤(MIRI)的发生。  相似文献   

15.
Nitric oxide produced by inducible nitric oxide synthase (NOS2) has been implicated in the pathophysiology of chronic myocardial remodeling and failure. We tested the role of NOS2 in left ventricular (LV) remodeling early (1 month) and late (4 months) after myocardial infarction (MI) in mice lacking NOS2. MI size measured 7 days, 1 month, and 4 months after MI was the same in NOS2 knockout (KO) and wild-type (WT) mice. The LV end-diastolic pressure-volume relationship measured by the isovolumic Langendorff technique showed a progressive rightward shift from 1 to 4 months after MI in WT mice. LV developed pressure measured over a range of LV volumes was reduced at 1 and 4 months after MI in WT mice (P<0.05 and P<0.01 versus shams, respectively). In KO mice, the rightward shift was similar to that in WT mice at 1 and 4 months after MI, as was peak LV developed pressure at 1 month after MI. In contrast, at 4 months after MI, peak LV developed pressure in KO mice was higher than in WT mice (P<0.05 versus WT) and similar to that in sham-operated mice. At 1 month after MI, the frequency of terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL)-positive myocytes in the remote myocardium was increased to a similar extent in WT and KO mice. At 4 months after MI, the frequency of apoptotic myocytes was increased in WT mice but not in KO mice (P<0.05 versus WT). Improved contractile function and reduced apoptosis were associated with reduced mortality rate in KO mice at 4 months after MI. Thus, NOS2 does not play an important role in determining infarct size or early LV remodeling during the first month after MI. In contrast, during late (ie, 4 months after MI) remodeling, NOS2 in remote myocardium contributes to decreased contractile function, increased myocyte apoptosis in remote myocardium, and reduced survival.  相似文献   

16.
王瑞  王萍  徐斌  项国建  魏国良  杨杰  李泱 《心脏杂志》2014,26(4):378-383
目的:观察大蒜素(Gar)对自发性高血压大鼠(SHR)肠系膜动脉平滑肌细胞L-型钙电流(LCa,L)的影响。方法:利用双酶-两步法消化得到单个大鼠肠系膜动脉血管平滑肌细胞,用全细胞膜片钳记录钙电流。在细胞池中灌流含Gar的细胞外液,观察药物对LCa,L的作用和门控机制及门控动力学参数的改变。结果:1Gar对ICa,L的抑制效应呈浓度依赖性和电压依赖性特征。刺激电位0 mV时,200μmol/L Gar可使ICa,L峰值密度由(-8.4±0.4)pA/pF降低为(-6.1±0.3)pA/pF;2药物可使ICa,L半激活电压V1/2右移,半失活电压左移及失活后恢复动力学减慢等环节可减少通道的开放和重复开放,从而减少ICa,L峰值密度和窗口电流。结论:Gar可能通过减少细胞的钙电流发挥降压效应。  相似文献   

17.
Human CYP2J2 is abundant in heart and active in the biosynthesis of epoxyeicosatrienoic acids (EETs); however, the functional role of this P450 and its eicosanoid products in the heart remains unknown. Transgenic mice with cardiomyocyte-specific overexpression of CYP2J2 were generated. CYP2J2 transgenic (Tr) mice have normal heart anatomy and basal contractile function. CYP2J2 Tr hearts have improved recovery of left ventricular developed pressure (LVDP) compared with wild-type (WT) hearts after 20 minutes ischemia and 40 minutes reperfusion. Perfusion with the selective P450 epoxygenase inhibitor N-methylsulphonyl-6-(2-proparglyloxyphenyl)hexanamide (MS-PPOH) for 20 minutes before ischemia results in reduced postischemic LVDP recovery in WT hearts and abolishes the improved postischemic LVDP recovery in CYP2J2 Tr hearts. Perfusion with the ATP-sensitive K(+) channel (K(ATP)) inhibitor glibenclamide (GLIB) or the mitochondrial K(ATP) (mitoK(ATP)) inhibitor 5-hydroxydecanoate (5-HD) for 20 minutes before ischemia abolishes the cardioprotective effects of CYP2J2 overexpression. Flavoprotein fluorescence, a marker of mitoK(ATP) activity, is higher in cardiomyocytes from CYP2J2 Tr versus WT mice. Moreover, CYP2J2-derived EETs (1 to 5 micromol/L) increase flavoprotein fluorescence in WT cardiomyocytes. CYP2J2 Tr mice exhibit increased expression of phospho-p42/p44 mitogen-activated protein kinase (MAPK) after ischemia, and addition of the p42/p44 MAPK kinase (MEK) inhibitor PD98059 during reperfusion abolishes the cardioprotective effects of CYP2J2 overexpression. Together, these data suggest that CYP2J2-derived metabolites are cardioprotective after ischemia, and the mechanism for this cardioprotection involves activation of mitoK(ATP) and p42/p44 MAPK.  相似文献   

18.
Microsomal prostaglandin E synthase-1 (mPGES-1), an inducible enzyme that specifically catalyzes the conversion of prostaglandin H2 (PGH2) to prostaglandin E2 (PGE2), has been reported to be over-expressed in a variety of solid tumor cells and tissues, but not in normal tissues. Its association with leukemia, however, has not been fully investigated. Our study revealed, for the first time, that mPGES-1 is over-expressed in human acute myeloid leukemia HL-60 cells. Cytotoxicity assays and flow cytometry showed that MK886, an inhibitor of mPGES-1, inhibits proliferation of HL-60 cells and induces apoptosis in a dose- and time-dependent manner, which may result from down-regulation of mPGES-1 expression and PGE2 synthesis. Evaluation of mediators of apoptotic signaling revealed up-regulation of BAX expression and caspase-3 activity, as well as significant decreases in Bcl2 and P-Akt. We conclude that MK886 reduces the viability of leukemia HL-60 cells by reducing mPGES-1 expression and PGE2 synthesis in a dose-dependent manner, which strongly suggests that mPGES-1 inhibitors should be considered as promising candidates for leukemia treatment.  相似文献   

19.
BACKGROUND: Although prostaglandin E2 (PGE2), cyclooxygenase 2 (COX-2), and microsomal prostaglandin E synthase 1 (mPGES-1) are known to play a role in various inflammatory events, their roles in the pathogenesis of gastro-oesophageal reflux disease are not known. AIMS: We examined the dynamics of COX-1, COX-2, mPGES-1, mPGES-2, cytosolic PGES (cPGES), and PGE2 synthetic activity in rat acid reflux oesophagitis and the effects of COX-2 inhibitors on the severity of oesophagitis. METHODS: Acid reflux oesophagitis was induced by ligating the transitional region between the forestomach and the glandular portion and wrapping the duodenum near the pylorus. Rats were killed on day 3 (acute phase) or day 21 (chronic phase) after induction of oesophagitis. RESULTS: Expression of COX-2 and mPGES-1 was markedly increased in oesophagitis while modest changes in COX-1, cPGES, and mPGES-2 expression were observed. COX-2 and mPGES-1 were colocalised in epithelial cells of the basal layer, as well as inflammatory and mesenchymal cells in the lamina propria and submucosa. COX-2 inhibitors significantly reduced the severity of chronic oesophagitis but did not affect acute oesophageal lesions. COX-2 inhibitors significantly inhibited the increase in PGE2 synthesis in oesophageal lesions on both days 3 and 21. Epithelial proliferation was significantly increased in the basal layer on day 21. Inflammatory cells and epithelial cells of the basal layer exhibited reactions for EP4 in oesophagitis. CONCLUSION: PGE2 derived from COX-2 and mPGES-1 plays a significant role in the pathogenesis of chronic acid reflux oesophagitis, and possibly in basal hyperplasia and persistent inflammatory cell infiltration.  相似文献   

20.
Prostaglandins (PGs) play a pivotal role in luteolysis, maternal recognition of pregnancy, and implantation. In many species, including pigs, both conceptus (embryo and associated membranes) and endometrium synthesize PGE(2), which may antagonize PGF(2alpha) by playing a luteotropic/antiluteolytic role. Previously, we have reported expression profiles of PG G/H synthases (PGHS-1 and PGHS-2), PGE synthase (mPGES-1), and PGF synthase (PGFS) in the endometrium of cyclic and pregnant pigs. In the present study, expression of above-mentioned PG synthesis enzymes and PG 9-ketoreductase (CBR1), which converts PGE(2) into PGF(2alpha), and the PGE(2)/PGF(2alpha) ratios were investigated in porcine peri- and post-implantation conceptuses. Furthermore, expression of CBR1 was examined in the endometrium. PGHS-2 and mPGES-1 were upregulated, and PGHS-1, PGFS, and CBR1 were downregulated in conceptuses during trophoblastic elongation. A second increase of mPGES-1 mRNA occurred after days 20-21 of pregnancy. After initiation of implantation, expression of PGHS-1, PGFS, and CBR1 in conceptuses increased and remained higher until days 24-25 of pregnancy. Comparison of the endometrial CBR1 protein expression in cyclic and pregnant gilts revealed upregulation on days 16-17 of the cycle and downregulation on days 10-11 of pregnancy. In conclusion, reciprocal expression of PGHS-2, mPGES-1, PGFS, and CBR1 in day 10-13 conceptuses and decrease of endometrial CBR1 may be important in increasing the PGE(2)/PGF(2alpha) ratio during maternal recognition of pregnancy. This study indicates that PGE(2) produced via PGHS-2 and mPGES-1 in conceptus may be involved in corpus luteum control. Moreover, high expression of conceptus PGHS-1, mPGES-1, PGFS, and CBR1 after initiation of implantation suggests their significant role in placentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号