首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cannabinoid receptor 2 (CB2) agonists provide the potential for treating chronic pain states without CNS effects associated with CB1 receptor activation. Animal models suggest that they act mainly via non-neuronal cells, possibly inhibition of inflammatory cells in the periphery or CNS, or via release of beta-endorphin; however, the clinical relevance and mechanism of analgesic action is uncertain. Here, we demonstrate colocalisation of CB2 with CB1 and the capsaicin receptor TRPV1 in human dorsal root ganglion (DRG) sensory neurons and increased levels of CB2 receptors in human peripheral nerves after injury, particularly painful neuromas. In primary cultures of human DRG neurons, selective CB2 agonists blocked activation of inward cation currents and elevation of cytoplasmic Ca2+ in response to capsaicin. These inhibitory effects were reversed by GW818646X a CB2 antagonist, and 8-bromo cAMP, but not by SR141716 a CB1 antagonist, or naloxone. Thus CB2 receptor agonists functionally inhibited nociceptive signalling in human primary sensory neurons via a mechanism shared with opioids, of adenylyl cyclase inhibition, but not via mu-opioid receptors. We conclude that CB2 agonists deserve imminent clinical trials for nociceptive, inflammatory and neuropathic chronic pain, in which capsaicin or heat-activated responses via TRPV1 may provide a clinical marker.  相似文献   

2.
Meylan RV  Murray MM 《NeuroImage》2007,35(1):244-254
Effects of multisensory interactions on how subsequent sensory inputs are processed remain poorly understood. We investigated whether multisensory interactions between rudimentary visual and auditory stimuli (flashes and beeps) affect later visual processing. A 2 x 3 design varied the number of flashes (1 or 2) with the number of beeps (0, 1, or 2) presented on each trial, such that '2F1B' refers to the presentation of 2 flashes with 1 beep. Beeps, when present, were synchronous with the first flash, and pairs of stimuli within a trial were separated by 52 ms ISI. Subjects indicated the number of flashes presented. Electrical neuroimaging of 128-channel event-related potentials assessed both the electric field strength and topography. Isolation of responses a visual stimulus that was preceded by a multisensory event was achieved by calculating the difference between the 2F1B and 1F1B conditions, and responses to a visual stimulus preceded by a unisensory event were isolated by calculating the difference between the 2F0B and 1F0B conditions (MUL and VIS, respectively). Comparison of MUL and VIS revealed that the treatment of visual information was significantly attenuated approximately 160 ms after the onset of the second flash when it was preceded by a multisensory event. Source estimations further indicated that this attenuation occurred within low-level visual cortices. Multisensory interactions are ongoing in low-level visual cortices and affect incoming sensory processing. These data provide evidence that multisensory interactions are not restricted in time and can dramatically influence the treatment of subsequent stimuli, opening new lines of multisensory research.  相似文献   

3.
The purpose of this study was to identify the mediators involved in capsaicin-induced vasodilation in the human skin and to evaluate a pharmacodynamic model for the early clinical evaluation of calcitonin gene-related peptide (CGRP) receptor antagonists. Dermal blood flow (DBF) response of the forearm skin to topically applied capsaicin was measured using laser Doppler perfusion imaging in 22 subjects. The effect of intra-arterially administered CGRP(8-37) (1200 ng . min(-1) . dl(-1) forearm), indomethacin (5 mug . min(-1) . dl(-1) forearm), and N(G)-monomethyl-l-arginine (l-NMMA; 0.2 mg . min(-1) dl(-1) forearm), and orally administered aprepitant (375 mg) on capsaicin-induced dermal vasodilation was assessed. Furthermore, the diurnal variation of the DBF response to capsaicin was studied. CGRP(8-37) inhibited the capsaicin-induced DBF increase: 217(145, 290)% in infused versus 370 (254, 486)% in the noninfused arm [mean (95% CI); p = 0.004]. In contrast, indomethacin, l-NMMA, aprepitant, and the time of assessment did not affect the DBF response to capsaicin. Thus, capsaicin-induced vasodilation in the human forearm skin is largely mediated by CGRP, but not by vasodilating prostaglandins, nitric oxide, or substance P. The response to capsaicin does not display a circadian rhythm. A pharmacodynamic model is proposed to evaluate CGRP receptor antagonists in humans in vivo.  相似文献   

4.
Amann R  Schuligoi R 《Pain》2004,112(1-2):76-82
Excitation of primary afferent neurons stimulates the expression of cytokines and nerve growth factor (NGF) in innervated tissues. Since NGF is a neurotrophic and immunomodulatory factor contributing to inflammatory hyperalgesia and tissue response to injury, this study was conducted in order to investigate the mechanisms by which afferent neuron stimulation by topical application of capsaicin increases NGF in the rat skin. Thereby it was sought to identify possible targets for pharmacological modulation of NGF biosynthesis. Topical capsaicin (>1 mg/ml ethanol) caused a concentration- and time-dependent increase in the concentration of NGF in rat skin. The capsaicin-induced increase of NGF was not significantly affected by indomethacin administered at a dose (2 mg/kg) that abolishes prostaglandin E2 biosynthesis. The NGF increase was suppressed by treatment of rats with the selective tachykinin NK1 receptor antagonist SR140333 (0.1 mg/kg), and by the beta adrenergic agonist terbutaline (0.3 mg/kg). The effect of terbutaline was reversed by the beta adrenergic antagonist propranolol (1 mg/kg). Terbutaline also inhibited the increase in NGF caused by intraplantar injection of the NK1 receptor agonist substance P (SP), but did not significantly affect that caused by carrageenan. The results show that topical administration of capsaicin causes a primarily NK1 receptor-dependent increase in the NGF content of rat skin, which is susceptible to inhibition by beta adrenergic agonists. These observations not only suggest regulation of skin NGF biosynthesis by afferent neuronal and adrenergic mechanisms, but also indicate possible targets for pharmacological modulation of skin NGF biosynthesis.  相似文献   

5.
Monoaminergic drugs can modify opioid withdrawal in nonhumans, and cocaine is reported to attenuate opioid withdrawal in humans. Drug discrimination was used to examine whether s.c. cocaine or other indirect-acting monoamine agonists attenuate morphine (3.2 mg/kg/day) withdrawal induced by naltrexone and by 27 h of morphine deprivation. Naltrexone-precipitated withdrawal was attenuated not only by morphine but also by cocaine, amphetamine, and imipramine. However, reversal of naltrexone-precipitated withdrawal was greater for morphine than for any of the indirect-acting monoamine agonists. Attenuation of the naltrexone discriminative stimulus by indirect-acting monoamine agonists was pharmacologically selective insofar as drugs lacking affinity for monoamine transporters (ketamine and triazolam) were without effect. Twenty-seven hours of morphine deprivation occasioned naltrexone-lever responding and decreased response rate, and both effects were reversed by morphine, cocaine, and amphetamine and not by imipramine, desipramine, ketamine, and triazolam. Thus, indirect-acting monoamine agonists attenuate some (e.g., discriminative) aspects of naltrexone-precipitated withdrawal, whereas only indirect-acting agonists with high affinity for dopamine transporters attenuate deprivation-induced withdrawal. These results suggest that dopamine is differentially involved in naltrexone- and deprivation-induced withdrawal and support the notion that opioid-dependent individuals use stimulants, in part, to attenuate withdrawal.  相似文献   

6.
The changes in distribution and turnover of T6+ Langerhans cells (LC) in the skin during delayed immune responses to tuberculin, and in the lesions of tuberculoid leprosy and cutaneous Leishmaniasis were investigated. In each situation, there was a dermal accumulation of monocytes and T cells and epidermal thickening with keratinocyte Ia expression. In the tuberculin response a dramatic change in the distribution of LC was observed. By 41 h, T6+ LC were displaced to the upper zone of the thickening epidermis followed by an almost complete loss of LC from the epidermis by approximately 72 h. After 7 d, T6+ cells started to reappear in the epidermis, which regained almost normal numbers of T6+ LC by 14 d. After antigen administration and initiation of the delayed immune response, enhanced numbers of T6+ cells appeared in association with the mononuclear cell infiltrate of the upper dermal lesions. Their numbers peaked by 72 h, were reduced at 7 d, and again enhanced by 14 d, when the epidermis was being repopulated. Similar numbers of T6+ cells were found in the chronic lesions of tuberculoid leprosy and cutaneous Leishmaniasis but not lepromatous leprosy. The cells of the dermis were identified as typical LC by the presence of Birbeck granules and surface T6 antigen at the electron microscope level. These cells were closely associated with lymphocytes. We have quantified the number of LC, evaluated their directional flux into the epidermis and dermis, determined nearest neighbors, and made predictions as to their fate.  相似文献   

7.
Previous studies have demonstrated that in conscious deoxycorticosterone acetate (DOCA)-salt hypertensive rats, the hypotensive action of intravenous (i.v.) bromocriptine, a selective dopamine D2 receptor agonist, was mediated partly by peripheral and partly by spinal dopamine D2 receptor stimulation, and that this effect was greater and longer-lasting than that in uninephrectomized control rats. To determine whether this amplification results partly from a putative spinal hypersensitivity phenomenon, cardiovascular responses to intrathecal (i.t.) administration of apomorphine and quinpirole were studied in conscious, 4-week DOCA-salt hypertensive rats and compared with those in uninephrectomized control rats. In both groups, upper thoracic (T2-T4) i.t. injections of apomorphine (9.1, 45.5 and 91.1 microg/rat) induced immediate and dose-dependent decreases in mean aortic pressure (MAP) and heart rate (HR), while i.t. quinpirole (38.4 microg/rat) induced only bradycardia. Neither magnitude nor duration of these responses was enhanced in DOCA-salt hypertensive rats when compared to control rats. In DOCA-salt hypertensive rats, apomorphine-induced hypotension and bradycardia remained unaffected by i.v. (500 microg/kg) pretreatment with domperidone, a selective dopamine D2 receptor antagonist that does not cross the blood-brain barrier. However, i.t. (40 microg/rat at T2-T4) pretreatment with domperidone significantly reduced apomorphine-induced hypotension, but fully suppressed bradycardia elicited by either apomorphine or quinpirole. These results demonstrated that in conscious DOCA-salt hypertensive rats, intrathecally-injected apomorphine or quinpirole decreased MAP and/or HR through a spinal D2 dopaminergic mechanism, as previously demonstrated in normotensive intact rats. Since both magnitude and duration of these responses were unchanged with respect to uninephrectomized control rats, enhancement of the hypotensive effect of intravenously-administered bromocriptine in DOCA-salt hypertensive rats does not appear to involve spinal dopamine D2 receptors.  相似文献   

8.
目的研究鸟分枝杆菌脂类(MALs)对人肺泡巨噬细胞抗结核免疫反应性的影响。方法平板计数法评价MALs对人肺泡巨噬细胞杀结核菌效应的影响;ELISA检测肿瘤坏死因子-α(TNF-α)水平;Greisse法检测一氧化氮(NO)水平。结果MALs减弱了人肺泡巨噬细胞对牛结核分枝杆菌(BCG)的杀灭。MALs刺激后,结核分枝杆菌纯蛋白衍生物(PPD)和干扰素γ(IFN-γ)诱导的人肺泡巨噬细胞TNF-α和NO的分泌均有所下降。结论 MALs减弱了人肺泡巨噬细胞对结核分枝杆菌的免疫反应性。  相似文献   

9.
Summary— To determine the roles of endogenously released tachykinins (substance P [SP] and neurokinin A [NKA]) in the human bronchial tissues, we studied the effects of tachykinin antagonist FK224 on bronchial smooth muscle contraction induced by SP, NKA and capsaicin in an organ bath. FK224 (10−6 M and 10−5 M, respectivly) significantly inhibited NKA-induced contraction and 10−5 M FK224 shifted the dose-response curve to more than one log unit higher concentration. Because SP- and capsaicin-induced contractions were small, we pretreated the tissues with the neutral endopeptidase inhibitor phosphoramidon (10−5 M), which inhibits degradation of exogenous tachykinins in order to potentiate the contractions. FK224 (10−5 M) significantly inhibited SP-induced contraction and it shifted the dose-response curves to about one log unit higher concentration. FK224 (10−5 M) also significantly inhibited capsaicin-induced contraction and it shifted the dose-response curves to more than one log unit higher concentration. In contrast, FK224 (10−5 M) did not affect on acetylcholine-, histamine-, and leukotriene D4-induced contraction. These results suggest that FK224 is a tachykinin receptor antagonist in the human bronchial smooth muscle, and that capsaicin-induced contraction is due to endogenously released tachykinin-like substances in the human bronchus.  相似文献   

10.
Our knowledge of the induction of new molecules by IFN-gamma has led to the characterization of IP-10 and the preparation of a monospecific, polyclonal antibody. Using this reagent we have now examined inflammatory states occurring in human skin and used immunocytochemical staining for the expression of both Ia and IP-10 determinants. After evoking a delayed-type response to purified protein derivative of tuberculin (PPD), we noted the presence of IP-10 in dermal macrophages and endothelial cells. Intense staining of the basal layer of epidermal keratinocytes was prominent at 41 h, and by 1 wk the entire epidermis was staining. The comparison of the amount of IP-10 secreted by keratinocytes vs. macrophages, fibroblasts, and endothelial cells revealed that keratinocytes were by far the major producers of this molecule. The expression of Ia occurred in conjunction with IP-10. The injection of rIFN-gamma mimicked many of the features of the PPD response, including the expression of both Ia and IP-10 by epidermal keratinocytes. Coexpression was also found in the natural lesions of tuberculoid leprosy and cutaneous Leishmaniasis. However, it was absent in lepromatous leprosy, a state where activated T lymphocytes are not present. We suggest that the local production of IFN-gamma by T cells of the dermal infiltrate induces IP-10 formation in both the dermis and epidermis. IP-10 and Ia then serve as specific markers of immune IFN and its possible influence on effector cells of the cell mediated immune response.  相似文献   

11.
Miksa M  Wu R  Dong W  Das P  Yang D  Wang P 《Shock (Augusta, Ga.)》2006,25(6):586-593
In sepsis, several cell types (e.g., lymphocytes) undergo apoptosis and have the potential to harm the host if not cleared by professional phagocytes. Apoptotic cells display "eat me" signals such as phosphatidylserine that can be readily recognized by phagocytes. For full engulfment of these cells, binding to integrin alpha(v)beta(3), mediated by the bridging protein, milk fat globule epidermal growth factor-factor VIII (MFG-E8), is necessary. We hypothesized that, in sepsis, phagocytosis of apoptotic cells is impaired due to decreased MFG-E8 expression and that adoptive transfer of exosomes containing MFG-E8 is beneficial. Sepsis was induced in rats by cecal ligation and puncture (CLP) and MFG-E8 expression assessed by Western blot 20 h later. Dendritic cells were generated from bone marrow cells, and secreted exosomes were collected and injected into CLP animals. Plasma cytokines (enzyme-linked immunosorbent assay) and thymocyte apoptosis (TC-Ao, annexin V) were assessed. The ability of peritoneal macrophages from septic animals to engulf apoptotic cells was determined in an ex vivo phagocytosis assay. A 10-day survival study was conducted. Cecal ligation and puncture reduced MFG-E8 protein levels in the spleen and liver by 48% and 70%, respectively, and increased TC-Ao by 1.6-fold. Injection of MFG-E8-containing exosomes, however, led to a 33% reduced detection of TC-Ao, without directly inhibiting apoptosis. In fact, peritoneal macrophages from exosome-treated rats displayed a 2.8-fold increased ability to phagocytose apoptotic thymocytes. Inhibition of MFG-E8 before injection of exosomes completely abrogated the enhanced phagocytosis. Treatment with bone marrow dendritic cell-derived exosomes also reduced plasma tumor necrosis factor alpha and interleukin (IL)-6 levels and improved survival from 44% to 81%. We conclude that, by providing the indispensable factor MFG-E8 for complete engulfment of apoptotic cells, these exosomes lead to an attenuation of the systemic inflammatory response and overall beneficial effect in sepsis.  相似文献   

12.
To investigate differences in agonist affinity, potency, and efficacy across rat brain regions, five representative cannabinoid compounds were investigated in membranes from three different rat brain regions for their ability to maximally stimulate [(35)S]guanosine-5'-O-(3-thio)triphosphate (GTPgammaS) binding and bind to cannabinoid receptors (measured by inhibition of [(3)H]antagonist binding) under identical assay conditions. In all three brain regions, the rank order of potency for the stimulation of [(35)S]GTPgammaS binding and the inhibition of [(3)H]SR141716A binding for these compounds were identical, with CP55940 approximately levonantradol > WIN55212-2 >/= Delta(9)-tetrahydrocannabinol (Delta(9)-THC) > methanandamide. The rank order of efficacy was not related to potency, and relative maximal agonist effects varied across regions. Receptor binding fit to a three-site model for most agonists, stimulation of [(35)S]GTPgammaS binding fit to a two-site model for all agonists, and high-affinity receptor binding did not appear to produce any stimulation of [(35)S]GTPgammaS binding. WIN55212-2, methanandamide, and Delta(9)-THC also were assayed for the inhibition of adenylyl cyclase in cerebellar membranes. The rank orders of potency and efficacy were similar to those for [(35)S]GTPgammaS binding, but the efficacies and potencies of methanandamide and Delta(9)-THC compared with WIN55212-2 were higher for adenylyl cyclase inhibition, implying receptor/G-protein reserve.  相似文献   

13.
The phosphorylation responses of platelet proteins after platelet stimulation with agonists were studied in patients with clinical bleeding disorders and various types of impaired platelet functional responses. Impaired collagen-induced phosphorylation, particularly of the 47 kd substrate (P47) for protein kinase C, was observed in one patient whose platelet defect appears to be an impaired initial response to weak platelet agonists but whose platelet secretory mechanism is normal. Reduced phosphorylation of a 31 kd polypeptide was also observed. The phosphorylation defect in this patient differs from that seen in another patient in whom impaired P47 and myosin light chain phosphorylation was observed but whose functional defect may be more closely related to secretion. The results provide further evidence that phosphorylation of P47 may play a role in platelet activation mechanisms preceding secretion and that abnormalities of phosphorylation of both P47 and myosin light chain may be associated with platelet functional defects in some patients with bleeding disorders.  相似文献   

14.
This study considers the effects of stress on interviewers as they ask challenging questions to interviewees. A convenience sample of 40 subjects was drawn from health and social care professionals and divided into a study group and a control group. Instrumentation was by unobtrusive galvanic skin response monitors. Data calibrations were checked against heart rate and finger temperature monitors for accuracy. The findings showed that when the interviewer asked a challenging question which they had designed themselves, it triggered a measurable stress response in 80% of interviewers. The respondents did not show stress responses to the same challenging question.  相似文献   

15.
Zheng Z  Gibson SJ  Khalil Z  Helme RD  McMeeken JM 《Pain》2000,85(1-2):51-58
The effect of age on hyperalgesia, one of the most common signs of injury, has not been previously examined in humans. A psychophysical study was conducted in 10 young (26.9+/-4.6 years) and 10 older (79. 0+/-5.7 years) healthy volunteers to investigate the effect of age on the development of hyperalgesia induced by topical application of capsaicin (0.1 ml, 5 mg/ml). The capsaicin patch (diameter 2 cm) was applied for 1 h. The intensity of capsaicin-induced spontaneous sensation, mechanical pain threshold, area of flare, heat and punctate hyperalgesia were measured hourly for 3 h after the application. Older adults took a longer period to report first pain. There was no age effect on the magnitude of spontaneous sensation, flare size and area of heat hyperalgesia. The area of heat hyperalgesia rapidly decreased over time in both age groups. In marked contrast, the area of punctate hyperalgesia and associated reduction in the mechanical pain threshold were maintained in older adults over the entire 3 h test period, but resolved rapidly in young adults. We conclude that, given the same intensity of noxious stimulation, older adults display a similar magnitude of hyperalgesia as younger persons. However, once initiated, punctate hyperalgesia appears to resolve more slowly in older people. This finding may indicate age differences in the plasticity of spinal cord neurons following an acute injury.  相似文献   

16.
Innervation of melanocytes in human skin   总被引:3,自引:0,他引:3       下载免费PDF全文
Communication between the nervous system and epidermal melanocytes has been suspected on the basis of their common embryologic origin and apparent parallel involvement in several disease processes, but never proven. In this study, confocal microscopic analysis of human skin sections stained with antibodies specific for melanocytes and nerve fibers showed intraepidermal nerve endings in contact with melanocytes. This intimate contact was confirmed by electron microscopy, which further demonstrated thickening of apposing plasma membranes between melanocytes and nerve fibers, similar to synaptic contacts seen in nervous tissue. Since many intraepidermal nerve fibers are afferent nerves that act in a "neurosecretory" fashion through their terminals, cultured human melanocytes were stimulated with calcitonin gene-related peptide (CGRP), substance P, or vasoactive intestinal peptide, neuropeptides known to be present in cutaneous nerves, to examine their possible functions in the epidermal melanin unit. CGRP increased DNA synthesis rate of melanocytes in a concentration- and time-dependent manner. Cell yields after 5 d were increased 25% compared with controls maintained in an otherwise optimized medium. Furthermore, stimulation by CGRP induced rapid and dose-dependent accumulation of intracellular cAMP, suggesting that the mitogenic effect is mediated by the cAMP pathway. These studies confirm and expand a single earlier report in an animal model of physical contact between melanocytes and cutaneous nerves and for the first time strongly suggest that the nervous system may exert a tonic effect on melanocytes in normal or diseased human skin.  相似文献   

17.
Autophagy can promote cell survival or cell death, but the molecular basis underlying its dual role in cancer remains obscure. Here we demonstrate that Δ9-tetrahydrocannabinol (THC), the main active component of marijuana, induces human glioma cell death through stimulation of autophagy. Our data indicate that THC induced ceramide accumulation and eukaryotic translation initiation factor 2α (eIF2α) phosphorylation and thereby activated an ER stress response that promoted autophagy via tribbles homolog 3–dependent (TRB3-dependent) inhibition of the Akt/mammalian target of rapamycin complex 1 (mTORC1) axis. We also showed that autophagy is upstream of apoptosis in cannabinoid-induced human and mouse cancer cell death and that activation of this pathway was necessary for the antitumor action of cannabinoids in vivo. These findings describe a mechanism by which THC can promote the autophagic death of human and mouse cancer cells and provide evidence that cannabinoid administration may be an effective therapeutic strategy for targeting human cancers.  相似文献   

18.
19.
Regional differences of the responses to adrenoceptor agonists were investigated in isolated canine coronary arteries by use of a cannula inserting method. Acetylcholine induced a dose-dependent vasodilation. Norepinephrine and epinephrine produced a vasoconstriction followed by a strong vasodilation in large coronary arteries and only a weak vasodilation in small coronary arteries. Phenylephrine (a selective alpha-1 agonist) induced a strong vasoconstriction in both arteries. The threshold dose and ED50 value for phenylephrine in small coronary arteries were much larger than those in large coronary arteries, although the vasoconstrictions by KCl and prostaglandin F2 alpha were not different between in large and small coronary arteries. Clonidine and xylazine (selective alpha-2 agonists) produced a slight vasoconstriction but not dose-dependently and a vasodilation with extremely large doses. ED50 value of vasodilation for salbutamol (a selective beta-2 agonist) was approximately 80 times greater than that for isoproterenol (a non-selective beta-agonist) in large coronary arteries, but was approximately 20 times in small coronary arteries. The maximal dilator response to salbutamol was about the same as that to isoproterenol in small coronary arteries, whereas it was much smaller than that to isoproterenol in large coronary arteries. These results suggest that adrenoceptors are heterogeneous according to the distance from the coronary orifice in canine epicardial coronary arteries.  相似文献   

20.
Topically administered capsaicin produces thermal allodynia, and this effect has been used to investigate pain transduction and its pharmacological modulation. This study investigated the parameters of topical capsaicin-induced thermal allodynia in unanesthetized rhesus monkeys and its pharmacological modulation by centrally acting compounds [a kappa-opioid agonist: (5alpha,7alpha,8beta)-(+)-N-methyl-N-(7-[1-pyrrolidinyl]-1-oxaspiro [4.5]dec-8-yl)-benzeneacetamide (U69,593); and noncompetitive N-methyl-d-aspartate (NMDA) antagonists: ketamine and MK-801 (dizocilpine)]. Rhesus monkeys (n = 4) were studied within the warm water tail withdrawal assay (20-s maximum latency), using thermal stimuli that are normally not noxious (38 and 42 degrees C). Capsaicin was applied topically on the tail (0.0013 and 0.004 M capsaicin solution on a 1-cm2 patch; 15-min contact). Topical capsaicin produced concentration-dependent thermal allodynia in both temperatures, robustly detected 15 to 90 min after topical capsaicin removal. A similar allodynic profile was observed with topical administration of the "endovanilloid" N-arachidonoyl-dopamine. The kappa-agonist U69,593 (0.01-0.1 mg/kg, s.c.) dose dependently prevented capsaicin (0.004 M)-induced allodynia in 38 and 42 degrees C, and the largest U69,593 dose also reversed ongoing allodynia within this model. Two NMDA antagonists, ketamine and MK-801 (0.32-1.8 and 0.032-0.056 mg/kg, respectively), also prevented capsaicin-induced allodynia in 38 degrees C, but only variably in 42 degrees C, at doses that did not cause robust thermal antinociceptive effects. At the largest doses studied, ketamine but not MK-801 also briefly reversed ongoing capsaicin-induced allodynia. The present model of topical capsaicin administration may be used to study antiallodynic effects of opioid and nonopioid compounds, as well as their ability to prevent and reverse allodynia, in unanesthetized nonhuman primates in the absence of tissue disruption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号