首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mosquitoes in the larval stage are attractive targets for pesticides because mosquitoes breed in water, and thus, it is easy to deal with them in this habitat. The use of conventional pesticides in the water sources, however, introduces many risks to people and/or the environment. Natural pesticides, especially those derived from plants, are more promising in this aspect. Aromatic plants and their essential oils are very important sources of many compounds that are used in different respects. Insecticides of botanical origin may serve as suitable alternative to chemical insecticides. Acetone, chloroform, ethyl acetate, methanol, and petroleum benzine leaf extracts of Clausena dentata were tested against the fourth instar larvae of Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti (Diptera: Culicidae). Larval mortality was observed after 24 h of exposure. The highest larval mortality was found in acetone leaf extract, C. quinquefasciatus (LC50?=?0.150278 mg/ml; LC90?=?7.302613 mg/ml), A. aegypti (LC50?=?0.169495 mg/ml; LC90?=?1.10034 mg/ml), and A. stephensi (LC50?=?0.045684 mg/ml; LC90?=?0.045684 mg/ml). GC–MS analysis of plant extracts of acetone solvent revealed 16 compounds, of which the major compounds were benzene,1,2,3-trimethoxy-5-(2-propenyl) (14.97 %), Z,Z-6,28-heptatriactontadien-2-one (6.81 %), 2-allyl-4-methylphenol (28.14 %), 2-allyl-4-methylphenol (17.34 %), and 2,6,10,14,18,22-tetracosahexaene, 2,6,10,15,19,23-hexamethyl (10.35 %). Our result shows acetone leaf extracts of C. dentata have the potential to be used as an ideal eco-friendly approach for mosquito control.  相似文献   

2.
Mosquitoes are the carriers of severe and well-known illnesses such as malaria, arboviral encephalitis, dengue fever, chikunguniya fever, West Nile virus and yellow fever. These diseases produce significant morbidity and mortality in humans and livestock around the world. The present study explored the effects of orange peel ethanol extract of Citrus sinensis on larvicidal, pupicidal, repellent and adulticidal activity against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. The orange peel material was shade dried at room temperature and powdered coarsely. From orange peel, 300?g powdered was macerated with 1?L of ethanol sequentially for a period of 72?h each and filtered. The yields of the orange peel ethanol crude extract of C. sinensis 13.86?g, respectively. The extracts were concentrated at reduced temperature on a rotary vacuum evaporator and stored at a temperature of 4?°C. The larvicidal, pupicidal and adult mortality was observed after 24?h of exposure; no mortality was observed in the control group. For C. sinensis, the median lethal concentration values (LC(50)) observed for the larvicidal and pupicidal activities against mosquito vector species A. stephensi first to fourth larval instars and pupae were 182.24, 227.93, 291.69, 398.00 and 490.84?ppm; A. aegypti values were 92.27, 106.60, 204.87, 264.26, 342.45, 436.93 and 497.41?ppm; and C. quinquefasciatus values were 244.70, 324.04, 385.32, 452.78 and 530.97?ppm, respectively. The results of maximum repellent activity were observed at 450?ppm in ethanol extracts of C. sinensis and the mean complete protection time ranged from 150 to 180?min was tested. The ethanol extract of C. sinensis showed 100?% repellency in 150?min and showed complete protection in 90?min at 350?ppm against A. stephensi, A. aegypti and C. quinquefasciatus, respectively. The adult mortality was found in ethanol extract of C. sinensis with the LC(50) and LC(90) values of 272.19 and 457.14?ppm, A. stephensi; 289.62 and 494.88?ppm, A. aegypti; and 320.38 and 524.57?ppm, respectively. These results suggest that the orange peel extracts of C. sinensis have the potential to be used as an ideal eco-friendly approach for the control of the vector control programmes.  相似文献   

3.
The developments of resistance and persistence to chemical insecticides and concerns about the non-target effects have prompted the development of eco-friendly mosquito control agents. The aim of this study was to investigate the larvicidal activities of synthesized cobalt nanoparticles (Co NPs) using bio control agent, Bacillus thuringiensis against malaria vector, Anopheles subpictus and dengue vector, Aedes aegypti (Diptera: Culicidae). The synthesized Co NPs were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR), Field-emission scanning electron microscopy (FESEM) with energy dispersive X-ray spectroscopy, and Transmission electron microscopy (TEM). XRD analysis showed three distinct diffraction peaks at 27.03°, 31.00°, and 45.58° indexed to the planes 102, 122, and 024, respectively on the face-centered cubic cobalt acetate with an average size of 85.3 nm. FTIR spectra implicated role of the peak at 3,436 cm?1 for O–H hydroxyl group, 2924 cm?1 for methylene C–H stretch in the formation of Co NPs. FESEM analysis showed the topological and morphological appearance of NPs which were found to be spherical and oval in shape. TEM analysis showed polydispersed and clustered NPs with an average size of 84.81 nm. The maximum larvicidal mortality was observed in the cobalt acetate solution, B. thuringiensis formulation, and synthesized Co NPs against fourth instar larvae of A. subpictus and A. aegypti with LC50 values of 29.16, 8.12, 3.59 mg/L; 34.61, 6.94, and 2.87 mg/L; r 2 values of 0.986, 0.933, 0.942; 0.962, 0.957, and 0.922, respectively.  相似文献   

4.
Owing to the fact that the application of synthetic larvicide has envenomed the surroundings as well as non-target organisms, natural products of plant origin with insecticidal properties have been tried as an indigenous method for the control of a variety of insect pests and vectors in the recent past. Insecticides of plant origin have been extensively used on agricultural pests and, to a very limited extent, against insect vectors of public health importance, which deserve careful and thorough screening. The use of plant extracts for insect control has several appealing features as these are generally more biodegradable, less hazardous and a rich storehouse of chemicals of diverse biological activities. Moreover, herbal sources give a lead for discovering new insecticides. Therefore, biologically active plant materials have attracted considerable interest in mosquito control study in recent times. The crude leaf extracts of Gymnema sylvestre (Retz) Schult (Asclepiadaceae) and purified gymnemagenol compound were studied against the early fourth-instar larvae of Anopheles subpictus Grassi and Culex quinquefasciatus Say (Diptera: Culicidae). In the present study, bioassay-guided fractionation of petroleum ether leaf extract of G. sylvestre led to the separation and identification of gymnemagenol as a potential new antiparasitic compound. Phytochemical analysis of G. sylvestre leaves revealed the presence of active constituents such as carbohydrates, saponins, phytosterols, phenols, flavonoids and tannins. However, cardiac glycosides and phlobatannins are absent in the plant extracts. Quantitative analysis results suggested that saponin (5%) was present in a high concentration followed by tannins (1.0%). The 50 g powder was loaded on silica gel column and eluted with chloroform–methanol–water as eluents. From that, 16 mg pure saponin compound was isolated and analysed by thin layer chromatography using chloroform and methanol as the solvent systems. The structure of the purified triterpenoid fraction was established from infrared (IR), ultraviolet (UV), 1H nuclear magnetic resonance (NMR), 13C NMR and mass spectral data. The carbon skeleton of the compound was obtained by 13C NMR spectroscopy. The chemical shift assignments obtained for gymnemagenol from 1H NMR correspond to the molecular formula C30H50O4. The compound was identified as 3β, 16β, 28, 29-tetrahydroxyolean-12-ene (gymnemagenol sapogenin). Parasite larvae were exposed to varying concentrations of purified compound gymnemagenol for 24 h. The results suggested that the larval mortality effects of the compound were 28%, 69%, 100% and 31%, 63%, 100% at 6, 12 and 24 h against A. subpictus and C. quinquefasciatus, respectively. In the present study, the per cent mortality were 100, 86, 67, 36, 21 and 100, 78, 59, 38 and 19 observed in the concentrations of 1,000, 500, 250, 125 and 62.75 ppm against the fourth-instar larvae of A. subpitcus and C. quinquefasciatus, respectively. The purified compound gymnemagenol was tested in concentrations of 80, 40, 20, 10 and 5 ppm, and the per cent mortality were 100, 72, 53, 30 and15 against A. subpitcus and 100, 89, 61, 42 and 30 against C. quinquefasciatus, respectively. The larvicidal crude leaf extract of G. sylvestre showed the highest mortality in the concentration of 1,000 ppm against the larvae of A. subpictus (LC50 = 166.28 ppm, r 2 = 0.807) and against the larvae of C. quinquefasciatus (LC50 = 186.55 ppm, r 2 = 0.884), respectively. The maximum efficacy was observed in gymnemagenol compound with LC50 and r 2 values against the larvae of A. subpictus (22.99 ppm, 0.922) and against C. quinquefasciatus (15.92 ppm, 0.854), respectively. The control (distilled water) showed nil mortality in the concurrent assay.  相似文献   

5.
Several diseases are associated to the mosquito–human interaction. Mosquitoes are the carriers of severe and well-known illnesses such as malaria, arboviral encephalitis, dengue fever, chikungunya fever, West Nile virus and yellow fever. These diseases produce significant morbidity and mortality in humans and livestock around the world. The present investigation was undertaken to study the ovicidal, larvicidal and adulticidal activities of crude hexane, ethyl acetate, benzene, chloroform and methanol extracts of root of Asparagus racemosus were assayed for their toxicity against three important vector mosquitoes, viz., Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi (Diptera: Culicidae). The mean percent hatchability of the eggs was observed after 48 h post-treatment. The percent hatchability was inversely proportional to the concentration of extract and directly proportional to the eggs. All the five solvent extracts showed moderate ovicidal activity; however, the methanol extract showed the highest ovicidal activity. The methanol extract of Asparagus racemosus against Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi exerted 100 % mortality (zero hatchability) at 375, 300 and 225 ppm, respectively. Control eggs showed 99–100 % hatchability. The larval mortality was observed after 24 h of exposure. All extracts showed moderate larvicidal effects; however, the highest larval mortality was found in methanol extract of root of Asparagus racemosus against the larvae of Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi with the LC50 and LC90 values were 115.13, 97.71 and 90.97 ppm and 210.96, 179.92, and 168.82 ppm, respectively. The adult mortality was observed after 24 h recovery period. The plant crude extracts showed dose-dependent mortality. At higher concentrations, the adult showed restless movement for some times with abnormal wagging and then died. Among the extracts tested, the highest adulticidal activity was observed in methanol extract against Anopheles stephensi followed by Aedes aegypti and Culex quinquefasciatus with the LD50 and LD90 values were 120.44, 135.60, and 157.71 ppm and 214.65, 248.35, and 290.95 ppm, respectively. No mortality was recorded in the control. The finding of the present investigation revealed that the root extract of Asparagus racemosus possess remarkable ovicidal, larvicidal and adulticidal activity against medically important vector mosquitoes and this is the low cost and ideal eco-friendly approach for the control of mosquitoes. This is the first report on the mosquito ovicidal, larvicidal and adulticidal activities of the reported Asparagus racemosus root.  相似文献   

6.
7.
Mosquito-borne diseases have an economic impact, including loss in commercial and labor outputs, particularly in countries with tropical and subtropical climates; however, no part of the world is free from vector-borne diseases. The aim of the present study, to evaluate the larvicidal, pupicidal, repellent, and adulticidal activities of methanol crude extract of Artemisia nilagirica were assayed for their toxicity against two important vector mosquitoes, viz., Anopheles stephensi and Aedes aegypti (Diptera: Culicidae). The fresh leaves of A. nilagirica were washed thoroughly in tap water and shade dried at room temperature (28?±?2?°C) for 5?C8?days. The air-dried materials were powdered separately using commercial electrical blender. From the plants, 500?g powdered was macerated with 1.5?L organic solvents of methanol sequentially for a period of 72?h each and filtered. The larval and pupal mortality was observed after 24?h of exposure; no mortality was observed in the control group. The first- to fourth-instar larvae and pupae of A. stephensi had values of LC50?=?272.50, 311.40, 361.51, 442.51, and 477.23?ppm, and the LC90?=?590.07, 688.81, 789.34, 901.59, and 959.30?ppm; the A. aegypti had values of LC50?=?300.84, 338.79, 394.69, 470.74, and 542.11?ppm, and the LC90?=?646.67, 726.07, 805.49, 892.01, and 991.29?ppm, respectively. The results of the repellent activity of plant extract of A. nilagirica plants at five different concentrations of 50, 150, 250, 350, and 450?ppm were applied on skin of fore arm in man and exposed against adult female mosquitoes. In this observation, the plant crude extract gave protection against mosquito bites without any allergic reaction to the test person, and also, the repellent activity is dependent on the strength of the plant extracts. The adult mortality was found in methanol extract of A. nilagirica, with the LC50 and LC90 values of 205.78 and 459.51?ppm for A. stephensi, and 242.52 and 523.73?ppm for A. aegypti, respectively. This result suggests that the leaf extract have the potential to be used as an ideal eco-friendly approach for the control of vector mosquito as target species.  相似文献   

8.
9.
The aim of this study was to investigate the larvicidal potential of the hexane, chloroform, ethyl acetate, acetone, methanol, and aqueous leaf extracts of Nelumbo nucifera Gaertn. (Nymphaeaceae) and synthesized silver nanoparticles using aqueous leaf extract against fourth instar larvae of Anopheles subpictus Grassi and Culex quinquefasciatus Say (Diptera: Culicidae). Nanoparticles are being used in many commercial applications. It was found that aqueous silver ions can be reduced by aqueous extract of plant parts to generate extremely stable silver nanoparticles in water. The results recorded from UV–vis spectrum, scanning electron microscopy, X-ray diffraction, and Fourier transform infrared support the biosynthesis and characterization of silver nanoparticles. Larvae were exposed to varying concentrations of plant extracts and synthesized silver nanoparticles for 24 h. All extracts showed moderate larvicidal effects; however, the maximum efficacy was observed in crude methanol, aqueous, and synthesized silver nanoparticles against the larvae of A. subpictus (LC50 = 8.89, 11.82, and 0.69 ppm; LC90 = 28.65, 36.06, and 2.15 ppm) and against the larvae of C. quinquefasciatus (LC50 = 9.51, 13.65, and 1.10 ppm; LC90 = 28.13, 35.83, and 3.59 ppm), respectively. These results suggest that the leaf methanol, aqueous extracts of N. nucifera, and green synthesis of silver nanoparticles have the potential to be used as an ideal eco-friendly approach for the control of the A. subpictus and C. quinquefasciatus. This is the first report on the mosquito larvicidal activity of the plant extracts and synthesized nanoparticles.  相似文献   

10.
The present study explored the effects of Jatropha curcas, Hyptis suaveolens, Abutilon indicum, and Leucas aspera tested against third instar larvae of filarial vector, Culex quinquefasciatus. The dried plant materials were powdered by an electrical blender. From each sample, 500 g powder was macerated with 1.5 L of hexane, chloroform, ethyl acetate, and methanol 8h, using Soxhlet apparatus, and filtered. The extracts were concentrated at reduced temperature on a rotary evaporator and stored at a temperature of 4°C. The yield of crude extract was 11.4, 12.2, 10.6, and 13.5 g in hexane, chloroform, ethyl acetate, and methanol, respectively. The hexane, chloroform, ethyl acetate, and methanol extract of J. curcas with LC(50) values of 230.32, 212.85, 192.07, and 113.23 ppm; H. suaveolens with LC(50) values of 213.09, 217.64, 167.59, and 86.93 ppm; A. indicum with LC(50) values of 204.18, 155.53, 166.32, and 111.58 ppm; and L. aspera with LC(50) values of 152.18, 118.29, 111.43, and 107.73 ppm, respectively, against third instar larvae of C. quinquefasciatus. The larval mortality was observed after 24 h of exposure. Maximum larvicidal activity was observed in the methanolic extract followed by ethyl acetate, chloroform, and hexane extract. No mortality was observed in the control. The observed mortality were statistically significant at P?相似文献   

11.
Malaria and dengue are the two most important vector-borne human diseases caused by mosquito vectors Anopheles stephensi and Aedes aegypti, respectively. Of the various strategies adopted for eliminating these diseases, controlling of vectors through herbs has been reckoned as one of the important measures for preventing their resurgence. Artemisia annua leaf chloroform extract when tried against larvae of A. stephensi and A. aegypti has shown a strong larvicidal activity against both of these vectors, their respective LC50 and LC90 values being 0.84 and 4.91 ppm for A. stephensi and 0.67 and 5.84 ppm for A. aegypti. The crude extract when separated through column chromatography using petroleum ether-ethyl acetate gradient (0–100 %) yielded 76 fractions which were pooled into three different active fractions A, B and C on the basis of same or nearly similar R f values. The aforesaid pooled fractions when assayed against the larvae of A. stephensi too reported a strong larvicidal activity. The respective marker compound purified from the individual fractions A, B and C, were Artemisinin, Arteannuin B and Artemisinic acid, as confirmed and characterized through FT-IR and NMR. This is our first report of strong mortality of A. annua leaf chloroform extract against vectors of two deadly diseases. This technology can be scaled up for commercial exploitation.  相似文献   

12.
The dichloromethane-methanol extract, the essential oil obtained by hydrodistillation from Nepeta parnassica, and the isolated 4aα,7α,7aβ-nepetalactone were evaluated for their repellent effect against the mosquitoes Aedes (Stegomyia) cretinus Edwards and Culex pipiens pipiens biotype molestus Forskål. The chemical analysis of N. parnassica essential oil, dominated by oxygenated monoterpenes (87 %), revealed 4aα,7α,7aβ-nepetalactone (36.8 %), 1,8-cineole (25.5 %), and 4aα,7β,7aβ-nepetalactone (11.1 %) as the major constituents. The results of the insect bioassays showed that the essential oil and the dichloromethane-methanol extract of N. parnassica were very active against Aedes cretinus for up to 3 h and against Culex pipiens for up to 2 h post application. The isolated 4aα,7α,7aβ-nepetalactone showed very high mosquito repellency for periods of at least 2 h against both species.  相似文献   

13.
Plant-based insecticides for vector control are urgently needed for Anopheles barbirostris, Culex quinquefasciatus, and Aedes albopictus which are the primary vectors of malaria, lymphatic filariasis, and dengue, respectively, in India and other South East Asian countries. In the present study, larvicidal, adulticidal, and repellent activities of acetone root bark extract of Hiptage benghalensis were tested against the larvae and adults of the three mosquito vectors. The acetone root bark extracts of H. benghalensis was more effective as larvicides with low LC(50) (11.15-16.78?ppm) and LT50 (1.25-4.84?h at 200 and 400?ppm) values. Results of log probit analysis (at 95?% confidence level) and regression analysis of crude acetone root bark extract of H. benghalensis revealed that lethal concentration (LC(50)) values gradually decreased with the exposure periods; lethal time (LT(50)) decreased with the concentration, and the mortality is positively correlated with the concentration. The order of susceptibility of the three mosquito species was as follows: A. albopictus?>?A. barbirostris?>?C. quinquefascitus. Biochemical changes were also evidenced in third instar larvae of three mosquito species following a sublethal exposure for 24?h. The level of sugar, glycogen, lipids, and proteins was significantly (P?相似文献   

14.
Kumar  Dinesh  Kumar  Gaurav  Agrawal  Veena 《Parasitology research》2018,117(2):377-389
Parasitology Research - The present study was carried out to evaluate the larvicidal potential of methanol, hexane, acetone, chloroform, and aqueous bark extracts of Holarrhena antidysenterica (L.)...  相似文献   

15.
16.
17.
We are reporting in this paper the control of Anopheles stephensi Liston and Culex quinquefasciatus Say using Bacillus sphaericus. These have been now considered with a practical solution because of its specific and prolonged killing action against mosquito larvae. The efficacy of B. sphaericus were assessed against all instars of A. stephensi and C. quinquefasciatus separately. During the experiments, the mortalities were not found highly effective in dose concentration of LC90 0.01 mg/l. It is recommended by the World Health Organizations in all instars of larvae of A. stephensi and C. quinquefasciatus. Thereafter, six different concentrations were used in laboratory bioassays (05, 10, 20, 30, 40, and 50 mg/l) for A. stephensi. Similarly, in the case of C. quinquefasciatus, six statistically significant different concentrations were used (0.01, 0.04, 0.05, 0.10, 5.0, and 10.0 mg/l) of B. sphaericus. It was recorded after exposure of 24 h. The percentages of mortalities were different for the different instars of C. quinquefasciatus and A. stephensi. The probit equations were drawn by the probit method. The result of the study distinctly showed that B. sphaericus is not effective on selected defined doses against A. stephensi and C. quinquefasciatus. This probably indicates an initiation of resistance. This efficacy study can be useful while detecting early resistance phenomena in environment specific zones.  相似文献   

18.
Mosquito-borne diseases with an economic impact create loss in commercial and labor outputs, particularly in countries with tropical and subtropical climates. Mosquito control is facing a threat because of the emergence of resistance to synthetic insecticides. Extracts from plants may be alternative sources of mosquito control agents because they constitute a rich source of bioactive compounds that are biodegradable into nontoxic products and potentially suitable for use to control mosquitoes. Insecticides of botanical origin may serve as suitable alternative biocontrol techniques in the future. In view of the recently increased interest in developing plant origin insecticides as an alternative to chemical insecticide, this study was undertaken to assess the adulticidal, repellent, and ovicidal potential of the crude hexane, ethyl acetate, benzene, aqueous, and methanol solvent extracts from the medicinal plants Andrographis paniculata, Cassia occidentalis, and Euphorbia hirta against the medically important mosquito vector, Anopheles stephensi (Diptera: Culicidae).The adult mortality was observed after 24 h of exposure. All extracts showed moderate adulticide effects; however, the highest adult mortality was found in methanol extract of A. paniculata followed by C. occidentalis and E. hirta against the adults of A. stephensi with LC50 and LC90 values of 210.30, 225.91, and 263.91 ppm and 527.31, 586.36, and 621.91 ppm, respectively. The results of the repellent activity of hexane, ethyl acetate, benzene, aqueous, and methanol extract of A. paniculata, C. occidentalis, and E. hirta plants at three different concentrations of 1.0, 3.0, and 6.0 mg/cm2 were applied on skin of forearm in man and exposed against adult female mosquitoes. In this observation, these three plant crude extracts gave protection against mosquito bites without any allergic reaction to the test person, and also, the repellent activity is dependent on the strength of the plant extracts. Mean percent hatchability of the ovicidal activity was observed 48 h post-treatment. The percent hatchability was inversely proportional to the concentration of extract and directly proportional to the eggs. Mortality of 100 % with methanol extract of A. paniculata exerted at 150 ppm and aqueous, methanol extract of C. occidentalis and E. hirta were exerted at 300 ppm. These results suggest that the leaf extracts of A. paniculata, C. occidentalis, and E. hirta have the potential to be used as an ideal eco-friendly approach for the control of the A. stephensi. Further detailed research is needed to identify the active ingredient in the extracts and implement the effective mosquito management program.  相似文献   

19.
The aim of the present study was to investigate the adulticidal and larvicidal activity of dried leaf hexane, ethyl acetate, acetone, and methanol extracts of Nelumbo nucifera, Manilkara zapota, Ipomoea staphylina, and Acalypha indica against the adults of Haemaphysalis bispinosa (Acarina: Ixodidae), hematophagous fly Hippobosca maculata (Diptera: Hippoboscidae), and fourth instar larvae of malaria vector Anopheles subpictus (Diptera: Culicidae). Parasites were exposed to varying concentrations of plant extracts for 24 h. All extracts showed moderate parasitic effects; however, the percent parasitic mortality observed in the crude leaf hexane, ethyl acetate, acetone, and methanol extracts of N. nucifera and M. zapota against H. bispinosa were 80, 74, 72, and 100 and 100, 83, 74, and 91, respectively, and the activity for I. staphylina and A. indica against Hip. maculata were 100, 93, 87, and 66 and 78, 90, 87, and 100 at 2,000 ppm, respectively; the larvicidal activity for the same extracts of I. staphylina against A. subpictus were 76, 82, 84, and 100 at 100 ppm, respectively. The maximum efficacy was observed in the leaf methanol extract of N. nucifera, hexane extract of M. zapota and leaf hexane extract of I. staphylina, and methanol extract of A. indica against the adults of H. bispinosa and Hip. maculata with LC(50) and LC(90) values of 437.14 and 200.81, and 415.14 and 280.72 ppm, 1,927.57 and 703.52 ppm, and 1,647.70 and 829.39 ppm, respectively. The effective larvicidal activity was observed in leaf methanol extract of I. staphylina against A. subpictus with LC(50) and LC(90) values of 10.39 and 37.71 ppm, respectively. Therefore, this study provides the first report on the adulticidal and larvicidal activity of crude solvent extracts. This is an ideal eco-friendly approach for the control of H. bispinosa, Hip. maculata, and the medically important vector A. subpictus.  相似文献   

20.
The eggs (nits) of head and body lice (Pediculus humanus capitis, Pediculus humanus corporis) were incubated for 5, 10, 15, 20, 30 or 45 min into a neem seed extract contained in a fine shampoo formulation (e.g. Wash Away? Louse), which is known for its significant killing effects of larvae and adults of head lice. The aim of the study was to test whether the developmental stages inside the eggs are also killed after the incubation into the shampoo. It was found that an incubation time of only 5 min was sufficient to prohibit any hatching of larvae, whilst 93 ± 4% of the larvae in the untreated controls of body lice hatched respectively about 76% of the controls in the case of head lice. Apparently, the neem-based shampoo blocked the aeropyles of the eggs, thus preventing the embryos of both races of lice from accessing oxygen and from releasing carbon dioxide. Thus, this product offers a complete cure from head lice upon a single treatment, if the lice (motile stages, eggs) are fully covered for about 10 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号