首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Periadventitial adipose tissue produces vasoactive substances that influence vascular contraction. Earlier studies addressed this issue in aorta, a vessel that does not contribute to peripheral vascular resistance. We tested the hypothesis that periadventitial adipose tissue modulates contraction of smaller arteries more relevant to blood pressure regulation. We studied mesenteric artery rings surrounded by periadventitial adipose tissue from adult male Sprague-Dawley rats. The contractile response to serotonin, phenylephrine, and endothelin I was markedly reduced in intact vessels compared with vessels without periadventitial fat. The contractile response to U46619 or depolarizing high K+-containing solutions (60 mmol/L) was similar in vessels with and without periadventitial fat. The K+ channel opener cromakalim induced relaxation of vessels precontracted by serotonin but not by U46619 or high K+-containing solutions (60 mmol/L), suggesting that K+ channels are involved. The intracellular membrane potential of smooth muscle cells was more hyperpolarized in intact vessels than in vessels without periadventitial fat. Both the anticontractile effect and membrane hyperpolarization of periadventitial fat were abolished by inhibition of delayed-rectifier K+ (K(v)) channels with 4-aminopyridine (2 mmol/L) or 3,4-diaminopyridine (1 mmol/L). Blocking other K+ channels with glibenclamide (3 micromol/L), apamin (1 micromol/L), iberiotoxin (100 nmol/L), tetraethylammonium ions (1 mmol/L), tetrapentylammonium ions (10 micromol/L), or Ba2+ (3 micromol/L) had no effect. Longitudinal removal of half the perivascular tissue reduced the anticontractile effect of fat by almost 50%, whereas removal of the endothelium had no effect. We suggest that visceral periadventitial adipose tissue controls mesenteric arterial tone by inducing vasorelaxation via K(v) channel activation in vascular smooth muscle cells.  相似文献   

2.
Endothelium-dependent hyperpolarizations and relaxation of vascular smooth muscle induced by acetylcholine and bradykinin are mediated by endothelium-derived hyperpolarizing factors (EDHFs). In bovine coronary arteries, arachidonic acid metabolites, epoxyeicosatrienoic acids (EETs), function as EDHFs. The 14,15-EET analog 14,15-epoxyeicosa-5(Z)-enoic-methylsulfonylimide (14,15-EEZE-mSI) was synthesized and tested for agonist and antagonist activity. In U46619-preconstricted bovine coronary arterial rings, 14,15-, 11,12-, 8,9-, and 5,6-EET induced maximal concentration-related relaxation averaging 75% to 87% at 10 micromol/L, whereas, 14,15-EEZE-mSI induced maximal relaxation averaging only 7%. 14,15-EEZE-mSI (10 micromol/L) preincubation inhibited relaxation to 14,15- and 5,6- EET but not 11,12- or 8,9- EET. 14,15-EEZE-mSI also inhibited indomethacin-resistant relaxation to arachidonic acid and indomethacin-resistant and l-nitroarginine-resistant relaxation to bradykinin and methacholine. It did not alter the relaxation to sodium nitroprusside, iloprost, or the K+ channel openers bimakalim or NS1619. In cell-attached patches of isolated bovine coronary arterial smooth muscle cells, 14,15-EEZE-mSI (100 nmol/L) blocked the 14,15-EET-induced (100 nmol/L) activation of large-conductance, calcium-activated K+ channels. Mass spectrometric analysis of rat renal cortical microsomes incubated with arachidonic acid showed that 14,15-EEZE-mSI (10 micromol/L) increased EET concentrations while decreasing the concentrations of the corresponding dihydroxyeicosatrienoic acids. Therefore, 14,15-EEZE-mSI inhibits relaxation to 5,6- and 14,15- EET and the K+ channel activation by 14,15-EET. It also inhibits the EDHF component of bradykinin-induced, methacholine-induced, and arachidonic acid-induced relaxation. These results suggest that 14,15- or 5,6 -EET act as an EDHF in bovine coronary arteries.  相似文献   

3.
OBJECTIVES: Tachykinins have been implicated in the pathogenesis of colonic dysmotility. The sources of activator calcium for neurokinin A (NKA)-induced contraction of human colonic smooth muscle have not been assessed. We evaluated the contribution of extracellular and intracellular Ca2+ to NKA-induced contractions. METHODS: Circular smooth muscle strips of human colon were suspended under 1 g of tension in organ baths containing Krebs solution at 37 degrees C gased with 95% O2/5% CO2. Contractile activity was recorded isometrically. RESULTS: Cumulatively applied NKA (0.1 nmol/L-0.3 micromol/L), produced concentration-dependent contractions of human colonic smooth muscle strips that were not affected by tetrodotoxin (1 micromol/L). The contractile response to NKA was abolished in a Ca2+-free medium containing ethylenediaminetetraacetate (EDTA) (1 mmol/L). Pretreatment of muscle strips with nifedipine (1 micromol/L), an L-type voltage-operated Ca2+ channel antagonist, abolished the contractile responses to NKA. Pretreatment with SK&F 96365 (10 micromol/L and 30 micromol/L), a putative receptor-activated and voltage-operated Ca2+ channel antagonist, attenuated the contractile responses. Depletion of intracellular Ca2+ stores with thapsigargin (1 micromol/L), an inhibitor of the sarcoplasmic reticulum Ca2+ ATP-ase, had no effect on NKA-induced contractions. CONCLUSIONS: NKA-mediated contraction of human colonic smooth muscle is dependent on an influx of extracellular Ca2+ through L-type voltage-operated Ca2+ channels. Intracellular Ca2+ release seems to have little role to play in NKA-mediated contractions.  相似文献   

4.
5,6-epoxyeicosatrienoic acid (5,6-EET) is a cytochrome P450 epoxygenase metabolite of arachidonic acid that causes vasorelaxation. However, investigations of its role in biological systems have been limited by its chemical instability. We developed a stable agonist of 5,6-EET, 5-(pentadeca-3(Z),6(Z),9(Z)-trienyloxy)pentanoic acid (PTPA), in which the 5,6-epoxide was replaced with a 5-ether. PTPA obviates chemical and enzymatic hydrolysis. In bovine coronary artery rings precontracted with U46619, PTPA (1 nmol/L to 10 micromol/L) induced concentration-dependent relaxations, with maximal relaxation of 86+/-5% and EC50 of 1 micromol/L. The relaxations were inhibited by the cyclooxygenase inhibitor indomethacin (10 micromol/L; max relaxation 43+/-9%); the ATP-sensitive K+ channel inhibitor glybenclamide (10 micromol/L; max relaxation 49+/-6%); and the large conductance calcium-activated K+ channel inhibitor iberiotoxin (100 nmol/L; max relaxation 38+/-6%) and abolished by the combination of iberiotoxin with indomethacin or glybenclamide or increasing extracellular K+ to 20 mmol/L. Whole-cell outward K+ current was increased nearly 6-fold by PTPA (10 micromol/L), which was also blocked by iberiotoxin. Additionally, we synthesized 5-(pentadeca-6(Z),9(Z)-dienyloxy)pentanoic acid and 5-(pentadeca-3(Z),9(Z)-dienyloxy)pentanoic acid (PDPA), PTPA analogs that lack the 8,9 or 11,12 double bonds of arachidonic acid and therefore are not substrates for cyclooxygenase. The PDPAs caused concentration-dependent relaxations (max relaxations 46+/-13% and 52+/-7%, respectively; EC50 1micromol/L), which were not altered by glybenclamide but blocked by iberiotoxin. These studies suggested that PTPA induces relaxation through 2 mechanisms: (1) cyclooxygenase-dependent metabolism to 5-ether-containing prostaglandins that activate ATP-sensitive K+ channels and (2) activation of smooth muscle large conductance calcium-activated K+ channels. PDPAs only activate large conductance calcium-activated K+ channels.  相似文献   

5.
Epoxyeicosatrienoic acids (EETs) are cytochrome P450-derived metabolites of arachidonic acid. They are potent endogenous vasodilator compounds produced by vascular cells, and EET-induced vasodilation has been attributed to activation of vascular smooth muscle cell (SMC) K(+) channels. However, in some cells, EETs activate Ca(2+) channels, resulting in Ca(2+) influx and increased intracellular Ca(2+) concentration ([Ca(2+)](i)). We investigated whether EETs also can activate Ca(2+) channels in vascular SMC and whether the resultant Ca(2+) influx can influence vascular tone. The 4 EET regioisomers (1 micromol/L) increased porcine aortic SMC [Ca(2+)](i) by 52% to 81%, whereas arachidonic acid, dihydroxyeicosatrienoic acids, and 15-hydroxyeicosatetraenoic acid (1 micromol/L) produced little effect. The increases in [Ca(2+)](i) produced by 14,15-EET were abolished by removal of extracellular Ca(2+) and by pretreatment with verapamil (10 micromol/L), an inhibitor of voltage-dependent (L-type) Ca(2+) channels. 14,15-EET did not alter Ca(2+) signaling induced by norepinephrine and thapsigargin. When administered to porcine coronary artery rings precontracted with a thromboxane mimetic, 14,15-EET produced relaxation. However, when administered to rings precontracted with acetylcholine or KCl, 14,15-EET produced additional contractions. In rings exposed to 10 mmol/L KCl, a concentration that did not affect resting ring tension, 14,15-EET produced small contractions that were abolished by EGTA (3 mmol/L) or verapamil (10 micromol/L). These observations indicate that 14,15-EET enhances [Ca(2+)](i) influx in vascular SMC through voltage-dependent Ca(2+) channels. This 14,15-EET-induced increase in [Ca(i)(2+)] can produce vasoconstriction and therefore may act to modulate EET-induced vasorelaxation.  相似文献   

6.
Vasodilatory factors produced by the endothelium are critical for the maintenance of normal blood pressure and flow. We hypothesized that endothelial signals are transduced to underlying vascular smooth muscle by vanilloid transient receptor potential (TRPV) channels. TRPV4 message was detected in RNA from cerebral artery smooth muscle cells. In patch-clamp experiments using freshly isolated cerebral myocytes, outwardly rectifying whole-cell currents with properties consistent with those of expressed TRPV4 channels were evoked by the TRPV4 agonist 4alpha-phorbol 12,13-didecanoate (4alpha-PDD) (5 micromol/L) and the endothelium-derived arachidonic acid metabolite 11,12 epoxyeicosatrienoic acid (11,12 EET) (300 nmol/L). Using high-speed laser-scanning confocal microscopy, we found that 11,12 EET increased the frequency of unitary Ca2+ release events (Ca2+ sparks) via ryanodine receptors located on the sarcoplasmic reticulum of cerebral artery smooth muscle cells. EET-induced Ca2+ sparks activated nearby sarcolemmal large-conductance Ca2+-activated K+ (BKCa) channels, measured as an increase in the frequency of transient K+ currents (referred to as "spontaneous transient outward currents" [STOCs]). 11,12 EET-induced increases in Ca2+ spark and STOC frequency were inhibited by lowering external Ca2+ from 2 mmol/L to 10 micromol/L but not by voltage-dependent Ca2+ channel inhibitors, suggesting that these responses require extracellular Ca2+ influx via channels other than voltage-dependent Ca2+ channels. Antisense-mediated suppression of TRPV4 expression in intact cerebral arteries prevented 11,12 EET-induced smooth muscle hyperpolarization and vasodilation. Thus, we conclude that TRPV4 forms a novel Ca2+ signaling complex with ryanodine receptors and BKCa channels that elicits smooth muscle hyperpolarization and arterial dilation via Ca2+-induced Ca2+ release in response to an endothelial-derived factor.  相似文献   

7.
8.
Phosphatidylinositol 3-kinase (PI3K) activity is increased in aortae from deoxycorticosterone (DOCA)-salt rats and enhanced PI3K activity contributes to the arterial hyperreactivity in these animals. Because PI3K activity is increased in DOCA-salt hypertension, we postulated that phosphorylation of Akt and glycogen synthase kinase 3 (GSK-3), serine threonine kinases that are downstream of PI3K, would be increased in DOCA-salt hypertension. In this study, we focused on GSK-3. Because GSK-3 activity is reduced by phosphorylation, we expected that its activity would be reduced in DOCA-salt hypertensive arteries and that reduced GSK-3 activity could contribute to enhanced adrenergic signaling and vascular smooth muscle hypertrophy that augment the heightened contractile response in DOCA-salt hypertension. Surprisingly, we observed a decrease in phosphorylation of GSK-3, indicating an increase in GSK-3 activity. To determine whether increased GSK-3 activity contributes to altered arterial reactivity in DOCA-salt animals, we measured isometric contraction to norepinephrine (NE) in the presence and absence of PI3K or GSK-3 inhibition. Addition of LY294002 (20 micromol/L), a PI3K inhibitor, resulted in a rightward shift in response to NE and normalized the NE-induced contractions in the DOCA hypertensive vessels. SB415286, a GSK-3 inhibitor, resulted in a slight rightward shift in response to NE in the DOCA-salt vessels. Thus, enhanced GSK-3 activity modestly augments the effects of PI3K but does not appear to contribute greatly to the altered arterial reactivity in DOCA-salt hypertension.  相似文献   

9.
N Sperelakis  S Mras 《Blood vessels》1983,20(4):172-183
The effects of several drugs having Ca++-antagonistic and vasodilating properties were compared in arterial and venous smooth muscles. Developed force (phasic component) was recorded from isolated rings (about 2 mm wide) of blood vessel wall taken from rabbit aorta or guinea pig inferior vena cava. The vascular smooth muscle (VSM) was stimulated to contract for a sustained period by elevating the extracellular K+ concentration ([K]o) to 100 mM or by exposure to norepinephrine (NE). All drugs depressed the K+-induced contractures in a dose-dependent manner between 10(-9) and 10(-5) M. The order of potency in aorta was: mesudipine = verapamil greater than diltiazem greater than nifedipine. Of the three drugs studied in vena cava, the order of potency was: mesudipine greater than verapamil greater than bepridil. It is concluded that, in both preparations of arterial and venous VSM, mesudipine is the most potent inhibitor of K+-induced contractions. Aortic contractions to 10(-7) M NE were depressed at concentrations of Ca++ antagonists 2 or 3 orders of magnitude less than those needed to depress contractions to 10(-5) M NE. The NE-induced contractions were depressed by the drugs to about the same extent as the K+-induced contractions when 10(-7) M NE was used, but were depressed to a much smaller extent when 10(-5) M NE was used. This may reflect the involvement of intracellular Ca++ storage sites in contractions induced by high NE concentrations. It is likely that these drugs depress and block Ca++ influx through the cell membrane.  相似文献   

10.
Endothelium-dependent hyperpolarization and relaxation of vascular smooth muscle are mediated by endothelium-derived hyperpolarizing factors (EDHFs). EDHF candidates include cytochrome P-450 metabolites of arachidonic acid, K(+), hydrogen peroxide, or electrical coupling through gap junctions. In bovine coronary arteries, epoxyeicosatrienoic acids (EETs) appear to function as EDHFs. A 14,15-EET analogue, 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE) was synthesized and identified as an EET-specific antagonist. In bovine coronary arterial rings preconstricted with U46619, 14,15-EET, 11,12-EET, 8,9-EET, and 5,6-EET induced concentration-related relaxations. Preincubation of the arterial rings with 14,15-EEZE (10 micromol/L) inhibited the relaxations to 14,15-EET, 11,12-EET, 8,9-EET, and 5,6-EET but was most effective in inhibiting 14,15-EET-induced relaxations. 14,15-EEZE also inhibited indomethacin-resistant relaxations to methacholine and arachidonic acid and indomethacin-resistant and L-nitroarginine-resistant relaxations to bradykinin. It did not alter relaxation responses to sodium nitroprusside, iloprost, or the K(+) channel activators (NS1619 and bimakalim). Additionally, in small bovine coronary arteries pretreated with indomethacin and L-nitroarginine and preconstricted with U46619, 14,15-EEZE (3 micromol/L) inhibited bradykinin (10 nmol/L)-induced smooth muscle hyperpolarizations and relaxations. In rat renal microsomes, 14,15-EEZE (10 micromol/L) did not decrease EET synthesis and did not alter 20-hydroxyeicosatetraenoic acid synthesis. This analogue acts as an EET antagonist by inhibiting the following: (1) EET-induced relaxations, (2) the EDHF component of methacholine-induced, bradykinin-induced, and arachidonic acid-induced relaxations, and (3) the smooth muscle hyperpolarization response to bradykinin. Thus, a distinct molecular structure is required for EET activity, and alteration of this structure modifies agonist and antagonist activity. These findings support a role of EETs as EDHFs.  相似文献   

11.
Both cGMP-dependent and -independent mechanisms have been implicated in the regulation of vascular tone by NO. We analyzed acetylcholine (ACh)- and NO-induced relaxation in pressurized small arteries and aortic rings from wild-type (wt) and cGMP kinase I-deficient (cGKI(-/-)) mice. Low concentrations of NO and ACh decreased the spontaneous myogenic tone in wt but not in cGKI(-/-) arteries. However, contractions of cGKI(-/-) arteries and aortic rings were reduced by high concentrations (10 micromol/L) of 2-(N:, N-diethylamino)-diazenolate-2-oxide (DEA-NO). Iberiotoxin, a specific blocker of Ca(2+)-activated K(+) (BK(Ca)) channels, only partially prevented the relaxation induced by DEA-NO or ACh in pressurized vessels and aortic rings. DEA-NO increased the activity of BK(Ca) channels only in vascular smooth muscle cells isolated from wt cGKI(+/+) mice. These results suggest that low physiological concentrations of NO decrease vascular tone through activation of cGKI, whereas high concentrations of DEA-NO relax vascular smooth muscle independent of cGKI and BK(Ca). NO-stimulated, cGKI-independent relaxation was antagonized by the inhibition of soluble guanylyl cyclase or cAMP kinase (cAK). DEA-NO increased cGMP to levels that are sufficient to activate cAK. cAMP-dependent relaxation was unperturbed in cGKI(-/-) vessels. In conclusion, low concentrations of NO relax vessels by activation of cGKI, whereas in the absence of cGKI, NO can relax small and large vessels by cGMP-dependent activation of cAK.  相似文献   

12.
Angiotensin II-induced relaxation of vascular smooth muscle   总被引:1,自引:0,他引:1  
R C Webb 《Blood vessels》1982,19(4):165-176
The effects of angiotensin II (AII) on contractile tension were studied in vascular smooth muscle from dogs, pigs and rabbits. Helically cut strips of renal veins were mounted in organ chambers and isometric contractions were recorded. Contraction of the venous strips was induced by application of 10(-8) g/ml norepinephrine (NE). Subsequent addition of 5 X 10(-8) g/ml AII caused a triphasic response: (1) there was an initial contraction (subsequent contractions were tachyphylactic in all species); (2) the contraction was followed by a relaxation below the contraction induced by NE (subsequent relaxation responses were tachyphylactic in dog and pig veins), and (3) there was a return from the relaxation to the level of the NE-induced contraction. The duration of the entire response was approximately 5 min. The magnitude of the relaxation varied inversely with the level of the NE contraction when the contractile state was altered by changing the NE concentration. Conditions which inhibit the sodium pump (potassium-free solution and ouabain) and beta-adrenergic blockade with propranolol had no effect on the AII-induced relaxation. The relaxation was temperature sensitive. Inhibitors of prostaglandin synthesis (indomethacin and aspirin) and saralasin attenuated the relaxation in response to AII. Prostaglandins E1 and E2 and arachidonic acid caused relaxation of renal vein strips contracted with NE; the relaxant effect of arachidonic acid was blocked by indomethacin. These results suggest that: (1) All stimulates the synthesis of prostaglandins in isolated venous smooth muscle, and (2) endogenous prostaglandins modulate the response of venous smooth muscle to AII.  相似文献   

13.
AIM:To investigate the action of genistein(GST),abroad spectrum tyrosine kinase inhibitor,on voltage-gated potassium channels in guinea pig proximal colonsmooth muscle cells.METHODS:Smooth muscle cells in guinea pig proximalcolon were enzymatically isolated.Nystatin-perforatedwhole cell patch clamp technique was used to recordpotassium currents including fast transient outwardcurrent(I_(Kto))and delayed rectifier current(I_(Kdr)),two ofwhich were isolated pharmacologically with 10 mmol/Ltetraethylammonium or 5 mmol/L 4-aminopyridine.Contamination of calcium-dependent potassium currentswas minimized with no calcium and 0.2 mmol/L CdCl_2 inan external solution.RESULTS:GST(10-100μmol/L)reversibly and dose-dependently reduced the peak amplitude of I_(Kto)with anICso value of 22.0 6.9μmol/L.To a lesser extent,I_(Kdr)wasalso inhibited in both peak current and sustained current.GST could not totally block the outward potassiumcurrent as a fraction of the outWard potassium current,which was insensitive to GST.GST had no effect on thesteady-state activation(n=6)and inactivation kinetics(n=6)of I_(Kto).Sodium orthovanadate(1 mmol/L),apotent inhibitor of tyrosine phosphatase,significantlyinhibited GST-induced inhibition(P<0.05).CONCLUSION:GST can dose-dependently andreversibly block voltage-gated potassium channels inguinea pig proximal colon smooth muscle cells.  相似文献   

14.
Pulmonary vascular tone is strongly influenced by the resting membrane potential of smooth muscle cells, depolarization promoting Ca2+ influx, and contraction. The resting potential is determined largely by the activity of K+-selective ion channels, the molecular nature of which has been debated for some time. In this study, we provide strong evidence that the two-pore domain K+ channel, TASK-1, mediates a noninactivating, background K+ current (IKN), which sets the resting membrane potential in rabbit pulmonary artery smooth muscle cells (PASMCs). TASK-1 mRNA was found to be present in PASMCs, and the membranes of PASMCs contained TASK-1 protein. Both IKN and the resting potential were found to be exquisitely sensitive to extracellular pH, acidosis inhibiting the current and causing depolarization. Moreover, IKN and the resting potential were enhanced by halothane (1 mmol/L), inhibited by Zn2+ (100 to 200 micromol/L) and anandamide (10 micromol/L), but insensitive to cytoplasmic Ca2+. These properties are all diagnostic of TASK-1 channels and add to previously identified features of IKN that are shared with TASK-1, such as inhibition by hypoxia, low sensitivity to 4-aminopyridine and quinine and insensitivity to tetraethylammonium ions. It is therefore concluded that TASK-1 channels are major contributors to the resting potential in pulmonary artery smooth muscle. They are likely to play an important role in mediating pulmonary vascular responses to changes in extracellular pH, and they could be responsible for the modulatory effects of pH on hypoxic pulmonary vasoconstriction.  相似文献   

15.
P L Li  D X Zhang  A P Zou  W B Campbell 《Hypertension》1999,33(6):1441-1446
A sphingomyelin metabolite, ceramide, serves as a second messenger in a variety of mammalian cells. Little is known regarding the production and actions of this novel intracellular signaling lipid molecule in the vasculature. The present study was designed to test the hypothesis that a ceramide-mediated signaling pathway is present in coronary arterial smooth muscle and that ceramide serves as an inhibitor of the large-conductance Ca2+-activated potassium (KCa) channels and mediates vasoconstriction in coronary circulation. We found that C2-ceramide produced a concentration-dependent decrease in KCa channel activity in vascular smooth muscle cells from small bovine coronary arteries. The average channel activity of the KCa channels in cell-attached patches decreased from 0.046+/-0.01 to 0. 008+/-0.001 at a C2-ceramide concentration of 10 micromol/L. In inside-out patches, C2-ceramide (1 micromol/L) reduced the average channel activity of the KCa channels from 0.06+/-0.007 to 0.016+/-0. 004. Dithiothreitol, an inhibitor of acidic sphingomyelinase (1 mmol/L), increased the average channel activity of the KCa channels in cell-attached patches from 0.05+/-0.02 of control to 0.26+/-0.04, a 5-fold increase that was reversed by addition of 1 micromol/L ceramide. Glutathione, an inhibitor of neutral sphingomyelinase, was without effect. C2-ceramide significantly reduced the diameter of isolated perfused small coronary arteries in a concentration-dependent manner. Addition of 1 micromol/L C2-ceramide decreased average arterial diameter by 28%. When 14C-sphingomyelin was incubated with coronary arterial homogenates at pH 7.4 and pH 5. 0, 14C-choline phosphate and ceramide were produced. The conversion rates of 14C-sphingomyelin into 14C-choline phosphate and ceramide were 65.1+/-1.0 fmol/min per milligram protein at pH 7.4 and 114. 6+/-8.3 fmol/min per milligram protein at pH 5.0. We conclude that both acidic and neutral sphingomyelinases are present in the bovine coronary arteries and that ceramide inactivates the KCa channel in arterial smooth muscle cells and hence exerts a tonic vasoconstrictor action in coronary microcirculation.  相似文献   

16.
Xu H  Bian X  Watts SW  Hlavacova A 《Hypertension》2005,46(5):1154-1162
Large-conductance Ca2+-activated potassium (BK) channels modulate vascular smooth muscle tone. Tempol, a superoxide dismutase (SOD) mimetic, lowers blood pressure and inhibits sympathetic nerve activity in normotensive and hypertensive rats. In the present study, we tested the hypotheses depressor responses caused by tempol are partly mediated by vasodilation. It was found that tempol, but not tiron (a superoxide scavenger), dose-dependently relaxed mesenteric arteries (MA) in anesthetized sham and deoxycorticosterone acetate (DOCA)-salt hypertensive rats. Tempol also reduced perfusion pressure in isolated, norepinephrine (NE) preconstricted MA from sham and DOCA-salt hypertensive rats. Maximal responses in DOCA-salt rats were twice as large as those in sham rats. The vasodilation caused by tempol was blocked by iberiotoxin (IBTX, BK channel antagonist, 0.1 micromol/L) and tetraethylammonium chloride (TEA) (1 mmol/L). Tempol did not relax KCl preconstricted arteries in sham or DOCA-salt rats, and Nomega-nitro-L-arginine methyl ester (L-NAME), apamin, or glibenclamide did not alter tempol-induced vasodilation. IBTX constricted MA and this response was larger in DOCA-salt compared with sham rats. Western blots and immunohistochemical analysis revealed increased expression of BK channel alpha subunit protein in DOCA-salt arteries compared with sham arteries. Whole-cell patch clamp studies revealed that tempol enhanced BK channel currents in HEK-293 cells transiently transfected with mslo, the murine BK channel a subunit. These currents were blocked by IBTX. The data indicate that tempol activates BK channels and this effect contributes to depressor responses caused by tempol. Upregulation of the BK channel alpha subunit contributes to the enhanced depressor response caused by tempol in DOCA-salt hypertension.  相似文献   

17.
Mesenteric branch arteries isolated from cannabinoid type 1 receptor knockout (CB(1)(-/-)) mice, their wild-type littermates (CB(1)(+/+) mice), and C57BL/J wild-type mice were studied to test the hypothesis that murine arteries undergo high sensitivity Ca(2+)-induced relaxation that is CB(1) receptor dependent. Confocal microscope analysis of mesenteric branch arteries from wild-type mice showed the presence of Ca(2+) receptor-positive periadventitial nerves. Arterial segments of C57 control mice mounted on wire myographs contracted in response to 5 micromol/L norepinephrine and responded to the cumulative addition of extracellular Ca(2+) with a concentration-dependent relaxation that reached a maximum of 72.0 +/- 6.3% of the prerelaxation tone and had an EC(50) for Ca(2+) of 2.90 +/- 0.54 mmol/L. The relaxation was antagonized by precontraction in buffer containing 100 mmol/L K(+) and by pretreatment with 10 mmol/L tetraethylammonium. Arteries from CB(1)(-/-) and CB(1)(+/+) mice also relaxed in response to extracellular Ca(2+) with no differences being detected between the knockout and their littermate controls. SR141716A, a selective CB(1) antagonist, caused concentration-dependent inhibition of Ca(2+)-induced relaxation in both the knockout and wild-type strains (60% inhibition at 1 micromol/L). O-1918, a cannabidiol analog, had a similar blocking effect in arteries of both wild-type and CB(1)(-/-) mice at 10 micromol/L. In contrast, 1 micromol/L SR144538, a cannabinoid type 2 receptor antagonist, or 50 micromol/L 18alpha-glycyrrhetinic acid, a gap junction blocker, were without effect. SR141716A (1 to 30 micromol/L) was also assessed for nonspecific actions on whole-cell K(+) currents in isolated vascular smooth muscle cells. SR141716A inhibited macroscopic K(+) currents at concentrations higher than those required to inhibit Ca(2+)-induced relaxation, and appeared to have little effect on currents through large conductance Ca(2+)-activated K(+) channels. These data indicate that arteries of the mouse relax in response to cumulative addition of extracellular Ca(2+) in a hyperpolarization-dependent manner and rule out a role for CB(1) or CB(2) receptors in this effect. The possible role of a nonclassical cannabinoid receptor is discussed.  相似文献   

18.
BACKGROUND: We recently reported that endothelium-dependent relaxation is impaired in forearm veins from patients with chronic renal failure. However, assessment of responses to norepinephrine remains controversial. We examined the contractile response to norepinephrine in forearm veins from patients on chronic hemodialysis and the role of nitric oxide (NO), prostanoids, and Ca(2+)-activated K(+) channels in this response. METHODS: Isometric contraction curves were obtained in rings of forearm vein from 21 dialyzed patients and 12 multiorgan donors in response to norepinephrine (1 nmol/L to 10 micromol/L) or KCl (5 to 100 mmol/L). RESULTS: Veins from uremic patients were markedly less responsive to norepinephrine (7.6 +/- 0.6 g) and KCl (6.0 +/- 0.3 g) than those from organ donors (12.0 +/- 0.7 g and 10.4 +/- 0.5 g, respectively, P < .05). Treatment with N(G)-monomethyl-l-arginine (100 micromol/L), an inhibitor of NO synthase, or indomethacin (10 micromol/L), an inhibitor of prostacyclin synthesis, increased the response to norepinephrine in veins from control subjects but not in veins from dialyzed patients. Additional blockade of Ca(2+)-activated K(+) channels did not correct the hyporesponsiveness. In veins incubated in Ca(2+)-free solution containing either 100 mmol/L KCl or 1 micromol/L norepinephrine, addition of calcium chloride (0.1 to 30 mmol/L) elicited contractile responses that were significantly lower in veins from dialyzed patients. CONCLUSIONS: The results demonstrate that norepinephrine-mediated contractions of forearm veins are markedly decreased in dialyzed patients. Endothelium-derived relaxing factors are not involved in this effect. The reduced contractile response is most likely caused by a decreased calcium entry through voltage- and receptor-dependent calcium channels.  相似文献   

19.
Large-conductance Ca2+-dependent K+ channels (KCa), which are abundant on the sarcolemma of vascular myocytes, provide negative feedback via membrane hyperpolarization that limits Ca2+ entry through L-type Ca2+ channels (ICaL). We hypothesize that local accumulation of subsarcolemmal Ca2+ during ICaL openings amplifies this feedback. Our goal was to demonstrate that Ca2+ entry through voltage-gated ICaL channels can stimulate adjacent KCa channels by a localized interaction in enzymatically isolated rabbit coronary arterial myocytes voltage clamped in whole-cell or in cell-attached patch clamp mode. During slow-voltage-ramp protocols, we identified an outward KCa current that is activated by a subsarcolemmal Ca2+ pool dissociated from bulk cytosolic Ca2+ pool (measured with indo 1) and is dependent on L-type Ca2+ channel activity. Transient activation of unitary KCa channels in cell-attached patches could be detected during long step depolarizations to +40 mV (holding potential, -40 mV; 219 pS in near-symmetrical K+). This local interaction between the channels required the presence of Ca2+ in the pipette solution, was enhanced by the ICaL agonist Bay K 8644, and persisted after impairment of the sarcoplasmic reticulum by incubation with 10 micromol/L ryanodine and 30 micromol/L cyclopiazonic acid for at least 60 minutes. Furthermore, we provide the first direct evidence of simultaneous openings of single KCa (67 pS) and ICaL (3.9 pS) channels in near-physiological conditions, near resting membrane potential. Our data imply a novel sensitive mechanism for regulating resting membrane potential and tone in vascular smooth muscle.  相似文献   

20.
正常肠系膜动脉平滑肌细胞钙激活钾通道活性的观察   总被引:2,自引:1,他引:2  
为了解人体正常肠系膜动脉平滑肌细胞钙激活钾通道的特性 ,取 2 4例人体正常肠系膜动脉小枝节段 ,用酶消化法获取标本细胞 ,以膜片钳制技术检测钙激活钾通道的活性 ,通过Pclamp专用软件实时采样记录其平均开放时间、平均关闭时间及平均开放概率等。结果发现 ,人体肠系膜动脉平滑肌细胞钙激活钾通道开放具有明显电压依赖性 ,在对称性高钾液中 ,电流 -电压关系曲线在 10~ 6 0mV范围内可被直线拟合。在细胞吸附式膜片和内面向外膜片中 ,通道电导分别为 192 .3± 2 9.2Ps和 2 0 2 .5± 5 8.3Ps。开放概率和开放数目随Ca2 + 浓度的增加而增加 ,膜内面应用四乙胺可减少通道开放概率及电流幅值。提示人体肠系膜动脉平滑肌细胞钙激活钾通道与人体其他血管相似 ,主要为大电导钙激活钾通道 ,具有电压和钙浓度双重依赖性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号