首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In recent years, epigenetic mechanisms became widely known due to their ability to regulate and maintain physiological processes such as cell growth, development, differentiation and genomic stability. When dysregulated, epigenetic mechanisms, may introduce gene expression changes and disturbance in immune homeostasis leading to autoimmune diseases. Systemic lupus erythematosus (SLE), the most extensively studied autoimmune disorder, has already been correlated with epigenetic modifications, especially in T cells. Since these cell rely on antigen presentation, it may be assumed that erroneous activity of antigen-presenting cells (APCs), culminates in T cell abnormalities. In this review we summarize and discuss the epigenetic modifications in SLE affected APCs, with the focus on dendritic cells (DCs), B cells and monocytes. Unravelling this aspect of SLE pathogenesis, might result in identification of new disease biomarkers and putative therapeutic approaches.  相似文献   

2.
《Drug discovery today》2022,27(7):1961-1973
Multidrug resistance (MDR) is a significant issue associated with the clinical application of antibiotics. It is also challenging to discover and develop new antibiotics with novel scaffolds. Therefore, the repurposing of existing drugs has become a promising strategy for antibiotic drug discovery. Auranofin, an approved gold metallic drug, has been used for the treatment of rheumatoid arthritis (RA) for many years. Recent research revealed that auranofin has strong antibacterial activity against multiple Gram-positive bacteria by inhibiting thioredoxin reductase (TrxR). These results inspired the development of gold complexes as antibacterial agents. Herein, we discuss recent advances in the development of auranofin and other gold complexes as antibacterial agents, providing a new viewpoint for the treatment of bacterial infection.  相似文献   

3.
《Drug discovery today》2022,27(1):326-336
Tuberculosis (TB), an airborne infectious disease mainly caused by Mycobacterium tuberculosis (Mtb), remains a leading cause of human morbidity and mortality worldwide. Given the alarming rise of resistance to anti-TB drugs and latent TB infection (LTBI), new targets and novel bioactive compounds are urgently needed for the treatment of this disease. We provide an overview of the recent advances in anti-TB drug discovery, emphasizing several newly validated targets for which an inhibitor has been reported in the past five years. Our review presents several attractive directions that have potential for the development of next-generation therapies.  相似文献   

4.
5.
Most vaccines approved by regulatory bodies are administered via intramuscular or subcutaneous injections and have shortcomings, such as the risk of needle-associated blood infections, pain and swelling at the injection site. Orally administered vaccines are of interest, as they elicit both systemic and mucosal immunities, in which mucosal immunity would neutralize the mucosa invading pathogen before the onset of an infection. Hence, oral vaccination can eliminate the injection associated adverse effects and enhance the person's compliance. Conventional approaches to manufacturing oral vaccines, such as coacervation, spray drying, and membrane emulsification, tend to alter the structural proteins in vaccines that result from high temperature, organic and toxic solvents during production. Electrohydrodynamic processes, specifically electrospraying, could solve these challenges, as it also modulates antigen release and has a high loading efficiency. This review will highlight the mucosal immunity and biological basis of the gastrointestinal immune system, different oral vaccine delivery approaches, and the application of electrospraying in vaccines development.  相似文献   

6.
《Drug discovery today》2021,26(8):1857-1874
Duocarmycins are a class of DNA minor-groove-binding alkylating molecules. For the past decade, various duocarmycin analogues have been used as payloads in the development of antibody–drug conjugates (ADCs). Currently, more than 15 duocarmycin-based ADCs have been studied preclinically, and some of them such as SYD985 have been granted Fast-Track Designation status. Nevertheless, progress in duocarmycin-based ADCs also faces challenges, with setbacks including the termination of BMS-936561/MDX-1203. In this review, we discuss issues associated with the efficacy, pharmacokinetic profile, and toxicological activity of these biotherapeutics. Furthermore, we summarize the latest advances in duocarmycin-based ADCs that have different target specificities and linker chemistries. Evidence from preclinical and clinical studies has indicated that duocarmycin-based ADCs are promising biotherapeutics for oncological application in the future.  相似文献   

7.
Eosinophilic esophagitis (EoE) is an antigen-mediated chronic T helper type 2 (Th2)-associated inflammatory disorder that has emerged in the last three decades as an increasingly common cause of esophageal symptoms. Despite rising incidence and prevalence, there are currently no approved therapies for EoE in the United States and only one oral topical corticosteroid approved in Europe and Canada. Current management relies on labor- and endoscopy-intensive dietary elimination, proton-pump inhibitors (PPIs) with only moderate efficacy, and use of inhaled or nebulized topical corticosteroids designed for asthma and limited by accessibility. Fortunately, progress in elucidating the underlying pathophysiology of EoE has led to the development of new therapies derived from molecular targets necessary for disease pathogenesis. We summarize established and emerging medical therapies for EoE, with a focus on new treatments with specific molecular targets that are likely to change EoE management paradigms in the next decade.  相似文献   

8.
Liver disease is a global health problem and is a primary cause of mortality and morbidity worldwide. Specifically, it accounts for approximately two million deaths per year worldwide. The common causes of mortality are the complications of liver cirrhosis, viral hepatitis and hepatocellular carcinoma (HCC). The mechanism of immune response and infiltration of cellular immunity is essential for promoting hepatic inflammatory, especially when the liver is abundant with lymphocytes and phagocytic cells. The injured and immunity cells secret different types of interleukins (cytokines), which can directly or indirectly amplify or inhibit liver inflammation. Many types of cells can produce interleukin-34 (IL-34) that induces the release of multiple inflammatory factors in patients via interaction with various cytokines. This phenomenon leads to the enlargement of the inflammatory response to liver diseases and induces liver fibrosis. This review highlights the proposed roles of IL-34 in liver diseases and discusses the recent findings of IL-34 that support its emerging role in HCC. Specifically, the facilitating effects of these new insights on the rational development of IL-34 for targeted therapies in the future are explored.  相似文献   

9.
Atorvastatin (ATO) is of the statin class and is used as an orally administered lipid-lowering drug. ATO is a reversible synthetic competitive inhibitor of 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase thus leading to a reduction in cholesterol synthesis. It has recently been demonstrated that ATO has different pharmacological actions, which are unrelated to its lipid-lowering effects and has the ability to treat chronic airway diseases. This paper reviews the potential of ATO as an anti-inflammatory, antioxidant, and anti-proliferative agent after oral or inhaled administration. This paper discusses the advantages and disadvantages of using ATO under conditions associated with those found in the airways. This treatment could potentially be used to support the formulating of ATO as an inhaler for the treatment of chronic respiratory diseases.  相似文献   

10.
Efferocytosis as an apoptotic cell (AC) clearance mechanism facilitates the removal of dangerous and damaged cells, an important process in regulating normal homeostasis. Failure to correctly execute apoptosis and efferocytosis is associated with atherosclerosis, as well as chronic inflammatory and autoimmune disorders such as systemic lupus erythematosus (SLE). Effective and timely efferocytosis involves various molecules that act as “Find-Me” signals or as alarmins to quickly allow identification by phagocytic cells. In recent years, most of these molecules have been investigated, but less attention has been paid to the nuclear molecules associated with efferocytosis of ACs and necrotic cells (NCs). These molecules have several functions including acting as alarmin signals for faster recognition of ACs, facilitating the cleanup of ACs and for maintaining self-tolerance. The same group of molecules is also implicated in several inflammatory and autoimmune diseases. Previous studies have shown that these molecules also serve as targets for pharmacological agents such as necrostatins, recombinant Fcnb, anti-histone, neutralizing antibodies, calbiochem, aminophylline, activated protein C, CD24IgG recombinant fission protein, and recombinant thrombomodulin. Thus, greater understanding of these molecules/pathways will enable developments in the treatment and/or prevention of various disorders, especially autoimmune diseases. Here, we review current knowledge about the mechanisms by which nucleic acids, histones, nucleosomes and monosodium urate microcrystals (MSU) can act as alarmins/“Find-Me” signals, how they might be stimulated in defective efferocytosis and their function and importance as biomarkers for prognosis and treatment of atherosclerosis, inflammatory disorders and autoimmune diseases.  相似文献   

11.
MERS-CoV belongs to the coronavirus group. Recent years have seen a rash of coronavirus epidemics. In June 2012, MERS-CoV was discovered in the Kingdom of Saudi Arabia, with 2,591 MERSA cases confirmed by lab tests by the end of August 2022 and 894 deaths at a case-fatality ratio (CFR) of 34.5% documented worldwide. Saudi Arabia reported the majority of these cases, with 2,184 cases and 813 deaths (CFR: 37.2%), necessitating a thorough understanding of the molecular machinery of MERS-CoV. To develop antiviral medicines, illustrative investigation of the protein in coronavirus subunits are required to increase our understanding of the subject. In this study, recombinant expression and purification of MERS-CoV (PLpro), a primary goal for the development of 22 new inhibitors, were completed using a high throughput screening methodology that employed fragment-based libraries in conjunction with structure-based virtual screening. Compounds 2, 7, and 20, showed significant biological activity. Moreover, a docking analysis revealed that the three compounds had favorable binding mood and binding free energy. Molecular dynamic simulation demonstrated the stability of compound 2 (2-((Benzimidazol-2-yl) thio)-1-arylethan-1-ones) the strongest inhibitory activity against the PLpro enzyme. In addition, disubstitutions at the meta and para locations are the only substitutions that may boost the inhibitory action against PLpro. Compound 2 was chosen as a MERS-CoV PLpro inhibitor after passing absorption, distribution, metabolism, and excretion studies; however, further investigations are required.  相似文献   

12.
13.
《Drug discovery today》2022,27(1):246-256
Bromodomain-containing protein 4 (BRD4) is emerging as a therapeutic target that acts synergistically with other targets of small-molecule drugs in cancer. Therefore, the discovery of potential new dual-target inhibitors of BRD4 may be a promising strategy for cancer therapy. In this review, we highlight a series of strategies to design therapeutic dual-target inhibitors of BRD4 that focus on the synergistic functions of this protein. Drug combinations that exploit synthetic lethality, protein–protein interactions, functional complementarity, and blocking of resistance mechanisms could ultimately overcome the barriers inherent to the development of BRD4 inhibitors as future cancer drugs.  相似文献   

14.
《药学学报(英文版)》2020,10(6):1083-1093
Understanding of the nephrotoxicity induced by drug candidates is vital to drug discovery and development. Herein, an in situ metabolomics method based on air flow-assisted desorption electrospray ionization mass spectrometry imaging (AFADESI-MSI) was established for direct analysis of metabolites in renal tissue sections. This method was subsequently applied to investigate spatially resolved metabolic profile changes in rat kidney after the administration of aristolochic acid I, a known nephrotoxic drug, aimed to discover metabolites associated with nephrotoxicity. As a result, 38 metabolites related to the arginine–creatinine metabolic pathway, the urea cycle, the serine synthesis pathway, metabolism of lipids, choline, histamine, lysine, and adenosine triphosphate were significantly changed in the group treated with aristolochic acid I. These metabolites exhibited a unique distribution in rat kidney and a good spatial match with histopathological renal lesions. This study provides new insights into the mechanisms underlying aristolochic acids nephrotoxicity and demonstrates that AFADESI-MSI-based in situ metabolomics is a promising technique for investigation of the molecular mechanism of drug toxicity.  相似文献   

15.
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases characterized by the formation of extracellular amyloid beta (Aβ) plaques and intracellular neurofibrillary tangles (NFTs). Growing evidence suggested that there is an association between neuronal dysfunction and neuroinflammation (NI) in AD, coordinated by the chronic activation of astrocytes and microglial cells along with the subsequent excessive generation of the proinflammatory molecule. Therefore, a better understanding of the relationship between the nervous and immune systems is important in order to delay or avert the neurodegenerative events of AD. The inflammatory/immune pathways and the mechanisms to control these pathways may provide a novel arena to develop new drugs in order to target NI in AD. In this review, we represent the influence of cellular mediators which are involved in the NI process, with regards to the progression of AD. We also discuss the processes and the current status of multiple anti-inflammatory agents which are used in AD and have gone through or going through clinical trials. Moreover, new prospects for targeting NI in the development of AD drugs have also been highlighted.  相似文献   

16.
《Drug discovery today》2022,27(11):103353
Extensive research efforts have been made and are still ongoing in the search for an ideal anti-cancer therapy. Almost all chemotherapeutics require a carrier or vehicle, a drug delivery system that can transport the drug specifically to the targeted cancer cells, sparing normal cells. Cell-penetrating peptides (CPPs) provide an effective and efficient pathway for the intra-cellular transportation of various bioactive molecules in several biomedical therapies. They are now well-recognized as facilitators of intracellular cargo delivery and have excellent potential for targeted anti-cancer therapy. In this review, we explain CPPs, recent progress in the development of new CPPs, and their utilization to transport cargoes such as imaging agents, chemotherapeutics, and short-interfering RNAs (siRNA) into tumor cells, contributing to the advancement of novel tumor-specific delivery systems.  相似文献   

17.
Pharmacotherapy of hepatobiliary disorders is an important issue due to the high prevalence of liver failure, toxic and viral hepatitis and cirrhosis. The number of stimuli that can potentially induce or accelerate liver recovery is limited; in our study we selected sodium phthalhydrazide, which has been found to promote liver regeneration after partial hepatectomy. We examined the effects of phthalhydrazide on liver morphometric, histological and biochemical parameters in rats intoxicated with CCl4. Accelerated liver recovery after CCl4 intoxication in phthalhydrazide-treated animals was evidenced by increased number of liver sinusoidal cells, reduced focal necrosis of hepatocytes and reduced perifocal leukocyte infiltration. Decreased plasma levels of pro-inflammatory cytokines TNF-α and IL-18 and decreased concentrations of IL-6 and IFN-γ in liver homogenates were associated with reduced severity of cholestasis and normalized hepatic protein synthesis in CCl4-intoxicated rats exposed to phthalhydrazide. Anti-inflammatory and immunomodulating properties of phthahlhydrazide can be an important factor contributing to accelerated liver recovery at early stages of acute CCl4-toxic liver impairment.  相似文献   

18.
The JAK/STAT signaling pathway is an universally expressed intracellular signal transduction pathway and involved in many crucial biological processes, including cell proliferation, differentiation, apoptosis, and immune regulation. It provides a direct mechanism for extracellular factors-regulated gene expression. Current researches on this pathway have been focusing on the inflammatory and neoplastic diseases and related drug.The mechanism of JAK/STAT signaling is relatively simple. However, the biological consequences of the pathway are complicated due to its crosstalk with other signaling pathways. In addition, there is increasing evidence indicates that the persistent activation of JAK/STAT signaling pathway is closely related to many immune and inflammatory diseases, yet the specific mechanism remains unclear. Therefore, it is necessary to study the detailed mechanisms of JAK/STAT signaling in disease formation to provide critical reference for clinical treatments of the diseases.In this review, we focus on the structure of JAKs and STATs, the JAK/STAT signaling pathway and its negative regulators, the associated diseases, and the JAK inhibitors for the clinical therapy.  相似文献   

19.
The metastasis of cervical cancer has always been a clinical challenge. We investigated the effects of low-dose naltrexone (LDN) on the epithelial mesenchymal transition of cervical cancer cells in vitro as well as its influence on macrophage polarization and associated cytokines in vivo. The results suggested that LDN supressed the proliferation, migration and invasion abilities and promote their apoptosis in Hela cells, whereas the opioid growth factor receptor (OGFr) silenced significantly reversed these effects in vitro. Knockdown the expression of OGFr, the inhibitory of LDN on EMT was weakened. LDN could inhibit cervical cancer progression in nude mice. In additon, LDN indirectly reduced the number of tumor-associated macrophages (TAMs), mainly M2 macrophages, and decreased expression of anti-inflammatory factor IL-10 in the serum of nude mice. These findings demonstrate that LDN could be a potential treatment for cervical cancer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号