首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Clinical findings and recent non-invasive functional imaging studies pinpoint the insular cortex as the crucial brain area involved in cold sensation. By contrast, the role of primary (SI) and secondary (SII) somatosensory cortices in central processing of cold is controversial. So far, temporal activation patterns of cortical areas involved in cold processing have not been examined. Using magnetoencephalography, we studied, in seven healthy subjects, the temporo-spatial dynamics of brain processes evoked by innocuous and noxious cold stimulation as compared to tactile stimuli. For this purpose, a newly designed and magnetically silent cold-stimulator was employed. In separate runs, cold and painful cold stimuli were delivered to the dorsum of the right hand. Tactile afferents were stimulated by pneumatic tactile stimulation.

Following innocuous cold stimulation (ΔT=5±0.3°C in 50±2 ms), magnetic source imaging revealed an exclusive activation of the contra- and ipsilateral posterior insular cortex. The mean peak latencies were 194.3±38.1 and 241.0±31.7 ms for the response in the ipsi- and contralateral insular cortex, respectively. Based on the measurement of onset latencies, the estimated conduction velocity of peripheral nerve fibres mediating cold fell in the range of Aδ-fibres (7.4±0.8 m/s).

Noxious cold stimulation (ΔT=35±5°C in 70±12 ms) initially activated the contra- and ipsilateral insular cortices in the same latency ranges as innocuous cold stimuli. Additionally, we found an activation of the contra- and ipsilateral SII areas (peak latencies 304±22.7 and 310.1±19.4 ms, respectively) and a variable activation of the cingulate cortex. Notably, neither cold- nor painful cold stimulation produced an activation of SI. By contrast, the evoked cortical responses following tactile stimulation could be located to the contralateral SI cortex and bilateral SII.

In conclusion, this study strongly corroborates the posterior insular cortex as the primary somatosensory area for cortical processing of cold sensation. Furthermore, it supports the role of SII and the cingulate cortex in mediating freeze-pain. Therefore, these results suggest different processing of cold, freeze-pain and touch in the human brain.  相似文献   


2.
Clinical, neurophysiological, and neuroimaging studies have yielded controversial results about the representation of the face in the somatosensory cortex. To clarify this issue we mechanically stimulated the left forehead (ophthalmic trigeminal division, V1) and left lower lip (mandibular trigeminal division, V3) in 14 healthy volunteers during acquisition of whole-brain fMRI images. During V1 and V3 stimulation the fMRI signal in the primary (SI) and secondary (SII) somatosensory cortices in the contralateral hemisphere increased. Within both SI and SII, the foci activated by stimulation of the two trigeminal divisions largely overlapped. In contrast, the ipsilateral representation differed. Whereas V3 stimulation activated the contralateral somatosensory cortex alone, V1 stimulation activated SI and SII bilaterally. These results to some extent contrast with electrophysiological data in monkeys and disclose distinct cortical representations within facial territories in humans.  相似文献   

3.
Individuals with temporomandibular disorder (TMD) suffer from persistent facial pain and exhibit abnormal sensitivity to tactile stimulation. To better understand the pathophysiological mechanisms underlying TMD, we investigated cortical correlates of this abnormal sensitivity to touch. Using functional magnetic resonance imaging (fMRI), we recorded cortical responses evoked by low-frequency vibration of the index finger in subjects with TMD and in healthy controls (HC). Distinct subregions of contralateral primary somatosensory cortex (SI), secondary somatosensory cortex (SII), and insular cortex responded maximally for each group. Although the stimulus was inaudible, primary auditory cortex was activated in TMDs. TMDs also showed greater activation bilaterally in anterior cingulate cortex and contralaterally in the amygdala. Differences between TMDs and HCs in responses evoked by innocuous vibrotactile stimulation within SI, SII, and the insula paralleled previously reported differences in responses evoked by noxious and innocuous stimulation, respectively, in healthy individuals. This unexpected result may reflect a disruption of the normal balance between central resources dedicated to processing innocuous and noxious input, manifesting itself as increased readiness of the pain matrix for activation by even innocuous input. Activation of the amygdala in our TMD group could reflect the establishment of aversive associations with tactile stimulation due to the persistence of pain.  相似文献   

4.
In the human somatosensory system, the contralateral primary somatosensory cortex (SI) is presumed to process and encode type and intensity of the sensory inputs, whereas the bilateral secondary somatosensory cortex (SII) is believed to perform higher order functions including sensorimotor integration, integration of information from the two body halves, attention, learning and memory. In this fMRI study we investigated the effect of attention on the activation of SI and SII, as induced by nonpainful and painful rare deviant electric stimuli during somatosensory oddball tasks. The working hypothesis is of stronger effects of attention on SII with respect to SI. Four runs were acquired according to an oddball scheme. Frequent nonpainful electrical stimuli were delivered to the ulnar nerve at motor threshold, whereas rare/deviant stimuli were delivered to median nerve in four conditions (one condition per run): nonpainful, painful, counting nonpainful, and counting painful. Results showed a statistically significant fMRI activation in bilateral SII but not in contralateral SI when the rare/deviant median nerve stimuli were delivered at nonpainful and painful levels as well as at the two levels of attention considered (i.e., associated with counting and non-counting tasks). Furthermore, fMRI activation in SII did not differ across the different levels of stimulus intensity (nonpainful, painful) and attention (non-counting, counting). These results corroborate the notion that SII is the target of independent pathways for the processing and integration of nonpainful and painful somatosensory stimuli salient for further high-order elaborations.  相似文献   

5.
fMRI reflects functional connectivity of human somatosensory cortex   总被引:1,自引:0,他引:1  
Unilateral sensory stimulation reliably elicits contralateral somatotopic activation of primary (SI) and secondary (SII) somatosensory cortex. There is an ongoing debate about the occurrence and nature of concomitant ipsilateral SI and SII activation. Here we used functional magnetic resonance imaging (fMRI) in healthy human subjects with unilateral tactile stimulation of fingers and lips, to compare somatosensory activation patterns from distal and proximal body parts. We hypothesized that fMRI in humans should reflect the functional connectivity of somatosensory cortex as predicted by animal studies. We show that both unilateral finger and lip stimulations activate contra- and ipsilateral SI and SII cortices with high detection frequency. Correlations of BOLD-signals to the applied hemodynamic reference function were significantly higher in contralateral as compared to ipsilateral SI and SII cortices for both finger and lip stimulation, reflecting strong contribution of contralateral thalamocortical input. Furthermore, BOLD-signal correlations were higher in SI than in SII activations on the contralateral but not on the ipsilateral side. While these asymmetries within and across hemispheres were consistent for finger and lip stimulations, indicating analogous underlying organizing principles, they were less prominent for lip stimulation. Somatotopic organization was detected in SI but not in SII representations of fingers and lips. These results qualitatively and quantitatively support the prevalent concepts of anatomical and functional connectivity in the somatosensory system and therefore may allow interpretation of sensory evoked fMRI signals in terms of normal human brain function. Thus, the assessment of human somatosensory function with fMRI may permit in the future investigations of pathological conditions.  相似文献   

6.
Juottonen K  Gockel M  Silén T  Hurri H  Hari R  Forss N 《Pain》2002,98(3):315-323
Alterations in tactile sensitivity are common in patients with chronic pain. Recent brain imaging studies have indicated that brain areas activated by acute experimental pain partly overlap with areas processing innocuous tactile stimuli. However, the possible effect of chronic pain on central tactile processing has remained unclear. We have examined, both clinically and with whole-head magnetoencephalography, six patients suffering from complex regional pain syndrome (CRPS) of the upper limb. The cortical somatosensory responses were elicited by tactile stimuli applied to the fingertips and the reactivity of spontaneous brain oscillations was monitored as well. Tactile stimulation of the index finger elicited an initial activation at 65 ms in the contralateral SI cortex, followed by activation of the ipsi- and contralateral SII cortices at about 130 ms. The SI responses were 25-55% stronger to stimulation of the painful than the healthy side. The distance between SI representations of thumb and little finger was significantly shorter in the hemisphere contralateral than ipsilateral to the painful upper limb. In addition, reactivity of the 20-Hz motor cortex rhythm to tactile stimuli was altered in the CRPS patients, suggesting modified inhibition of the motor cortex. These results imply that chronic pain may alter central tactile and motor processing.  相似文献   

7.
Interaction of simultaneous tactile input at two finger sites in primary (SI) and secondary somatosensory cortex (SII) was studied by whole-head magnetoencephalography. Short pressure pulses were delivered to fingers of the right and left hand at an interstimulus interval of 1.6 s. The first phalanx of the left digit 1 and four other sites were stimulated either separately or simultaneously. We compared four sites with increasing distance: the second phalanx of left digit 1, left digit 5, and digits 1 and 5 of the right hand. The temporal evolution of source activity in the contralateral SI and bilateral SII was calculated using spatiotemporal source analysis. Interaction was assessed by comparing the source activity during simultaneous stimulation with the sum of the source activities elicited by separate stimulation. Significant suppressive interaction was observed in contralateral SI only for stimuli at the same hand, decreasing with distance. In SII, all digits of the same and the opposite hand interacted significantly with left digit 1. When stimulating bilaterally, SII source waveforms closely resembled the time course of the response to separate stimulation of the opposite hand. Thus, in bilateral simultaneous stimulation, the contralateral input arriving first in SII appeared to inhibit the later ipsilateral input. Similarly, the separate response to input at two unilateral finger sites which arrived slightly earlier in SII dominated the simultaneous response. Our results confirm previous findings of considerable overlap in the cortical hand representation in SII and illustrate hemispheric specialization to contralateral input when simultaneous stimuli occur bilaterally.  相似文献   

8.
Primary somatosensory cortex (SI) and posterior parietal cortex (PPC) are activated by noxious stimulation. In neurophysiological studies using magnetoencephalography (MEG), however, it has been difficult to separate the activity in SI from that in PPC following stimulation of the upper limb, since the hand area of SI is very close to PPC. Therefore, we investigated human pain processing using MEG following the application of a thulium-YAG laser to the left thigh to separate the activation of SI and PPC, and to clarify the time course of the activities involved. The results indicated that cortical activities were recorded around SI, contralateral secondary somatosensory cortex (cSII), ipsilateral secondary somatosensory cortex (iSII), and PPC between 150-185 ms. The precise location of PPC was indicated to be the inferior parietal lobule (IPL), corresponding to Brodmann's area 40. The mean peak latencies of SI, cSII, iSII and IPL were 152, 170, 181, and 183 ms, respectively. This is the first study to clarify the time course of the activities of SI, SII, and PPC in human pain processing using MEG.  相似文献   

9.
Although brain development has been actively investigated in animals, maturation of the cerebral cortex in human newborns is still poorly understood. This study aimed at characterizing the cortical areas participating in tactile processing in human neonates. Somatosensory-evoked magnetic fields were recorded from 21 healthy full-term newborns during natural sleep. Altogether, four cortical areas were activated by tactile stimulation: the contra- and ipsilateral primary (SI) and secondary (SII) somatosensory cortices. The contralateral SI was activated first in all the newborns. This early activity was not affected by the interstimulus interval or the sleep stage. The contralateral SII activation at around 200 ms was prominent in quiet sleep (QS) but attenuated in active sleep (AS). Activity in this area was strongly depressed by a faster rate of stimulation. Ipsilateral activity was seen in most subjects: more often in QS than AS. The ipsilateral activity originated from SII in most babies, but in some the ipsilateral SI was also activated. We conclude that both the contra- and ipsilateral SI and SII can participate in the processing of somatosensory information in human neonates.  相似文献   

10.
The role of operculo-insular region in the processing of somato-sensory inputs, painful or not, is now well established. However, available maps from previous literature show a substantial overlap of cortical areas activated by these stimuli, and the region referred to as the "secondary somatosensory area (SII)" is widely distributed in the parietal operculum. Differentiating SII from posterior insula cortex, which is anatomically contiguous, is not easy, explaining why the "operculo-insular" label has been introduced to describe activations by somatosensory stimuli in this cortical region. Based on the recent cyto-architectural parcellation of the human insular/SII cortices (Eickhoff et al., 2006, Kurth et al., 2010), the present study investigates with functional MRI (fMRI), whether these structural subdivisions could subserve distinct aspects of discriminative somato-sensory functions, including pain. Responses to five types of stimuli applied on the left hand of 25 healthy volunteers were considered: i) tactile stimuli; ii) passive movements; iii) innocuous cold stimuli; iv) non-noxious warm and v) heat pain. Our results show different patterns of activation depending on the type of somato-sensory stimulation. The posterior part of SII (OP1 area), contralateral to stimuli, was the only sub-region activated by all type of stimuli and might therefore be considered as a common cortical target for different types of somato-sensory inputs. Proprioceptive stimulation by passive finger movements activated the posterior part of SII (OP1 sub-region) bilaterally and the contralateral median part of insula (PreCG and MSG). Innocuous cooling activated the contralateral posterior part of SII (OP1) and the dorsal posterior and median part of insula (OP2, PostCG). Pain stimuli induced the most widespread and intense activation that was bilateral in SII (OP1, OP4) and distributed to all sub-regions of contralateral insula (except OP2) and to the anterior part of the ipsilateral insula (PreCG, MSG, ASG). However, the posterior granular part of insula contralateral to stimulus (Ig area) and the anterior part of SII bilaterally (OP4) were specifically activated during pain stimulation. This raises the question whether these latter areas could be the anatomical substrate of the sensory-discriminative processing of thermal pain.  相似文献   

11.
Parallel input makes the brain run faster   总被引:1,自引:0,他引:1  
In serial sensory processing, information flows from the thalamus via primary sensory cortices to higher-order association areas. However, association cortices also receive, albeit weak, direct thalamocortical sensory inputs of unknown function. For example, while information proceeds from primary (SI) to secondary (SII) somatosensory cortex in a serial fashion, both areas are known to receive direct thalamocortical sensory input. The present study examines the potential roles of such parallel input arrangements. The subjects were presented with median nerve somatosensory stimuli with the instruction to respond with the contralateral hand. The locations and time courses of the activated brain areas were first identified with magnetoencephalography (MEG). In a subsequent session, these brain areas were modulated with single-pulse transcranial magnetic stimulation (TMS) at 15-210 ms after the somatosensory stimulus while electroencephalography (EEG) was recorded. TMS pulses at 15-40 ms post-stimulus significantly speeded up reaction times and somatosensory-evoked responses, with largest facilitatory effects when the TMS pulse was given to contralateral SII at about 20 ms. To explain the results, we propose that the early somatosensory-evoked physiological SII activation exerts an SII-->SI influence that facilitates the reciprocal SI-->SII pathway - with TMS to SII we apparently amplified this mechanism. The results suggest that the human brain may utilize parallel inputs to facilitate long-distance cortico-cortical connections, resulting in accelerated processing and speeded reaction times. This arrangement could also allow very early top-down modulation of the bottom-up stream of sensory information.  相似文献   

12.
In this MEG study, we investigated cortical alpha/sigma and beta ERD/ERS induced by median nerve stimulation to extend previous evidence on different resonant and oscillatory behavior of SI and SII (NeuroImage 13 [2001] 662). Here, we tested whether simple somatosensory stimulation could induce a distinctive sequence of alpha/sigma and beta ERD/ERS over SII compared to SI. We found that for both alpha/sigma (around 10 Hz) and beta (around 20 Hz) rhythms, the latencies of ERD and ERS were larger in bilateral SII than in contralateral SI. In addition, the peak amplitude of alpha/sigma and beta ERS was smaller in bilateral SII than in contralateral SI. These results indicate a delayed and prolonged activation of SII responses, reflecting a protracted information elaboration possibly related to SII higher order role in the processing of somatosensory information. This temporal dynamics of alpha/sigma and beta rhythms may be related to a sequential activation scheme of SI and SII during the somatosensory information processes. Future studies should evaluate in SII the possible different functional significance of alpha/sigma with respect to beta rhythms during somatosensory processing.  相似文献   

13.
Tactile, proprioceptive, and nociceptive information, including also chemosensory functions are expressed in the trigeminal nerve sensory response. To study differences in the processing of different stimulus qualities, we performed a study based on functional magnetic resonance imaging. The first trigeminal branch (ophthalmic nerve) was activated by (a) intranasal chemical stimulation with gaseous CO2 which produces stinging and burning sensations, but is virtually odorless, (b) painful, but not nociceptive specific cutaneous electrical stimulation, and (c) cutaneous mechanical stimulation using air puffs. Eighteen healthy subjects participated (eight men, 10 women, mean age 31 years). Painful stimuli produced patterns of activation similar to what has been reported for other noxious stimuli, namely activation in the primary and secondary somatosensory cortices, anterior cingulate cortex, insular cortex, and thalamus. In addition, analyses indicated intensity-related activation in the prefrontal cortex which was specifically involved in the evaluation of stimulus intensity. Importantly, the results also indicated similarities between activation patterns after intranasal chemosensory trigeminal stimulation and patterns usually found following intranasal odorous stimulation, indicating the intimate connection between these two systems in the processing of sensory information.  相似文献   

14.
C Sim?es  R Hari 《NeuroImage》1999,10(4):408-416
We studied the interaction between responses to contra- and ipsilateral stimuli in the human second somatosensory cortex SII by recording somatosensory evoked magnetic fields (SEFs) from 8 healthy subjects with a 122-channel whole-scalp SQUID magnetometer. Right (R) and left (L) median nerves were electrically stimulated at the wrists at intensities exceeding the motor threshold. In each stimulus sequence, the four equiprobable pairs (L-L, R-R, L-R, R-L) were presented in a random order once every 2 s, with a 300-ms interstimulus interval within the pair. The responses were modelled with a four-dipole model, with current dipoles located in the SI and SII cortices of both hemispheres. The SII responses peaked around 85-120 ms and responses to the 1st (2nd) stimulus on the pair were on average 2 (12) ms earlier and about 3 (2.5) times stronger for contralateral than ipsilateral stimuli. Independently of the condition, the 2nd response always peaked later than the 1st; the mean delay was 16 ms. The responses to the 2nd stimulus depended only slightly on the type of the 1st: the latency increased more and the amplitude decreased less after different than identical 1st stimuli. These results suggest that neuronal activations due to contra- and ipsilateral stimuli overlap strongly in the human SII cortex.  相似文献   

15.
Using diffuse optical tomography (DOT), we detected activation in the somatosensory cortex and frontal brain areas following tactile (brush) and noxious heat stimulation. Healthy volunteers received stimulation to the dorsum of the right hand. In the somatosensory cortex area, tactile stimulation produced a robust, contralateral to the stimulus, hemodynamic response with a weaker activation on the ipsilateral side. For the same region, noxious thermal stimuli produced bilateral activation of similar intensity that had a prolonged activation with a double peak similar to results that have been reported with functional MRI. Bilateral activation was observed in the frontal areas, oxyhemoglobin changes were positive for brush stimulation while they were initially negative (contralateral) for heat stimulation. These results suggest that based on the temporal and spatial characteristics of the response in the sensory cortex, it is possible to discern painful from mechanical stimulation using DOT. Such ability might have potential applications in a clinical setting in which pain needs to be assessed objectively (e.g., analgesic efficacy, pain responses during surgery).  相似文献   

16.
The present study was undertaken to investigate after-effects of 7 Hz non-painful prolonged stimulation of the median nerve on somatosensory-evoked fields (SEFs). The working hypothesis that conditioning peripheral stimulations might produce delayed interfering ("gating") effects on the response of somatosensory cortex to test stimuli was evaluated. In the control condition, electrical thumb stimulation induced SEFs in ten subjects. In the experimental protocol, a conditioning median nerve stimulation at wrist preceded 6 electrical thumb stimulations. Equivalent current dipoles fitting SEFs modeled responses of contralateral primary area (SI) and bilateral secondary somatosensory areas (SII) following control and experimental conditions. Compared to the control condition, conditioning stimulation induced no amplitude modulation of SI response at the initial stimulus-related peak (20 ms). In contrast, later response from SI (35 ms) and response from SII were significantly weakened in amplitude. Gradual but fast recovery towards control amplitude levels was observed for the response from SI-P35, while a slightly slower cycle was featured from SII. These findings point to a delayed "gating" effect on the synchronization of somatosensory cortex after peripheral conditioning stimulations. This effect was found to be more lasting in SII area, as a possible reflection of its integrative role in sensory processing.  相似文献   

17.
Electrophysiological studies have shown that task-relevant somatosensory information leads to selective facilitation within the primary somatosensory cortex (SI). The purpose of the present study was (1) to further explore the relationship between the relevancy of stimuli and activation within the contralateral and ipsilateral SI and (2) to provide further insight into the specific sensory gating network responsible for modulating neural activity within SI. Functional MRI of 12 normal subjects was performed with vibrotactile stimuli presented to the pad of the index finger. In experiment 1, the stimulus was presented to either the left or the right hand. Subjects were required to detect transient changes in stimulus frequency. In experiment 2, stimuli were presented to either the right hand alone or both hands simultaneously. Stimuli were applied either (A) passively or (B) when subjects were asked to detect frequency changes that occurred to the right hand only. In experiment 1, task-relevant somatosensory stimulation led not only to enhanced contralateral SI activity, but also to a suppression of activity in the ipsilateral SI. In experiment 2, SI activation was enhanced when stimuli were task-relevant, compared to that observed with passive input. When stimuli were presented simultaneously to both hands, only those that were task-relevant increased SI activation. This was associated with recruitment of a network of cortical regions, including the right prefrontal cortex (Brodmann area 9). We conclude that SI modulation is dependent on task relevancy and that this modulation may be regulated, at least in part, by the prefrontal cortex.  相似文献   

18.
Previous evidence from functional magnetic resonance imaging (fMRI) has shown that a painful galvanic stimulation mainly activates a posterior sub-region in the secondary somatosensory cortex (SII), whereas a non-painful sensory stimulation mainly activates an anterior sub-region of SII [Ferretti, A., Babiloni, C., Del Gratta, C., Caulo, M., Tartaro, A., Bonomo, L., Rossini, P.M., Romani, G.L., 2003. Functional topography of the secondary somatosensory cortex for non-painful and painful stimuli: an fMRI study. Neuroimage 20 (3), 1625-1638.]. The present study, combining fMRI with magnetoencephalographic (MEG) findings, assessed the working hypothesis that the activity of such a posterior SII sub-region is characterized by an amplitude and temporal evolution in line with the bilateral functional organization of nociceptive systems. Somatosensory evoked magnetic fields (SEFs) recordings after alvanic median nerve stimulation were obtained from the same sample of subjects previously examined with fMRI [Ferretti, A., Babiloni, C., Del Gratta, C., Caulo, M., Tartaro, A., Bonomo, L., Rossini, P.M., Romani, G.L., 2003. Functional topography of the secondary somatosensory cortex for non-painful and painful stimuli: an fMRI study. Neuroimage 20 (3), 1625-1638.]. Constraints for dipole source localizations obtained from MEG recordings were applied according to fMRI activations, namely, at the posterior and the anterior SII sub-regions. It was shown that, after painful stimulation, the two posterior SII sub-regions of the contralateral and ipsilateral hemispheres were characterized by dipole sources with similar amplitudes and latencies. In contrast, the activity of anterior SII sub-regions showed statistically significant differences in amplitude and latency during both non-painful and painful stimulation conditions. In the contralateral hemisphere, the source activity was greater in amplitude and shorter in latency with respect to the ipsilateral. Finally, painful stimuli evoked a response from the posterior sub-regions peaking significantly earlier than from the anterior sub-regions. These results suggested that both ipsi and contra posterior SII sub-regions process painful stimuli in parallel, while the anterior SII sub-regions might play an integrative role in the processing of somatosensory stimuli.  相似文献   

19.
Pain is processed in multiple brain areas, indicating the complexity of pain perception. The ability to locate pain plays a pivotal role in immediate defense and withdrawal behavior. However, how the brain localizes nociceptive information without additional information from somatotopically organized mechano-receptive pathways is not well understood. We used single-trial functional magnetic resonance imaging (fMRI) to assess hemodynamic responses to right and left painful stimulation. Thulium-YAG-(yttrium-aluminium-granate)-laser-evoked pain stimuli, without concomitant tactile component, were applied to either hand in a randomized order. A contralateral bias of the BOLD response was investigated to determine areas involved in the coding of the side of stimulation, which we observed in primary (SI) and secondary (SII) somatosensory cortex, insula, and the thalamus. This suggests that these structures provide spatial information of selective nociceptive stimuli. More importantly, this contralateral bias of activation allowed functionally segregated activations within the SII complex, the insula, and the thalamus. Only distinct subregions of the SII complex, the posterior insula and the lateral thalamus, but not the remaining SII complex, the anterior insula and the medial thalamus, showed a contralaterally biased representation of painful stimuli. This result supports the hypothesis that sensory-discriminative attributes of painful stimuli, such as those related to body side, are topospecifically represented within the forebrain projections of the nociceptive system and highlights the concept of functional segregation and specialization within these structures.  相似文献   

20.
The persistent vegetative state (PVS) is a devastating medical condition characterized by preserved wakefulness contrasting with absent voluntary interaction with the environment. We used positron emission tomography to assess the central processing of noxious somatosensory stimuli in the PVS. Changes in regional cerebral blood flow were measured during high-intensity electrical stimulation of the median nerve compared with rest in 15 nonsedated patients and in 15 healthy controls. Evoked potentials were recorded simultaneously. The stimuli were experienced as highly unpleasant to painful in controls. Brain glucose metabolism was also studied with [(18)F]fluorodeoxyglucose in resting conditions. In PVS patients, overall cerebral metabolism was 40% of normal values. Nevertheless, noxious somatosensory stimulation-activated midbrain, contralateral thalamus, and primary somatosensory cortex in each and every PVS patient, even in the absence of detectable cortical evoked potentials. Secondary somatosensory, bilateral insular, posterior parietal, and anterior cingulate cortices did not show activation in any patient. Moreover, in PVS patients, the activated primary somatosensory cortex was functionally disconnected from secondary somatosensory, bilateral posterior parietal, premotor, polysensory superior temporal, and prefrontal cortices. In conclusion, somatosensory stimulation of PVS patients, at intensities that elicited pain in controls, resulted in increased neuronal activity in primary somatosensory cortex, even if resting brain metabolism was severely impaired. However, this activation of primary cortex seems to be isolated and dissociated from higher-order associative cortices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号