首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pro-fibrogenic potential of PDGF-D in liver fibrosis   总被引:4,自引:0,他引:4  
BACKGROUND/AIMS: We analyzed the expression of platelet-derived growth factor D (PDGF-D) in an experimental bile duct-ligated (BDL) rat model and assessed its biological function in cultured hepatic stellate cells (HSC) and myofibroblasts (MFB). METHODS: The mRNA for PDGF-A, -B, -C, -D and for PDGF receptor-alpha and -beta chains (PDGFRalpha and PDGFRbeta) in normal and fibrotic rat livers was assessed quantitatively. Protein levels of PDGF-D were quantified by immunoblotting and immunohistochemistry. RESULTS: The relative mRNA expression of all PDGF isoforms and receptors upregulated upon BDL and PDGF-A, -B and -D expression was significantly higher than that of PDGF-C. PDGF-D and PDGFRbeta protein also increased markedly. Immunostaining revealed that PDGF-D is localized along the fibrotic septa of the periportal- and perisinusoidal areas. Besides PDGF-B, PDGF-D is the second most potent PDGF isoform in PDGFRbeta signaling within HSC/MFB, evidenced by PDGFRbeta autophosphorylation and activation of the downstream signaling molecules ERK1/2-, JNK-, p38 MAPK, and PKB/Akt while PDGF-C effects were minimal. PDGF-D exerted mitogenic and fibrogenic effects in both cultured HSC and MFB comparable to PDGF-B but PDGF-A and -C showed only marginal fibrogenic effects. CONCLUSIONS: PDGF-D possesses potential pathogenetic properties for HSC activation and matrix remodeling in liver fibrosis.  相似文献   

2.
CD147 expressed by monocytes, macrophages, and synoviocytes cells can stimulate the production of matrix metalloproteinases (MMPs) associated with the development of rheumatoid arthritis (RA). We investigated the effects of Sinomenine (SIN) on invasion and migration ability and gene expression of CD147, MMP-2, MMP-9 of fibroblast-like synoviocytes cells (FLS) co-cultured with activated human monocytic THP-1 cells (A-THP-1) in vitro. SIN is a pure alkaloid extracted from the Chinese medical plant Sinomenium acutum. FLS cells were co-cultured with THP-1 cells which were induced to differentiate into macrophages with phorbol 12-myristate 13-acetate (PMA). Cells were treated with different concentrations of SIN. Invasion and migration ability of cells was tested by transwell assays. Western blot analysis and zymographic analysis were adopted to detect the expression of CD147 and MMPs, respectively. RT–PCR was used to determine the expression of mRNA of CD147, MMP-2, and MMP-9. The invasion and migration ability of the co-cultured cells was significantly inhibited by SIN in a concentration-dependent fashion, and at the same time, the levels of CD147, MMP-2, MMP-9 were markedly down-regulated. This inhibitory effect was most notable at concentrations of 0.25 and 1.00 mM (P < 0.01). Our results point to a possible mechanism of SIN on treatment of RA is the inhibitory effect of SIN on cell invasion and migration ability, which strongly correlates with repressing the expression of CD147, MMP-2, and MMP-9.  相似文献   

3.
4.
Cardiac remodeling occurs in the infarcted heart (MI). The underlying regulatory mechanisms are under investigation. Platelet-derived growth factor (PDGF) is a family of growth factors that stimulates cell growth, differentiation and migration. Herein, we sought to determine whether PDGF is involved in cardiac repair/remodeling following MI. The temporal and spatial expressions of PDGF isoforms (A, B, C and D) and PDGF receptor (PDGFR)-α and β as well as cell types expressing PDGF were examined in the infarcted rat heart. Sham-operated rats served as controls. We found that the normal myocardium expressed all PDGF isoforms, and cell types expressing PDGF were primarily interstitial cells. Following MI, PDGF-A and D were significantly increased in the infarcted myocardium during 6 weeks of the observation period and cells expressing PDGF-A and D were primarily endothelial cells, macrophages and myofibroblasts (myoFb). PDGF-B and C expressions were, however, reduced in the infarcted heart. In the noninfarcted myocardium, PDGF-D expression was increased in the late stage of MI and cells expressing PDGF-D were predominantly fibroblasts. Both PDGFR-α and β were significantly increased in the infarcted myocardium in the early and late stages of MI and in the noninfarcted myocardium in the late stage of MI. Enhanced PDGF-A, PDGF-D and PDGFR are coincident with angiogenesis, and inflammatory and fibrogenic responses in the infarcted myocardium, suggesting their regulation on cardiac repair. Elevated PDGF-D in the noninfarcted myocardium suggests its involvement in the development of interstitial fibrosis that appears in the late stage of MI.  相似文献   

5.
目的探讨视黄醛X受体(retinoid X receptors,RXRs)特异性激动剂9-顺式维甲酸(9-cisRA)对佛波酯(PMA)诱导人单核细胞系THP-1基质金属蛋白酶-9(MMP-9)表达及活性的影响。方法体外培养THP-1细胞,PMA诱导分化为巨噬细胞,采用9-cisRA对不同浓度PMA组进行干预,应用Realtime-PCR、Westerblotting测定THP-1细胞MMP-9的基因和蛋白水平表达水平,通过Gelatin Zymography法检测MMP-9的酶活性。结果9-cisRA(100nmol/L)对不同浓度PMA组(10、20和40 nmol/L)干预24 h,9-cisRA可明显抑制THP-1细胞MMP-9转录水平,MMP-9的mRNA抑制率分别28%、60%、88%(P<0.01)。MMP-9蛋白水平及酶活性也呈显著下降。结论RXRs特异性激动剂9-cisRA可显著抑制PMA诱导THP-1的MMP-9转录和蛋白水平表达及其酶活性。  相似文献   

6.
Macrophages and arterial smooth muscle cells comprise the cellular components of the atherosclerotic plaque. The vessel wall accumulation of macrophages occurs by a process of increased circulating monocyte migration into the vessel wall. In these studies it is demonstrated that human macrophages and arterial smooth muscle cells in culture secrete potent chemotactic factors for freshly isolated human monocytes. In contrast, human fibroblast-conditioned medium has no chemotactic activity. The effect of macrophage-conditioned medium is a function of macrophage differentiation and can be potentiated by macrophage activation. These results suggest that secretory products of human macrophages and arterial smooth muscle cells may be important stimuli for increased monocyte migration into the vessel wall in vivo.  相似文献   

7.
OBJECTIVE: To evaluate whether expression of platelet derived growth factor B (PDGF-B) protein is associated with expression of its receptor protein in human coronary arteries after angioplasty and to identify cells involved. BACKGROUND: PDGF is considered an important growth factor in the repair process of the vessel wall after angioplasty. In situ hybridisation has revealed expression of PDGF-A and -B chain messenger ribonucleic acid (mRNA) in human coronary arteries at sites of postangioplasty injury. METHODS: Target and non-target sites of eight coronary arteries were studied immunohistochemically for PDGF-B and PDGF-beta receptor proteins in relation to macrophages, T lymphocytes, smooth muscle cells, and HLA-DR positive cells. RESULTS: The PDGF-B and PDGF-beta receptor proteins were expressed in areas with distinct repair, containing alpha actin negative spindle cells, macrophages and, at later stages, alpha actin positive smooth muscle cells as well. When the neointima was composed mainly of alpha actin smooth muscle cells, PDGF-B expression was rare and PDGF-beta receptor expression was negative. CONCLUSIONS: There is expression of PDGF-B and PDGF-beta receptor proteins at sites of postangioplasty repair in human coronary arteries. The associated cells are mainly macrophages and alpha actin negative spindle cells; the latter may be dedifferentiated smooth muscle cells. A link between PDGF expression and the postangioplasty time interval suggests a relation with cell differentiation as part of the maturation of the repair tissue. Mutual expression of both the growth factor and its receptor protein strongly suggests that in humans a PDGF mediated repair process occurs, with involvement of smooth muscle cells and macrophages.  相似文献   

8.
Abstract

To investigate the mechanism of antirheumatic action of mizoribine (MZR), we examined the expression of matrix metalloproteinase-1 (MMP-1) and MMP-3 utilizing THP-1 derived macrophage-like cells (THP-1 macrophages) and human synovial fibroblasts (SFs). The cells were respectively stimulated with lipopolysaccharide (LPS) and interleukin-1β in the presence or absence of MZR in vitro. The concentrations of MMP-1 and MMP-3 in the supernatant were measured by enzyme-linked immunosorbent assay. The secretion of MMP-1 from SFs, as well as THP-1 macrophages, was inhibited by MZR in a dose-dependent manner. Furthermore, a quantitative real-time polymerase chain reaction revealed that MZR decreased the expression of MMP-1 messenger RNA. These findings may be an explanation for the clinical effect of MZR in patients with rheumatoid arthritis.  相似文献   

9.
Vascular endothelial growth factor (VEGF) has been recognized as an angiogenic factor that induces endothelial proliferation and vascular permeability. Recent studies have also suggested that VEGF can promote macrophage migration, which is critical for atherosclerosis. We have reported that VEGF is remarkably expressed in activated macrophages, endothelial cells, and smooth muscle cells within human coronary atherosclerotic lesions, and we have proposed the significance of VEGF in the progression of atherosclerosis. To clarify the mechanism of VEGF expression in atherosclerotic lesions, we examined the regulation of VEGF expression by oxidized low density lipoprotein (Ox-LDL), which is abundant in atherosclerotic arterial walls. A recent report has revealed that peroxisome proliferator-activated receptor-gamma (PPARgamma) is expressed not only in adipocytes but also in monocytes/macrophages and has suggested that PPARgamma may have a role in the differentiation of monocytes/macrophages. Furthermore, 9- and 13-hydroxy-(S)-10,12-octadecadienoic acid (9- and 13-HODE, respectively), the components of Ox-LDL, may be PPARgamma ligands. Therefore, we investigated the involvement of PPARgamma in the regulation of VEGF by Ox-LDL. PPARgamma expression was detected in human monocyte/macrophage cell lines, human acute monocytic leukemia (THP-1) cells, and human coronary artery endothelial cells (HCAECs). Ox-LDL (10 to 50 microg/mL) upregulated VEGF secretion from THP-1 dose-dependently. VEGF mRNA expression in HCAECs was also upregulated by Ox-LDL. The mRNA expression of VEGF in THP-1 cells and HCAECs was also augmented by PPARgamma activators, troglitazone (TRO), and 15-deoxy-(12,14)-prostaglandin J(2) (PGJ2). In contrast, VEGF expression in another monocyte/macrophage cell line, human histiocytic lymphoma cells (U937), which lacks PPARgamma expression, was not augmented by TRO or PGJ2. We established the U937 cell line, which permanently expresses PPARgamma (U937T). TRO and Ox-LDL augmented VEGF expression in U937T. In addition, VEGF production by THP-1 cells was significantly increased by exposure to 9-HODE and 13-HODE. In conclusion, Ox-LDL upregulates VEGF expression in macrophages and endothelial cells, at least in part, through the activation of PPARgamma.  相似文献   

10.
Background and aimThe migration of vascular smooth muscle cells from the tunica media to the subendothelial region is a key event in the development of atherosclerosis. Curcumin, which is consumed daily by millions of people, is a polyphenol derived from the plant Curcuma longa. In this study, we investigated the effects of curcumin on tumor necrosis factor-α (TNF-α)-induced cell migration, the formation of intracellular reactive oxygen species (ROS), the translocation of nuclear factor-κB (NFκB) and the activation and expression of MMP-9 in human aortic smooth muscle cells (HASMCs).Methods and resultsThe Matrigel migration assay showed that curcumin (10 and 20 μmol/l) effectively inhibited TNF-α-induced migration of HASMCs as compared with the control group. To explain this inhibitory effect, MMP-9 was assayed by gelatin zymography and Western blot. The results indicated that curcumin inhibited MMP-9 activity and expression. Furthermore, the production of ROS and the nuclear translocation of NF-κB p50 and p65 induced by TNF-α were dose-dependently suppressed by curcumin pretreatment.ConclusionThese results indicate that curcumin has anti-inflammatory properties and may prevent the migration of HASMCs by suppressing MMP-9 expression through down-regulation of NF-κB.  相似文献   

11.
IntroductionThe novel phytohormone, osmotin, has been reported to act like mammalian adiponectin through PHO36/AdipoR1 in various in vitro and in vivo models. However, there have been no reports regarding the precise effects of osmotin on atherosclerosis.MethodsWe assessed the atheroprotective effects of osmotin on inflammatory molecules in human umbilical vein endothelial cells (HUVECs), human leukemic monocyte (THP-1) adhesion, inflammatory responses, and foam cell formation in THP-1-derived macrophages, and the migration, proliferation, and extracellular matrix expression in human aortic smooth muscle cells (HASMCs). We examined whether 4-week infusion of osmotin could suppress the development of aortic atherosclerotic lesions in apolipoprotein E-deficient (ApoE−/−) mice.ResultsAdipoR1 was abundantly expressed in HUVECs, HASMCs, THP-1, and derived macrophages. Osmotin suppressed lipopolysaccharide-induced upregulation of tumor necrosis factor-α (TNF-α), monocyte chemotactic protein-1, vascular cell adhesion molecule-1, intercellular adhesion molecule-1, and E-selectin in HUVECs, and TNF-α-induced THP-1–HUVEC adhesion. In THP-1-derived macrophages, osmotin suppressed the inflammatory M1 phenotype, lipopolysaccharide-induced secretion of interleukin-6 and TNF-α, and oxidized low-density lipoprotein-induced foam cell formation associated with CD36 and acyl-CoA:cholesterol acyltransferase 1 downregulation and ATP-binding cassette transporter A1 upregulation. In HASMCs, osmotin suppressed angiotensin II-induced migration, proliferation, collagen-1 and fibronectin expression, and matrix metalloproteinase-2 activity without inducing apoptosis. Infusion of osmotin into ApoE−/− mice prevented the development of aortic atherosclerotic lesions with reductions of intraplaque pentraxin-3 expression, fasting plasma glucose, and insulin resistance.ConclusionsThis study provided the first evidence that osmotin exerts preventive effects on vascular inflammation and atherosclerosis, which may facilitate the development of new therapeutic modalities for combating atherosclerosis and related diseases.  相似文献   

12.
OBJECTIVE: Insulin resistance and hyperinsulinemia are major causes of cardiovascular morbidity and mortality. Matrix metalloproteinases (MMPs), highly expressed in activated mononuclear cells in vulnerable atherosclerotic lesions, are the main proteolytic enzymes controlling plaque stability. The aim of this study was to investigate the regulation of monocyte MMP-9 by insulin. METHODS AND RESULTS: Stimulation of MMP-9 expression by insulin was time- and concentration-dependent in human monocytic THP-1 cells. Inhibition of insulin receptor (IR) maturation via inhibition of its activating convertase furin with the pharmacological furin-inhibitor decanoyl-RVKR-chloromethylketone, as well as blocking of IGF-1R function with a IGF-1R blocking antibody, demonstrated that insulin mediates increases in MMP-9 via IR activation. Inhibition of insulin's "metabolic" phosphatidylinositol 3-kinase signaling with wortmannin (50 nmol/L) or LY294002 (2.5 micromol/L) did not prevent insulin-dependent MMP-9 induction. In contrast inhibition of insulin's "mitogenic" Ras-Raf-mitogen-activated protein kinase-kinase pathways with PD98059 (15 micromol/L) or U0126 (2 micromol/L) inhibited insulin-induced MMP-9 gelatinolytic activity in THP-1 cells. Likewise, PD98059 inhibited insulin augmented MMP-9 levels in primary human monocytes, whereas wortmannin had no effect. CONCLUSION: This study demonstrates that insulin can induce MMP-9 via mitogenic signaling pathways in monocytes, whereas phosphatidylinositol 3-kinase-dependent signaling, typically altered in insulin resistance, is not required. Induction of MMP-9 by insulin may potentially contribute to a pro-inflammatory state and the increased cardiovascular morbidity and mortality in type 2 diabetics.  相似文献   

13.
Macrophage migration inhibitory factor (MIF) has been shown to participate in both experimental and human atherogenesis. Expression of MMP-9 has been shown to play a role in the instability of atherosclerotic plaque. Thus, we hypothesize that MIF may participate in the destabilization of atherosclerotic plaques by stimulating MMP-9 expression. This hypothesis was investigated by examining the expression of MIF and MMP-9 in human atherosclerotic plaques using two-color immunostaining and by determining the potential role of MIF in the induction of MMP-9 expression in vascular smooth muscle cells (VSMC) and macrophages in vitro. Two-color immunohistochemistry demonstrated that MIF was strongly upregulated by macrophages and VSMCs. This was associated with marked increase in MMP-9 expression in vulnerable atheromatous plaques, but not in the fibrous lesions. Upregulation of MIF and MMP-9 in vulnerable atheromatous plaques was associated with the weakening of fibrous caps. The role of MIF in MMP-9 expression was demonstrated by the ability of MIF to directly induce MMP-9 mRNA and protein expression in macrophages and in VSMCs in a dose and time-dependent manner, which was blocked by a neutralizing MIF antibody. In conclusion, MIF and MMP-9 are markedly upregulated in vulnerable atheromatous plaques. The ability of MIF to induce MMP-9 expression in VSMCs and macrophages suggests that MIF may play a role in the destabilization of human atherosclerotic plaques.  相似文献   

14.
在单核细胞的培养基中分别加入25mg·L-1低密度脂蛋白(lowdensitylipoprotein,LDL)、氧化LDL(oxidizedLDL,OLDL)、极低密度脂蛋白(verylowdensiylipoprotein,VLDL)和氧化极低密度脂蛋白(oxidizedVLDL,OVLDL),培养24h后再用无血浆脂蛋白培养基收集条件培养基,并观察此条件培养基对 ̄3H-TdR投入血管壁平滑肌细胞DNA的影响。用抗血小板源性生长因子B链抗体(抗PDGF-B抗体)作疫组织化学染色。结果表明,单核细胞能表达PDGFB,OLDL和OVLDL能明显地促进单核细胞PDGF-B的表达,其条件培养基亦能促进 ̄3H-TdR掺入平滑肌细胞DNA内。上述结果提示,OLDL和OVLDL通过加强单核细胞分泌PDGF-B并促进平滑肌细胞增殖而在动脉粥样硬化的发病过程中起作用。  相似文献   

15.
There is accumulating evidence of complicated interactions among vascular cells, i.e. endothelial cells, smooth muscle cells and monocytes/macrophages, in the regulation of vascular function and remodeling. We have investigated the mechanisms responsible for matrix metalloproteinase (MMP)-1 expression by interactions between monocytes and vascular endothelial cells. THP-1 cells (human monocytic cell line) and human umbilical vein endothelial cells (HUVECs) were cocultured. MMP-1 levels in the culture medium were measured by enzyme-linked immunosorbent assays. Collagenolytic activity in the culture medium was measured by fluorescence labeled-collagen digestion. Immunohistochemistry using an anti-MMP antibody was carried out to determine which types of cell produce MMP-1. The addition of THP-1 cells to HUVECs for 48 h induced increases in MMP-1 levels and collagenolytic activity, which were 5- and 2-fold relative to those of HUVECs alone, respectively. A separate coculture experiment revealed that direct contact of THP-1 cells and HUVECs contributed to enhanced MMP-1 production in the cocolture. Immunohistochemical analysis revealed that both types of cell produce MMP-1 in the coculture. Neutralizing anti-interleukin-1 beta and tumor necrosis factor- alpha antibodies inhibited MMP-1 production by the coculture. The Src kinase and MEK inhibitors significantly inhibited MMP-1 production by the coculture. Coculture of THP-1 cells and HUVECs induced significant increases in Src and mitogen activated protein (MAP) kinase activities. Enhanced MMP-1 expression induced by monocyte-endothelial cell interactions may play an important role in the pathogenesis of atherosclerosis and plaque rupture.  相似文献   

16.
在单核细胞的培养基中分别加入25mg·L ̄(-1)低密度脂蛋白(lowdensitylipoprotein,LDL)、氧化LDL(oxidizedLDL,OLDL)、极低密度脂蛋白(verylowdensiylipoprotein,VLDL)和氧化极低密度脂蛋白(oxidizedVLDL,OVLDL),培养24h后再用无血浆脂蛋白培养基收集条件培养基,并观察此条件培养基对 ̄3H-TdR投入血管壁平滑肌细胞DNA的影响。用抗血小板源性生长因子B链抗体(抗PDGF-B抗体)作疫组织化学染色。结果表明,单核细胞能表达PDGFB,OLDL和OVLDL能明显地促进单核细胞PDGF-B的表达,其条件培养基亦能促进 ̄3H-TdR掺入平滑肌细胞DNA内。上述结果提示,OLDL和OVLDL通过加强单核细胞分泌PDGF-B并促进平滑肌细胞增殖而在动脉粥样硬化的发病过程中起作用。  相似文献   

17.
Falcone DJ  Borth W  Khan KM  Hajjar KA 《Blood》2001,97(3):777-784
Genetic evidence demonstrates the importance of plasminogen activation in the migration of macrophages to sites of injury and inflammation, their removal of necrotic debris, and their clearance of fibrin. These studies identified the plasminogen binding protein annexin II on the surface of macrophages and determined its role in their ability to degrade and migrate through extracellular matrices. Calcium-dependent binding of annexin II to RAW264.7 macrophages was shown using flow cytometry and Western blot analysis of EGTA eluates. Ligand blots demonstrated that annexin II comigrates with one of several proteins in lysates and membranes derived from RAW264.7 macrophages that bind plasminogen. Preincubation of RAW264.7 macrophages with monoclonal anti-annexin II IgG inhibited (35%) their binding of 125I-Lys-plasminogen. Likewise, plasmin binding to human monocyte-derived macrophages and THP-1 monocytes was inhibited (50% and 35%, respectively) when cells were preincubated with anti-annexin II IgG. Inhibition of plasminogen binding to annexin II on RAW264.7 macrophages significantly impaired their ability to activate plasminogen and degrade [3H]-glucosamine-labeled extracellular matrices. The migration of THP-1 monocytes through a porous membrane, in response to monocyte chemotactic protein-1, was blocked when the membranes were coated with extracellular matrix. The addition of plasminogen to the monocytes restored their ability to migrate through the matrix-coated membrane. Preincubation of THP-1 monocytes with anti-annexin II IgG inhibited (60%) their plasminogen-dependent chemotaxis through the extracellular matrix. These studies identify annexin II as a plasminogen binding site on macrophages and indicate an important role for annexin II in their invasive and degradative phenotype.  相似文献   

18.
OBJECTIVE: C-type natriuretic peptide (CNP) is the third member of the natriuretic peptide family. Cultured endothelial cells secrete CNP, and its secretion rate from the endothelial cells is augmented by lipopolysaccharide, interleukin-1beta, and tumor necrosis factor-alpha, which participate in the pathophysiology of inflammation. In this study, we investigated the regulation of CNP secretion from monocytes and macrophages to estimate its contribution to the progression of inflammation. MATERIALS AND METHODS: CNP secretion rates from two human leukemia cell lines (THP-1 and HL-60), human peripheral blood lymphocytes, granulocytes, monocytes, monocyte-derived macrophages, and mouse peritoneal macrophages were measured under conditions with or without stimulation. Immunoreactive CNP levels in the culture media of these cells were measured by a specific radioimmunoassay. RESULTS: The secretion rates of CNP from THP-1 and HL-60 cells were augmented according to the degree of their differentiation into macrophage-like cells under the stimulation with phorbol ester. Peripheral blood monocytes also increased the CNP secretion rate after their differentiation into macrophages. Retinoic acid elicited synergistic effects on the CNP secretion rate from HL-60 cells when administered with lipopolysaccharide, interferon-gamma, interleukin-1beta, tumor necrosis factor-alpha, or phorbol ester. In contrast, the phorbol ester-stimulated CNP secretion rate from THP-1 cells was suppressed with dexamethasone, which inhibits monocyte differentiation into macrophage. CONCLUSIONS: The secretion rate of CNP from monocytes was shown to be regulated based on the degree of their differentiation. This study provides evidence that the monocyte/macrophage system is one of the sources of CNP, especially under inflammatory conditions.  相似文献   

19.
Matrix metalloproteinase (MMP)-9 plays an important role in cardiovascular events. However, the mechanisms underlying in vivo activation of MMP-9 are largely unknown. We investigated the secretion and activation of MMP-9 under a cell-to-cell interaction, and the effects of hypoxia and cytokine. Human umbilical vein endothelial cell (HUVEC) and THP-1 (human monocyte cell line) were cultured individually, or cocultured under normoxic and hypoxic conditions. In a coculture of HUVEC and THP-1, proMMP-9 secretion was increased twofold compared with individual culture of HUVEC and THP-1, whereas MMP-2 secretion was unchanged. The increase in proMMP-9 secretion was suppressed by antiadhesion molecule antibodies and mitogen-activated protein kinase inhibitors, PD98059 (MAPK/ERK kinase1 inhibitor) and SP600125 (Jun N-terminal kinase inhibitor). ProMMP-9 secretion was increased by tumor necrosis factor (TNF)-α at 50 ng/ml (P < 0.05) but was not activated under normoxic (20%) conditions. ProMMP-9 in coculture was activated under hypoxic (<1%) conditions, and was potentiated by TNF-α (both P < 0.05). To further investigate the mechanism of hypoxia-induced MMP-9 activation, heat shock protein (Hsp)90, which was suggested to be related to MMP-9 activation, was measured by Western blot analysis. The ratio of Hsp90 to glyceraldehyde-3-phosphate dehydrogenase was increased in hypoxic (<1%) coculture conditions with TNF-α (P < 0.05). Treatment with geldanamycin and 17-DMAG (Hsp90 inhibitor) suppressed the active form of MMP-9. Cell-to-cell interaction between endothelial cells and monocytes promotes proMMP-9 synthesis and secretion. Hypoxia and inflammation are suggested to play an important role in activating proMMP-9, presumably via Hsp90.  相似文献   

20.
ObjectivesBased on the newly recognized role of the homeostatic chemokines in inflammation, we hypothesized that CXCL13 could modulate atherogenesis and plaque destabilization.MethodsThe study included in vivo analyses in patients with carotid atherosclerosis and in vitro experiments in cells involved in atherogenesis (ie, monocytes/macrophages, vascular smooth muscle cells [SMC], and platelets).ResultsOur main findings were: (i) Patients with carotid atherosclerosis (n = 130) had increased plasma levels of CXCL13 with particularly high levels in symptomatic disease. (ii) CXCL13 showed increased expression within atherosclerotic carotid plaques as compared with non-atherosclerotic vessels. (iii) Within the atherosclerotic lesions, CXCR5 and CXCL13 were expressed by macrophages and SMC in all stages of plaque progression. (iv) Releasate from activated platelets and toll-like receptor activation enhanced the expression of CXCL13 in THP-1 monocytes and primary monocytes. (v) In vitro, CXCL13 exerted anti-apoptotic effects in primary monocytes, THP-1 macrophages, and vascular SMC. (vi) CXCL13 increased arginase-1, transforming growth factor-β, and interleukin-10 expression in THP-1 cells and in samples from isolated carotid plaques.ConclusionLevels of CXCL13 are increased in carotid atherosclerosis both systemically and within the atherosclerotic lesion. Based on our in vitro findings, we hypothesize a potential plaque stabilizing effects of CXCL13-CXCR5 interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号