首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rather than being a passive, haphazard process of wear and tear, lifespan can be modulated actively by components of the insulin/insulin-like growth factor I (IGFI) pathway in laboratory animals. Complete or partial loss-of-function mutations in genes encoding components of the insulin/IGFI pathway result in extension of life span in yeasts, worms, flies, and mice. This remarkable conservation throughout evolution suggests that altered signaling in this pathway may also influence human lifespan. On the other hand, evolutionary tradeoffs predict that the laboratory findings may not be relevant to human populations, because of the high fitness cost during early life. Here, we studied the biochemical, phenotypic, and genetic variations in a cohort of Ashkenazi Jewish centenarians, their offspring, and offspring-matched controls and demonstrated a gender-specific increase in serum IGFI associated with a smaller stature in female offspring of centenarians. Sequence analysis of the IGF1 and IGF1 receptor (IGF1R) genes of female centenarians showed overrepresentation of heterozygous mutations in the IGF1R gene among centenarians relative to controls that are associated with high serum IGFI levels and reduced activity of the IGFIR as measured in transformed lymphocytes. Thus, genetic alterations in the human IGF1R that result in altered IGF signaling pathway confer an increase in susceptibility to human longevity, suggesting a role of this pathway in modulation of human lifespan.  相似文献   

2.
Animal models have established the IGF-I signaling pathway as a key modulator of aging in rodents and invertebrates. Considerable evidence suggests that reduced exposure of tissue to IGF-I is associated with an extended lifespan in these species. In humans, IGF-I is linked to various age-related diseases that are limiting factors for youthful longevity. On one hand, reduced IGF-I activity is associated with significant morbidity in adulthood with an increased risk of developing cardiovascular disease, diabetes, osteoporosis and neurodegenerative diseases. On the other hand, elevated IGF-I levels have been linked to cancer risk given the role of IGF in mediating normal and malignant tissue growth. Thus, IGF is clearly involved in modulating disease of aging; however, the mechanism appears to be complex and interdependent on additional modulating factors. It is attractive to hypothesize that maximal human survival depends on tight regulation of the GH-IGF axis and maintenance of optimal IGF-I action in order to prevent morbidities associated with either deficient or excessive state. Specifically, it is possible that lower levels of IGF-I during early adulthood followed by higher levels of IGF-I later in life may be most beneficial for human longevity by addressing age-specific morbidities.  相似文献   

3.
4.
Hormones, like insulin and insulin-like growth factor 1 (IGF-1), are thought to be deeply involved with longevity. Lower species have been the source for most of our current knowledge on the role of the insulin/IGF-1 signaling in modulating lifespan. This hormonal system may have originated from a very early common ancestor and is involved in many functions that are necessary for metabolism, growth, and fertility in animal models like flies, nematodes and mammalians. Disruption of the insulin/IGF-1 receptor in nematodes and flies increases lifespan significantly. With evolution, mammals developed two well characterized hormonal systems: insulin and growth hormone (GH)/IGF-1, with different metabolic and developmental functions. Abnormalities in the insulin signaling pathway generate age-related diseases and increased mortality, whereas the GH/IGF-1 axis could potentially modulate longevity in many species. In this review we briefly describe the lifespan regulatory role of the insulin/IGF-1 signaling of nematodes, flies and rodent models and compare it with the human equivalent.  相似文献   

5.
The insulin/insulin-like growth factor 1 (IGF-1) signaling pathway is evolutionary conserved in diverse species including C.elegans, saccharomyces cerevisiae, Drosophila melanogaster, rodents and humans, which is involved in many interrelated functions that are necessary for metabolism, growth and reproduction. Interestingly, more and more research has revealed that insulin/IGF-1 signaling pathway plays a pivotal role in the regulation of longevity. Generally, disruption of the power of this pathway will extend longevity in species ranging from C.elegans to humans. The role of insulin/IGF-1 in longevity is probably related to stress resistance. Although the underlying mechanisms of longevity are not fully understood, the Insulin/IGF-1 signaling pathway has attracted substantial attention and it will be a novel target to prevent or postpone age-related diseases and extend life span. In this review, we mainly focus on the similar constitution and role of insulin/IGF-1 signaling pathway in C.elegans, saccharomyces cerevisiae, rodents and humans.  相似文献   

6.
Age is a major risk factor for many human diseases. Extremely long-lived individuals, such as centenarians, have managed to ward off age-related diseases and serve as human models to search for the genetic factors that influence longevity. The discovery of evolutionarily conserved pathways with major impact on life span in animal models has provided tantalizing opportunities to test the relevance of these pathways for human longevity. Here we specifically focus on the insulin/insulin-like growth factor-1 signaling as a prime candidate pathway. Coupled with the rapid advances in ultra high-throughput sequencing technologies, it is now feasible to comprehensively analyze all possible sequence variants in candidate genes segregating with a longevity phenotype and to investigate the functional consequences of the associated variants. A better understanding of the functional genes that affect healthy longevity in humans may lead to a rational basis for intervention strategies that can delay or prevent age-related diseases.  相似文献   

7.
Bartke A 《Endocrinology》2005,146(9):3718-3723
The important role of IGF and insulin-related signaling pathways in the control of longevity of worms and insects is very well documented. In the mouse, several spontaneous or experimentally induced mutations that interfere with GH biosynthesis, GH actions, or sensitivity to IGF-I lead to extended longevity. Increases in the average life span in these mutants range from approximately 20-70% depending on the nature of the endocrine defect, gender, diet, and/or genetic background. Extended longevity of hypopituitary and GH-resistant mice appears to be due to multiple mechanisms including reduced insulin levels, enhanced insulin sensitivity, alterations in carbohydrate and lipid metabolism, reduced generation of reactive oxygen species, enhanced resistance to stress, reduced oxidative damage, and delayed onset of age-related disease. There is considerable evidence to suggest that the genetic and endocrine mechanisms that influence aging and longevity in mice may play a similar role in other mammalian species, including the human.  相似文献   

8.
9.
10.
Several converging lines of evidence obtained over the last years in a wide variety of experimental model organisms suggest that the ageing process is regulated by genes that encode proteins from the somatotroph axis: longevity genes like daf-2, which were identified using mutant Caenorhabditis elegans strains, turned out to be orthologues of the mammalian genes encoding insulin-like signalling cascade proteins. Transgenic flies with mutations in the corresponding insect genes showed a similar pattern of increased lifespan. Finally, mice with spontaneous mutations leading to pituitary hormone deficiency significantly outlived controls. While these and other genetic models suggest that the downregulation of the somatotroph axis can slow the ageing process, other results from studies using pharmacological administration of growth hormone suggest that such stimulating treatment can restore some of the phenotypic traits associated with youth. To better understand the role of the insulin-like receptors in mammalian lifespan regulation and ageing, we explored the phenotype of heterozygous IGF-I receptor (IGF1R) knockout mice. Compared with control littermates these mutants live longer without any obvious impairment of their health and physiology, except a reduced glucose tolerance that we observed in males. These IGF1R(+/-) mutants were also more resistant to oxidative stress in vivo, and we identified a possible molecular pathway linking underphosphorylation of IGF-I receptors to the lack of activation of p66Shc, a protein capable of increasing resistance to oxidative stress through regulation of a set of downstream genes. These and other results suggest that in mammals too, lifespan can be increased by continuous, long-term downregulation of IGF signalling. Since growth hormone administration normally stimulates IGF production in tissues, the question arises whether the beneficial effects of GH, as reported by others, could be IGF independent. This hypothesis can be addressed, for example, by adequately combining existing transgenic mouse models.  相似文献   

11.
Over the last 30 years, a number of genetic and environmental factors that lead to decreased length of life have been identified. Unfortunately, much less progress has been achieved in identifying genes associated with longevity that protect from common diseases or slow the aging process. Recent compelling evidence supports a role for important genetic and environmental interactions on longevity in lower organisms. Although less is known in humans, commonality in molecular and biological processes, evolutionary arguments, and epidemiological data would strongly suggest that similar mechanisms also apply. The completion of the Human Genome Project and the rapid innovations in technology will make possible the identification of human longevity-assurance genes. This article reviews such evidence, its implications for the identification of human longevity-assurance genes, and the significance of finding longevity genes to human health and disease.  相似文献   

12.
Recent studies have shown that insulin and insulin-like growth factor (IGF)-1 signaling are involved in the control of ageing and longevity in model organisms. Based on these studies, genes involved in the insulin/IGF-1 signaling pathway are believed to play a role in longevity throughout evolution and could also be important in determining human longevity. However, human studies have yielded conflicting and controversial results. In human, defects in insulin receptor signaling cause insulin resistance and diabetes, and IGF-1 deficiency is associated with an increased risk of cardiovascular disease and atherosclerosis. Interestingly, insulin sensitivity normally decreases during aging; however, centenarians were reported to maintain greatly increased insulin sensitivity and had a lower prevalence of the metabolic syndrome as compared to younger subjects. Additionally, a longitudinal study revealed that insulin-sensitizing hormones, including leptin and adiponectin, were significantly associated with the survival of centenarians, indicating that an efficient insulin response may influence human longevity.  相似文献   

13.
The genetics of human longevity   总被引:10,自引:0,他引:10  
Many of the genes that affect aging and longevity in model organisms, such as mice, fruit flies, and worms, have human homologs. This article reviews several genetic pathways that may extend lifespan through effects on aging, rather than through effects on diseases such as atherosclerosis or cancer. These include some of the genes involved in the regulation of DNA repair and nuclear structure, which cause the progeroid syndromes when mutated, as well as those that may affect telomere length, since shorter telomeres have been associated with shorter survival. Other potential longevity genes, such as sirtuins, are involved in regulating the response to cellular stress, including caloric restriction. The best-studied pathway involves insulin and insulin-like growth factor 1 signaling; mutations in homologs of these genes have extended lifespan up to sixfold in model organisms. Other potential candidates include mitochondrial DNA and the genes that regulate the inflammatory response. Despite the challenges in study design and analysis that face investigators in this area, the identification of genetic pathways that regulate longevity may suggest potential targets for therapy.  相似文献   

14.
Recent studies point out the important role of IGF and insulin-related signaling pathways in the control of longevity of laboratory animals. The Ames dwarf mouse is a murine model of circulating GH and IGF-1 deficiency that exhibits dwarf phenotype characteristics and significantly extends lifespan. It is interesting to know that Ames dwarf mice do not experience an age-related decline in cognitive function when compared to their young counterparts. In this study, the most recent works on local GH and IGF-1 expression in the hippocampus of Ames mice are briefly reviewed.  相似文献   

15.
The role of superoxide dismutases (SODs) in aging and oxidative stress regulation has been widely studied and there is growing evidence that imbalances in these processes influence lifespan in several species. In humans, genetic polymorphisms in SOD genes may play an important role in the development of age-related diseases and genetic variation in SOD2 is thought to be associated with longevity. These observations prompted us to perform a case–control association study using a comprehensive haplotype tagging approach for the three SOD genes (SOD1, SOD2, SOD3) by testing a total of 19 SNPs in our extensive collection of 1,612 long-lived individuals (centenarians and nonagenarians) and 1,104 younger controls. Furthermore, we intended to replicate the previous association of the SOD2 SNP rs4880 with longevity observed in a Danish cohort. In our study, no association was detected between the tested SNPs and the longevity phenotype, neither in the entire long-lived sample set nor in the centenarian subgroup analysis. Our results suggest that there is no considerable influence of sequence variation in the SOD genes on human longevity in Germans.  相似文献   

16.
17.
18.
Recent studies have demonstrated a significant association between mutations in genes involved in the insulin/IGF1 signaling pathway and extension of the life span of model organisms. In this study which compared 122 Japanese semisupercentenarians (older than 105) with 122 healthy younger controls, we examined polymorphic variations of six genes which are involved in insulin/IGF1 signaling. These genes were FOXO1A, INSR, IRS1, PIK3CB, PIK3CG, and PPARGC1A. We investigated the possible association of each gene locus and longevity by haplotype-based association analyses using 18 SNPs from public databases and the published literature. One INSR haplotype, which was comprised of 2 SNPs in linkage disequilibrium, was more frequent in semisupercentenarians than in younger controls.  相似文献   

19.
20.
We previously reported that mouse strains with lower circulating insulin-like growth factor 1 (IGF1) level at 6 mo have significantly extended longevity. Here we report that strains with lower IGF1 have significantly delayed age of female sexual maturation, measured by vaginal patency (VP). Among strains with normal lifespans (mean lifespan >600 d), delayed age of VP associated with greater longevity (P = 0.015), suggesting a genetically regulated tradeoff at least partly mediated by IGF1. Supporting this hypothesis, C57BL/6J females had 9% lower IGF1, 6% delayed age of VP, and 24% extended lifespan compared with C57BL/6J.C3H/HeJ-Igf1, which carries a C3H/HeJ allele on chromosome (Chr) 10 that increases IGF1. To identify genetic loci/genes that regulate female sexual maturation, including loci that mediate lifespan tradeoffs, we performed haplotype association mapping for age of VP and identified significant loci on Chrs 4 (Vpq1) and 16 (Vpq2 and 3). At each locus, wild-derived strains share a unique haplotype that associates with delayed VP. Substitution of Chr 16 of C57BL/6J with Chr 16 from a wild-derived strain significantly reduced IGF1 and delayed VP. Strains with a wild-derived allele at Vpq3 have significantly extended longevity compared with strains with other alleles. Bioinformatic analysis identified Nrip1 at Vpq3 as a candidate gene. Nrip1(-/-) females have significantly reduced IGF1 and delayed age of VP compared with Nrip1(+/+) females. We conclude that IGF1 may coregulate female sexual maturation and longevity; wild-derived strains carry specific alleles that delay sexual maturation; and Nrip1 is involved in regulating sexual maturation and may affect longevity by regulating IGF1 level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号