首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Highly selective nonpeptide ligands with potent delta opioid receptor antagonist activity have been developed using the message-address concept. This approach envisaged the delta opioid receptor to contain two major recognition subsites; a message subsite which recognizes the pharmacophore, and an address subsite that is unique for the delta receptor type and confers selectivity. The message and address components of the delta-selective enkephalins were postulated to be Tyr1 and Phe4, respectively, with Gly2-Gly3 functioning as a spacer. The message component of the target compounds in this study was derived from naltrexone and related structures. An indole system was fused to the C ring of naltrexone as a mimic of the address component. The benzene moiety of indole was viewed as the delta address component, mimicking the phenyl group of Phe4, and the pyrrole portion was used as a rigid spacer. Members of the series (1-23) were evaluated for opioid antagonist activity on the guinea pig ileum (GPI) and mouse vas deferens (MVD) preparations. Naltrindole (NTI, 1) was the most potent member of the series, with Ke values of approximately 0.1 nM at delta receptors. The antagonism by NTI was approximately 220- and 350-fold greater at delta than at mu and kappa opioid receptors. The binding of NTI and selected members of the series to guinea pig brain membranes was qualitatively consistent with their pharmacologic antagonist activity profiles in the MVD and GPI, but the Ki values were not in the same rank order. The selectivity of NTI arises mainly as a consequence of increased affinity at delta receptors. Thus, the Ke and Ki values of NTI were 1/530 and 1/90 that of the delta antagonist enkephalin analogue, ICI 174864. In contrast to NTI, ICI174864 derives its selectivity through greatly decreased recognition at mu and kappa receptors. The implications of the high affinity and selectivity of NTI as a consequence of its conformational rigidity are discussed. It is suggested that any attempt to model a receptor-bound conformation of an opioid peptide should consider affinity and potency at multiple receptor sites rather than selectivity alone.  相似文献   

2.
The majority of reports assessing opioid drug discrimination learning (DDL) have concentrated on characterizing the stimulus properties of compounds selective for mu and kappa opioid receptors. Assessments of delta opioid DDL have been limited and, to date, these assessments have been restricted to the monkey and pigeon. No assessment of delta stimulus control has been examined in rodents. To that end, the present experiment examined discriminative control by the selective delta agonist SNC80 in rats and its generalization to and antagonism by compounds relatively selective to the delta and mu receptor subtypes using the conditioned taste aversion baseline of DDL. Animals injected with 5.6 mg/kg of SNC80 prior to a saccharin-LiCl pairing and with the SNC80 vehicle prior to saccharin alone acquired the discrimination within seven conditioning cycles. The discriminative effects of SNC80 were maximal at 20 min, partial at 120 min, and lost at 240 min. The discrimination was dose dependent in that as the dose of SNC80 increased, the amount of saccharin consumed decreased. In subsequent generalization tests, the delta agonist SNC162 produced SNC80-appropriate responding at a dose of 18 mg/kg. Conversely, the mu agonist morphine produced vehicle-appropriate responding at all doses tested. These selective generalization patterns with SNC162 and morphine suggest that the discriminative effects of SNC80 are mediated at the delta, but not the mu, receptor, a conclusion supported by the fact that SNC80's discriminative control was completely blocked by the delta-selective antagonist NTI, but not by the mu-selective antagonist naltrexone. The present findings indicate that not only do rats readily discriminate both mu- and kappa-selective agonists from their respective vehicles, but they also discriminate compounds that are selective for the delta receptor subtype, thus extending the class of compounds that can serve such discriminative functions for the rat.  相似文献   

3.
The N-alkyl analogues (N-ethyl through N-heptyl), branched N-alkyl chain analogues (N-isopropyl, N-2-methylpropyl, and N-3-methylbutyl), and N-alkenyl analogues ((E)-N-3-methylallyl (crotyl), N-2-methylallyl, and N-3,3-dimethylallyl) were prepared in the noroxymorphindole series (17-substituted-6,7-dehydro-4,5alpha-epoxy-3,14-dihydroxy-6,7:2',3'-indolomorphinans), and the effect of the N-substituent on opioid receptor affinity, selectivity, and efficacy was examined using receptor binding assays, [(35)S]GTPgammaS efficacy determinations, and smooth muscle functional assays (electrically stimulated mouse vas deferens and guinea pig ileum). All of the compounds acted as opioid antagonists, including those with N-substituents which usually confer either weak agonist-antagonist behavior (N-ethyl) or potent opioid agonist activity (N-pentyl) in morphinan-like ligands which interact with the mu-receptor. Several N-substituted noroxymorphindoles were found to be more mu/delta-selective than naltrindole (NTI). The N-2-methylallylnoroxymorphindole, in particular, was found to be more selective than NTI in receptor binding assays (mu/delta = 1700 vs 120; kappa/delta = 810 vs 140), as an antagonist in the GTPgammaS assay (mu/delta = 170 vs 140; kappa/delta = 620 vs 160), and considerably more selective than NTI in the functional assays (mu/delta > 2200 vs 90). It also had high affinity for the delta-opioid receptor (K(i) = 4.7 nM in the binding assay) and high antagonist potency (1.2 nM in the GTPgammaS assay; 8.9 nM in the MVD assay).  相似文献   

4.
The binding characteristics of selective and nonselective opioids have been studied in whole guinea pig spinal cord, using a computer fitting method to analyze the data obtained from saturation and competition studies. The delineation of specific binding sites labeled by the mu-selective opioid [3H]D-Ala2,MePhe4,Gly-ol5-enkephalin (Kd = 2.58 nM, R = 4.52 pmol/g of tissue) and by the delta-selective opioid [3H]D-Pen2, D-Pen5-enkephalin (Kd = 2.02 nM, R = 1.47 pmol/g of tissue) suggests the presence of mu and delta-receptors in the spinal cord tissue. The presence of kappa receptors was probed by the kappa-selective opioid [3H]U69593 (Kd = 3.31 nM, R = 2.00 pmol/g of tissue). The pharmacological characterization of the sites labeled by [3H]U69593 confirms the assumption that this ligand discriminates kappa receptors in guinea pig spinal cord. The benzomorphan [3H]ethylketazocine labels a population of receptors with one homogeneous affinity state (Kd = 0.65 nM, R = 7.39 pmol/g of tissue). The total binding capacity of this ligand was not different from the sum of the binding capacities of mu, delta-, and kappa-selective ligands. Under mu- and delta-suppressed conditions, [3H]ethylketazocine still binds to receptors with one homogeneous affinity state (Kd = 0.45 nM, R = 1.69 pmol/g of tissue). Competition studies performed against the binding of [3H]ethylketazocine under these experimental conditions reveal that the pharmacological profile of the radiolabeled receptors is similar to the profile of the kappa receptors labeled with [3H]U69593. Saturation studies using the nonselective opioid [3H]bremazocine demonstrate that this ligand binds to spinal cord membranes with heterogeneous affinities (Kd1 = 0.28 nM, R1 = 7.91 pmol/g of tissue; Kd2 = 3.24 nM, R2 = 11.2 pmol/g of tissue). The total binding capacity obtained with [3H]bremazocine (Rtotal = 19.1 pmol/g of tissue) was different from either the sum of the binding capacities of mu-, delta, and kappa-selective ligands or the binding capacity of [3H]ethylketazocine obtained under unsuppressed conditions. These results suggest that [3H]bremazocine labels additional opioid sites, namely the kappa 2 receptors, in contrast to kappa 1 sites labeled with [3H]U69593. In experimental conditions where the binding of [3H]bremazocine at mu, delta, and kappa 1 receptors was quenched by selective blockers, [3H]bremazocine recognizes the kappa 2 receptors with one homogeneous affinity state (Kd = 3.45 nM, R = 8.23 pmol/g of tissue). However, competition studies suggest that some opioids bind to these kappa 2 receptors with heterogeneous affinity states (high and low affinity states), whereas others bind with one apparently homogeneous affinity state.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Our investigation of bivalent ligands at mu, delta, and kappa opioid receptors is focused on the preparation of ligands containing kappa agonist and mu agonist/antagonist pharmacophores at one end joined by a chain containing the mu antagonist pharmacophores (naltrexone, naloxone, or nalbuphine) at the other end. These ligands were evaluated in vitro by their binding affinity at mu, delta, and kappa opioid receptors and their relative efficacy in the [35S]GTPgammaS assay.  相似文献   

6.
Molecular modifications of both the kappa opioid antagonist norbinaltorphimine (norBNI, 1) and the kappa receptor have provided evidence that the selectivity of this ligand is conferred through ionic interaction if its N17' protonated amine group (an "address") with a nonconserved acidic residue (Glu297) on the kappa receptor. In the present study, we have examined the effect of structural modifications on the affinity of norBNI analogues for wild-type and mutant kappa and mu opioid receptors expressed in COS-7 cells. Compounds 2, 3, and 7, which have an antagonist pharmacophore and basic N17' group in common with norBNI, retained high affinity for the wild-type kappa but exhibited greatly reduced affinity for mutant kappa receptors (E297K and E297A). Modification of the phenolic or N-substituent groups of the antagonist pharmacophore (4 and 5) or removal of basicity at the address N17' center (6) led to greatly reduced affinity for the wild-type and mutant receptors. The reduced affinity upon modification of the kappa receptor is consistent with the ionic interaction of the protonated N17' group of kappa antagonists (1-3, 7) with the carboxylate group of E297 at the top of TM6. This was supported by the greatly enhanced affinity of compounds 1-3 for the mutant mu receptor (K303E), as compared to the wild-type mu receptor, given that residue K303 occupies a position equivalent to that of E297 in the kappa receptor. In view of the high degree of homology of the seven TM domains of the kappa and mu opioid receptors, it is suggested that the antagonist pharmacophore is bound within this highly conserved region of the kappa or mutant mu receptor and that an anionic residue at the top of TM6 (E297 or K303E, respectively) provides additional binding affinity.  相似文献   

7.
The indole moiety in the delta-opioid antagonist, naltrindole (2, NTI), was employed as a scaffold to hold an "address" for interaction with the kappa-opioid receptor. The attachment of the address to the 5'-position of the indole moiety was based on superposition of NTI upon the kappa antagonist, norbinaltorphimine (1, norBNI). A variety of cationic groups were employed as a kappa address in an effort to investigate its interaction with the anionic address subsite, Glu297, on the kappa receptor. Some of the groups that were employed for this purpose were amines, amidines, guanidines, and quaternary ammonium. Members of the series were found to have a varying degree of kappa antagonist potency and kappa selectivity when tested in smooth muscle preparations. The 5'-guanidine derivative 12a (GNTI) was the most potent member of the series and had the highest kappa selectivity ratio. GNTI was 2 times more potent and 6-10-fold more selective than norBNI (1). In general, the order of potency in the series was: guanidines > amidines approximately quaternary ammonium > amines. The kappa antagonist potency appeared to be a function of a combination of the pK(a) and distance constraint of the cationic substituent of the ligand. Receptor binding studies were qualitatively in agreement with the pharmacological data. Molecular modeling studies on 12a suggested that the protonated N-17 and guanidinium groups of GNTI are associated with Asp138 (TM3) and Glu297 (TM6), respectively, while the phenolic hydroxyl may be involved in donor-acceptor interactions with the imidazole ring of His291. It was concluded that the basis for the high kappa selectivity of GNTI is related both to association with the nonconserved Glu297 residue and to unfavorable interactions with an equivalent position in mu- and delta-opioid receptors.  相似文献   

8.
Rationale: Opioid receptors are divided into three types: kappa, mu, and delta receptors. Receptor-selective antagonists are useful experimental tools for evaluation of opioid receptor-mediated processes. 5′-Guanidinonaltrindole (GNTI) was recently developed as a novel kappa-selective antagonist. Objectives: To evaluate the potency, time course, and selectivity of GNTI's opioid antagonist effects in rhesus monkeys in an assay of schedule-controlled responding. Methods: Five rhesus monkeys were trained to respond under a fixed ratio 30 schedule of food reinforcement. The rate-decreasing effects of the kappa agonists U50,488 and U69,593, the mu agonist morphine, and the delta agonist SNC80 were examined alone and after pretreatment with GNTI (0.1 and 1.0 mg/kg i.m.; 1 h to 14 days). Results: U50,488, U69,593, morphine, and SNC80 dose-dependently decreased response rates in this procedure. GNTI produced a dose- and time-dependent antagonism of the rate-decreasing effects of U50,488. The kappa antagonist effects of GNTI had a slow onset and a long duration of action, and peak antagonist effects were observed after 24 h. A higher dose of 3.2 mg/kg GNTI eliminated responding in one monkey and was not studied further. The antagonist effects of GNTI were kappa selective, because 1.0 mg/kg GNTI also antagonized the effects of U69,593, but not those of morphine or SNC80. Conclusions: These results suggest that GNTI is a potent and selective kappa antagonist with a slow onset and long duration of action in rhesus monkeys. Relative to the prototype kappa antagonist nor-binaltorphimine, GNTI may have some advantages as a tool for the study of kappa receptor-mediated processes. Electronic Publication  相似文献   

9.
This study was conducted to determine whether sex differences in opioid antinociception may be explained by sex differences in opioid receptor activation. The time course, dose-effect and selectivity of antagonists that have been previously shown to be relatively mu (beta-funaltrexamine, beta-FNA), kappa (norbinaltorphimine, norBNI), or delta (naltrindole, NTI) receptor selective in male animals were compared in female and male Sprague-Dawley rats using a 52 degrees C hotplate test. In both sexes, beta-FNA (10 or 20 microg intracerebroventricularly [i.c.v.]) dose-dependently blocked the antinociceptive effects of fentanyl (0.056 mg/kg subcutaneously); antagonism was observed 24 h after beta-FNA, and diminished within 7-14 days. In both sexes, norBNI (1 or 10 microg i.c.v.) dose-dependently blocked the antinociceptive effects of U69,593 (1.0 mg/kg subcutaneously); antagonism was maximal by 1-3 days post-norBNI and lasted longer than 56 days. NTI (1 or 10 microg i.c.v.) dose-dependently blocked the antinociceptive effects of [D-Pen2, D-Pen5]enkephalin (DPDPE, 100 nmol i.c.v.) in both sexes; however, the duration of action of NTI was shorter in females than in males. The antinociceptive effects of the mu receptor-preferring agonists fentanyl, morphine and buprenorphine were significantly and dose-dependently antagonized by beta-FNA, but not by norBNI or NTI, in both sexes. Beta-FNA antagonism was significantly greater in females compared with males given morphine, but not fentanyl or buprenorphine. The antinociceptive effects of the kappa receptor-preferring agonists U69,593 and U50,488 were significantly and dose-dependently antagonized by norBNI; U50,488 but not U69,593 was also antagonized to a lesser extent by NTI and beta-FNA, in both sexes. The antinociceptive effect of the delta receptor-preferring agonist SNC 80 was significantly antagonized by NTI, but not by norBNI or beta-FNA, in both sexes. The sex difference in beta-FNA antagonism of morphine suggests that there may be sex differences in functional mu opioid receptor reserve or signal transduction; however, the lack of consistency across all mu agonists weakens this hypothesis. Overall, the opioids tested had very similar receptor selectivity in male and female subjects.  相似文献   

10.
Bivalent ligands of kappa opioid agonists and antagonists, such as norBNI and BNI, are used as tools to elucidate the kappa receptor characteristics. Bivalent ligands may also be effective analgesics although none have this far been used clinically. Structure-activity relationships (SAR) and molecular modeling led to the development of a more potent and selective kappa antagonist (5'-guanidinylnaltrindole, GNTI). Novel homo and hetero bivalent ligands with high mixed kappa/micro or mixed kappa/delta affinity and intriguing pharmacological properties may eventually lead to useful analgesics with fewer adverse side effects. Bivalent ligands were also developed that could act as probes of the receptor-oligomerzation and organization phenomena. A structurally unique kappa antagonist (JDTic) provides an additional tool to characterize kappa opioid receptor.  相似文献   

11.
The characteristics of mu and delta opioid receptor sites present in human neuroblastoma SH-SY5Y cells were investigated using [D-Ala2-N-methyl-Phe4-Gly-(01)5]enkephalin (DAGO) and [2-D-penicillamine, 5-D-penicillamine]enkephalin (DPDPE), which are the most selective radioligands available for mu and delta sites, respectively. Scatchard analysis of the saturation isotherms revealed high affinity binding to a single class of sites for both [3H]DAGO (mu) and [3H]DPDPE (delta). [3H]DAGO labeled twice the number of sites compared to the binding capacity of [3H]DPDPE, yielding a mu/delta ratio of 2:1. Selective suppression of [3H]diprenorphine binding by specific opioid "blocking" ligands also showed a predominance of mu receptors, representing 65-70% of the total opioid sites. Competition binding studies carried out with a series of opiates and opioid peptides displayed higher potencies of mu- and delta-selective ligands in displacing the specific binding of [3H]DAGO and [3H]DPDPE, respectively. The [3H]diprenorphine/agonist competition curves were biphasic, indicating the high and low affinity states of mu and delta receptor sites in SH-SY5Y cells. Guanine nucleotide and sodium had differential effects on the agonist affinity and the proportion of high affinity states of mu and delta receptors. The mu and delta receptor sites were shown to be functionally coupled to adenylate cyclase. All of these data support the independent existence of mu and delta receptor types in human neuroblastoma cells. SH-SY5Y cells, therefore, represent a suitable model for investigating opioid-mediated responses in nerve cell populations.  相似文献   

12.
Various concepts have served as the basis for the development of models to explore the relationship between molecular structure and biological activity. In this presentation I have outlined five concepts that have been useful in our investigation of opioid receptor multiplicity and in the design of selective opioid receptor antagonists. The first of these, the multiple binding modality concept, led to our application of four other concepts in the development of opioid receptor probes. Some of these probes are now standard tools in opioid research. These include the mu-selective affinity label beta-FNA (10), the kappa opioid receptor antagonist norBNI (15), and the delta opioid antagonist NTI (20). These highly selective antagonists have advantages over the universal opioid antagonists naloxone and naltrexone because they are of value in probing the interaction of endogenous opioid peptides with opioid receptor types. Additionally, they are useful in evaluating the selectivity of new opioid agonists. Also, selective opioid antagonists have potential clinical applications in the treatment of a variety of disorders where endogenous opioids play a modulatory role. These include constipation, immune function, drug addiction, and alcoholism, to name only a few.  相似文献   

13.
The thiophene 2 and pyran 3 analogues of the kappa-selective opioid antagonist norbinaltorphimine (1a, norBNI) were synthesized and tested in an effort to determine the contribution of the spacer to the interaction of bivalent ligands at different opioid receptor types. Both 2 and 3 were found to be selective kappa opioid receptor antagonists in smooth muscle preparations, and they bound selectively to kappa-recognition sites. The thiophene analogue 2 displayed binding selectivity that was of the same order of magnitude as that of 1a, while 3 was considerably less selective for kappa site. This is consistent with the fact that the second pharmacophore in 1a and 2 displayed a greater degree of superposition than 1a and 3. The results of this study suggest that the pyrrole moiety of norBNI functions primarily as an inert spacer to rigidly hold the basic nitrogen in the second pharmacophore at an "address" subsite that is unique for the kappa opioid receptor.  相似文献   

14.
KDN21 is a bivalent ligand that contains delta and kappa opioid antagonist pharmacophores linked through a 21-atom spacer. It has been reported that KDN21 bridges delta and kappa receptors that are organized as heterodimers. We have shown previously that when using [(3)H]diprenorphine as radioligand, KDN21 displayed greatly enhanced affinity in this series for coexpressed delta and kappa opioid receptors (CDK). The present study used in vitro expression systems to investigate interactions of members of the KDN series with delta-kappa heterodimers through competition binding using selective ligands and the mitogen-activated protein kinase (MAPK) assay. In this regard, the use of the selective radioligands [(3)H]naltrindole and [(3)H]norbinaltorphimine (nor-BNI) in competition binding studies revealed that KDN21 has much higher affinity than other KDN members for CDK and bound to CDK more selectively relative to mixed delta and kappa opioid receptors or singly expressed delta and kappa opioid receptors. Other experiments revealed that the binding of naltrindole to delta opioid receptors could increase the binding of nor-BNI to kappa opioid receptors and vice versa, suggesting reciprocal allosteric modulation of receptors in the heterodimer. Regarding the selectivity of KDN21 for phenotypic delta and kappa opioid receptors, we investigated the effect of KDN21 on the activation of MAPKs [extracellular signal-regulated kinases 1 and 2 (ERK1/2)] by delta- or kappa-selective agonists. KDN21 inhibited the activation of ERK1/2 by [D-Pen(2),D-Pen(5)]-enkephalin (delta(1)) and bremazocine (kappa(2)) but had no effect on the activation by deltorphin II (delta(2)) and (+)-(5alpha,7alpha,8beta)-N-methyl-N-[7-(1-pyrrolidinyl)-1-oxaspiro[4.5]dec-8-yl]benzeneacetamide (U69593, kappa(1)). 7-Benzylidenenaltrexone (delta(1)) and bremazocine (kappa(2)) significantly reduced the binding of KDN21 to CDK, whereas naltriben (delta(2)) and U69593 produced no such change. Taken together, these data support the idea that the organization of delta and kappa receptors as heterodimers gives rise to delta(1) and kappa(2) phenotypes.  相似文献   

15.
The effects of mu, delta and kappa opioid receptor agonists were examined on evoked field potentials in brain slices prepared from rat hippocampus. The effects of the mu-selective opioid peptide [D-Ala2, NMe-Phe4, Met(O)5ol]enkephalin (FK 33-824) and the delta-selective peptide [D-Pen2, D-Pen5]enkephalin (DPDPE) were qualitatively and quantitatively similar. Both increased the amplitude of evoked population spike responses when perfused in low nanomolar concentrations in a fashion consistent with what has been previously reported for other opiate agonists such as morphine. The kappa-selective agonists bremazocine and U-50, 488H were without effect upon evoked responses at concentrations as high as 10 microM. Bremazocine, but not U-50, 488H, proved to be an extremely potent antagonist of responses to both mu- and delta- selective agonists. Moreover, bremazocine was considerably more potent in antagonizing responses to FK 33-824 than DPDPE, which supports the hypothesis that FK 33-824 and DPDPE act via different receptors. Thus, although bremazocine is an agonist at kappa receptors, it appears to act as an antagonist at other opioid receptor sites.  相似文献   

16.
kappa-Opioid binding sites on a murine lymphoma cell line.   总被引:3,自引:0,他引:3  
As a first step in determining whether any subset of lymphocytes expresses opioid receptors, membranes prepared from mouse lymphoma cell lines were screened for [3H]naloxone binding sites. Membranes from the R1.1 cell line specifically bound [3H]naloxone. The Hill coefficient for [3H]naloxone binding was 0.93 +/- 0.18, and nonlinear regression analysis indicated that a one-site model was the best fit of the [3H[naloxone saturation binding data. Low concentrations of kappa-selective opioids, but neither mu nor delta opioids, inhibited [3H]naloxone binding. Saturation binding studies with the kappa-selective compound [3H]U69,593 revealed a single binding site with a KD value of 0.204 +/- 0.039 nM and a Bmax value of 31.7 +/- 3.1 fmol/mg of membrane protein. The Hill coefficient for [3H]U69,593 binding was 1.03 +/- 0.11, indicative of a single site. Time courses for the association and dissociation of [3H]U69,593 binding at 25 degrees C exhibited properties consistent with a single class of binding sites. Low concentrations of kappa-selective opioids, including dynorphin peptides, inhibited [3H]U69,593 binding, while high concentrations of mu opioids were needed to inhibit binding, and the delta-selective ligands were ineffective at concentrations up to 10 microM. Stereoselectivity of the binding site was demonstrated by the finding that the Ki value for (-)-pentazocine in inhibiting [3H]U69,593 binding was 25 times less than for the (+)-isomer. Based on its high affinity for U69,593, alpha-neo-endorphin, and dynorphin B, the kappa opioid binding site on R1.1 cell membranes belongs to the kappa 1b subtype. As observed with brain kappa opioid binding sites, sodium inhibited [3H]U69,593 binding to R1.1 cell membranes in a concentration-dependent manner. These data demonstrate that the murine lymphoma cell line R1.1 expresses kappa opioid binding sites that are very similar to brain kappa opioid binding sites.  相似文献   

17.
C—末端截短δ阿片受体的结合特征   总被引:1,自引:1,他引:0  
目的:研究δ阿片受体C-末端在受体结合配体的亲和力及选择性中的作用。方法:在中国苍鼠卵巢细胞(CHO细胞)中分别稳定表达C末端截短31个氨基酸残基及野生型δ阿片受体,用受体结合分析法研究了表达产物与配体的结合特征,结果:表达得到典型突变受体克隆CHO-T及野生型受体克隆CHO-W,CHO-T结合(^3H)diprenorphine(Dip)及(^3H)(D-Ala^2,D-Leu^5)enkeph  相似文献   

18.
Conditions for the equilibrium binding to opioid receptor of [3H]sufentanil (mu selective), [3H][D-Pen2,D-Pen5]enkephalin (delta selective), and [3H]U69,593 (kappa selective) were established in membranes from rat brain cerebrum, monkey cortex, or guinea pig cerebellum. The selectivity index of various opioid alkaloids and peptides in binding to the mu, delta, or kappa opioid receptors was expressed as the ratio of their EC50 values in displacing two selective radiolabeled ligands: [3H]sufentanil/[3H](D-Pen2,D-Pen5)enkephalin (selectivity: mu/delta), [3H]sufentanil/[3H]U69,593 (selectivity: mu/kappa), or [3H][D-Pen2,D-Pen5]enkephalin/[3H]U69,593 (selectivity: delta/kappa). High resolution in binding selectivity was observed: in rat brain the mu/delta selectivity for Tyr-D-Ala-Gly-(Me)Phe-Gly-ol and sufentanil were 0.02 and 0.03, whereas for [D-Pen2,D-Pen5]enkephalin and ICI 174,864 they were 1,200 and 998. Compared to mu opiates, the specific binding of delta and kappa agonists was less sensitive to sodium. The results describe a routinely applicable methodological approach for the assessment of selective ligand binding to the mu, delta and kappa opioid receptors in rodent and monkey brain membranes.  相似文献   

19.
Kappa opioid receptors derive their name from the prototype benzomorphan, ketocyclazocine (1a) which was found to produce behavioral effects that were distinct from the behavioral effects of morphine but that were antagonized by the opioid antagonist, naltrexone. Recent evidence suggests that agonists and antagonists at kappa opioid receptors may modulate the activity of dopaminergic neurons and alter the neurochemical and behavioral effects of cocaine. Kappa agonists blocked the effects of cocaine in squirrel monkeys in studies of cocaine discrimination and scheduled-controlled responding. Studies in rhesus monkeys suggested that kappa opioids may antagonize the reinforcing effects of cocaine. These studies prompted the synthesis and evaluation of a series of kappa agonists related to the morphinan, L-cyclorphan (3a) and the benzomorphan, L-cyclazocine (2). We describe the synthesis and preliminary evaluation of a series of morphinans, structural analogs of cyclorphan 3a-c, the 10-keto morphinans 4a and b, and the 8-keto benzomorphan 1b, structurally related to ketocyclazocine (1a). In binding experiments L-cyclorphan (3a), the cyclobutyl (3b), the tetrahydrofurfuryl 3c and the 10-keto 4b analogs had high affinity for mu (mu), delta (delta) and kappa (kappa) opioid receptors. Both 3a and 3b were more selective for the kappa receptor than the mu receptor. However, 3b was 18-fold more selective for the kappa receptor in comparison to the delta receptor, while cyclorphan (3a) had only a 4-fold greater affinity for the kappa receptor in comparison to the delta receptor. The cyclobutyl compound 3b was found to have significant mu agonist properties, while 3a was a mu antagonist. All compounds were also examined in the mouse tail flick and writhing assay. Compounds 3a and 3b were kappa agonists. Correlating with the binding results, compound 3a had some delta agonist properties, while 3b was devoid of any activity at the delta receptor. In addition, compounds 3a and 3b had opposing properties at the mu opioid receptor. The cyclobutyl compound 3b was found to have significant mu agonist properties, while 3a was a mu antagonist.  相似文献   

20.
The ontogenetic pattern of multiple opioid binding sites in rat brain from birth until weaning has been investigated. [3H]-dihydromorphine ([3H]-DHM)3 [3H]-D-Ala2-D-Leu5-enkephalin ([3H]-DADLE) and [3H]-dynorphin A (1-8) ([3H]-DYN) as markers of mu (mu), delta (delta) and Kappa (kappa) sites were utilized respectively. The analysis of the kinetic parameters of [3H]-DHM binding shows that, at birth, mu sites possess an affinity similar to that of adult animals, and a density of 50%, which reaches 80% of the adult value at day 4. On the contrary, [3H]-DADLE binding in the first post-natal days shows low affinity and low density and delta-sites do not reach values comparable to the adult ones until the second week of life. The kinetic parameters of [3H]-DYN binding are almost undetectable during the preweanling period, due to the very low density of kappa sites at this stage of life. Displacement studies with mu-, delta- and kappa-selective ligands show that the Ki values on [3H]-DHM binding sites were similar in 4 day old and adult animals for all the tested compounds, whereas Ki values on [3H]-DADLE and [3H]-DYN binding sites reflected an immaturity of delta and kappa receptors. In conclusion, our data suggest that multiple opioid receptors follow different ontogenetic patterns. In the first stages of life only mu receptors are almost mature and possibly mediate endogenous opioid actions and exogenous opiate pharmaco-toxicological effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号