首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 577 毫秒
1.
A cell line (LAMA-84) has been established from the blood of a patient with chronic myeloid leukemia in acute phase. LAMA-84 cells retained the patient's chromosome abnormalities, i.e., triplication of all chromosomes except chromosome 18, the presence of Philadelphia (Ph) chromosome in 4-5 copies, and the presence of chromosome markers. LAMA-84 cells have morphological features of undifferentiated blast cells, but analyses have indicated that they belong to the megakaryocytic lineage; platelet peroxidase (PPO) was found in 8.5% of cells; LAMA-84 cells reacted spontaneously with poly- and monoclonal antibodies against the platelet glycoproteins (GP) IIb, IIIa, and the GPIIb/IIIa complex, whose presence was confirmed by crossed immunoelectrophoresis. LAMA-84 cells lack the membrane characteristics of lymphoid and mature granulocytic cells but do, however, react with certain antibodies to immature myeloid cells. Furthermore, they are positive with an antiglycophorin antibody, and contain alpha- and gamma-globin mRNA, thus demonstrating erythroid marker expression. Thus LAMA-84 is a tripotent, megakaryocytic, erythroid, and granulocytic cell line. The megakaryocytic and erythroid markers were enhanced by the addition of DMSO, butyrate, TPA, and hemin. The LAMA-84 cell line represents an interesting tool for the study of megakaryocytic and erythroid differentiation and the mechanisms of neoplastic growth.  相似文献   

2.
Megakaryocyte development is a carefully controlled process that is at least partially regulated by cytokines. Previous investigations of megakaryocyte development have focused primarily on defining growth factors that induce or enhance differentiation. In this study we demonstrate that a specific cytokine, transforming growth factor beta 1 (TGF beta 1), inhibits the phorbol myristate acetate (PMA)-induced differentiation of the Dami human megakaryocytic cell line. The addition of purified platelet TGF beta 1 inhibits PMA-induced endomitosis in a dose-dependent manner. Inhibition of endomitosis occurs with as little as 0.4 pmol/L TGF beta 1, is half-maximal at 6.4 pmol/L, and is maximal between 40 and 200 pmol/L TGF beta 1. Inhibition does not require other growth factors or nonmegakaryocytic cells. Removal of TGF beta 1 from the cultures decreases inhibition, suggesting that the continuous presence of TGF beta 1 is required and that its effects are reversible. This effect occurs even though the Dami cells constitutively express TGF beta 1 messenger RNA (mRNA) and the TGF beta 1 mRNA levels are increased by PMA. TGF beta 1 also has been shown to inhibit endomitosis during short-term culture of primary human megakaryocytes. These results suggest a model in which negative as well as positive regulatory factors modulate a critical stage of megakaryocyte development.  相似文献   

3.
Wilhide  CC; Van Dang  C; Dipersio  J; Kenedy  AA; Bray  PF 《Blood》1995,86(1):294-304
The maturation of megakaryocytes in vivo requires polyploidization or repeated duplication of DNA without cytokinesis. As DNA replication and cytokinesis are tightly regulated in somatic cells by cyclins and cyclin-dependent kinases, we sought to determine the pattern of cyclin gene expression in cells that undergo megakaryocytic differentiation and polyploidization. The Dami megakaryocytic cell line differentiates and increases ploidy in response to phorbol 12-myristate 13-acetate (PMA) stimulation in vitro. We used Northern blotting to analyze mRNA levels of cyclins A, B, C, D1, and E in PMA-induced Dami cells and found that cyclin D1 mRNA levels increased dramatically (18-fold). Similar increases in cyclin D1 mRNA were obtained for other cell lines (HEL and K562) with megakaryocytic properties, but not in HeLa cells. The increase in cyclin D1 was confirmed by Western immunoblotting of PMA-treated Dami cells. This finding suggested that cyclin D1 might participate in megakaryocyte differentiation by promoting endomitosis and/or inhibiting cell division. To address these possibilities, we constructed two stable Zn+2-inducible, cyclin D1-overexpressing Dami cell lines. Cyclin D1 expression alone was not sufficient to induce polyploidy, but in conjunction with PMA-induced differentiation, polyploidization was slightly enhanced. However, unlike other cell systems, cyclin D1 overexpression caused cessation of cell growth. Although the mechanism by which cyclin D1 may affect megakaryocyte differentiation is not clear, these data demonstrate that cyclin D1 is upregulated in differentiating megakaryocytic cells and may contribute to differentiation by arresting cell proliferation.  相似文献   

4.
5.
Megakaryocytic alpha-granules contain secretory proteins relevant to megakaryocyte and platelet functions. Understanding alpha-granule biogenesis is hampered because human primary megakaryocytes are difficult to manipulate. Existing promegakaryocytic cell lines do not spontaneously exhibit mature alpha-granules. Dami cells, transfected with the megakaryocytic platelet factor 4, fused to GFP (PF4-GFP), were induced in the presence of thrombopoietin (TPO), a megakaryocyte cytokine and PMA. Using confocal microscopy, PF4-GFP colocalized with von Willebrand Factor (vWF) in newly formed storage granules. Immunoelectron microscopy demonstrated alpha-granule-like features, including a dense core or parallel tubules and colocalization of PF4-GFP and vWF. Hence, TPO-treated Dami cells are a suitable model to study alpha-granules and their biogenesis.  相似文献   

6.
Megakaryocytic α-granules contain secretory proteins relevant to megakaryocyte and platelet functions. Understanding α-granule biogenesis is hampered because human primary megakaryocytes are difficult to manipulate. Existing promegakaryocytic cell lines do not spontaneously exhibit mature α-granules. Dami cells, transfected with the megakaryocytic platelet factor 4, fused to GFP (PF4-GFP), were induced in the presence of thrombopoietin (TPO), a megakaryocyte cytokine and PMA. Using confocal microscopy, PF4-GFP colocalized with von Willebrand Factor (vWF) in newly formed storage granules. Immunoelectron microscopy demonstrated α-granule-like features, including a dense core or parallel tubules and colocalization of PF4-GFP and vWF. Hence, TPO-treated Dami cells are a suitable model to study α-granules and their biogenesis.  相似文献   

7.
Different human hematopoietic cell lines were analyzed for the presence of interleukin 6 (IL-6) and IL-6 receptor (IL-6-R). Both IL-6 mRNA and secreted active IL-6 protein were detectable in untreated cell lines with erythroid or megakaryoblastic features (K562, HEL, KU 812, MEG-01, and Dami), but they were not expressed constitutively in other leukemic cell lines (KG1, HL60, and U937). IL-6-R production, studied by the presence of its mRNA and specific binding sites for iodinated recombinant IL-6, was detected in most cell lines except K562, HEL, and Dami. Therefore, only KU 812 and MEG-01 coexpress both IL-6 and IL-6-R. After phorbol ester myristate acetate (PMA) treatment, all the cell lines studied expressed or overexpressed IL-6. In the erythroid K562 cell line, IL-6-R was not detectable before induction, but was promptly expressed after stimulation with PMA, suggesting that some of the new features of K562 cells induced by PMA may be mediated by IL-6. However, neutralizing antibodies against IL-6 did not block either the growth arrest or the loss of the erythroid phenotype induced by PMA. The presence of IL-6 and IL-6-R in erythroid and megakaryocytic leukemic cell lines suggests that their synthesis may occur during normal hematopoietic differentiation.  相似文献   

8.
The ploidy of human bone marrow cells belonging to the megakaryocytic, granulocytic-monocytic and erythrocytic lineages was studied by in situ hybridization using the biotin-labelled Y chromosome-specific DNA probe pY431 and the chromosome 1-specific probe pUC1.77 on cells identified morphologically and immunologically by the MAC procedure. Cells of the granulocytic-monocytic and erythrocytic lineages were seen to be 2N in ploidy, whereas the ploidy of the megakaryocytic lineage ranged from 2N to 32N, with the ploidy classes 4N and 8N being predominant. The frequency of megakaryocytes with 2N chromosomes was also high.  相似文献   

9.
OBJECTIVE: Two major protease-activated receptors (PARs), PAR1 and PAR4, are involved in the activation of human platelets by thrombin. A third, PAR3, is preferentially expressed by tissues of hematopoietic origin and megakaryocytes. Although PAR3 is also a thrombin substrate, its low-level expression on human platelets suggests a function distinct from that of PAR1, the major receptor involved in thrombin-mediated platelet activation. We studied the expression of PARs during megakaryocyte differentiation of human erythroleukemia (HEL) cells in order to determine the role of PAR3 in megakaryocytopoiesis. METHODS: HEL cells exposed to phorbol 12-myristate 13-acetate (PMA) to induce megakaryocyte differentiation were examined by light microscopy and flow cytometry (DNA ploidy, surface expression of PAR1, PAR3, GPIIb-IIIa). Northern blot, RT-PCR, and quantitative RT-PCR were used to evaluate the expression of PARs 1, 3, and 4 mRNA. HEL cells were also exposed to thrombin and thrombopoietin (TPO). RESULTS: In baseline studies, unstimulated HEL cells were found to express comparable levels of PAR1 and PAR3 by Northern blot. Minimal expression of PAR4 was detected by RT-PCR, but not by Northern analysis. Exposure to PMA, but not thrombin or TPO, resulted in megakaryocytic differentiation as evident by increased cell size and nuclear complexity, increased ploidy, and enhanced expression of GPIIb-IIIa, a specific marker of megakaryocytes/platelets. PMA-stimulated HEL cells showed enhanced PAR3 cell-surface expression (approximately threefold increase by day 2) by flow cytometry. In contrast, there was no change in cell-surface PAR1 expression. Northern blot analysis (approximately 10-fold) and quantitative RT-PCR (approximately threefold) confirmed the upregulation of PAR3 mRNA expression (by 24 hours) in cells exposed to PMA. This did not occur with exposure to TPO. CONCLUSION: These data demonstrate increased expression of PAR3 mRNA and protein in HEL cells undergoing megakaryocytic maturation following PMA exposure, suggesting a developmental role for PAR3. Furthermore, regulation of PAR3 expression appears to be specifically coupled to the protein kinase C system, but independent of the Ras/Raf/MAP kinase pathway.  相似文献   

10.
Murgo  AJ; Contrera  JG; Sistare  FD 《Blood》1994,83(5):1258-1267
Recently (J Pharmacol Exp Ther 261:580, 1992), we have shown that K562 leukemia cells express a calcium-signaling purinoceptor with characteristics of the P2T receptor subtype for adenosine diphosphate (ADP) previously found only in platelets. Because these results suggested that the P2T receptor may be an early marker for megakaryocytic differentiation, we studied whether this calcium- signaling receptor is also expressed in Dami cells, a human megakaryocytic leukemia cell line. Here we report evidence that Dami cells express a P2T receptor for ADP. The calcium response EC50 values for ADP, 2-methylthioadenosine diphosphate (2-MeS-ADP), and adenosine 5'-O-(2-thiodiphosphate) (ADP beta S) in Dami cells are 0.4 mumol/L, 0.04 mumol/L, and 2 mumol/L, respectively, which approximate the potencies of these agonists in K562 cells and in platelets. The platelet P2T receptor antagonists 2-methylthioadenosine triphosphate (2- MeS-ATP), and 2-chloroadenosine triphosphate (2-Cl-ATP) were surprisingly potent agonists at the P2T receptor in both Dami and K562 cells. Dami cells, unlike K562 cells and platelets, also respond to adenosine triphosphate (ATP) and uridine triphosphate (UTP) with an increase in intracellular calcium. Adenosine monophosphate (AMP) is an effective antagonist of the response to ADP, 2-MeS-ADP, ADP beta S, 2- MeS-ATP, and 2-Cl-ATP, but not to ATP and UTP. The responses to maximal concentrations of UTP in combination with either ADP, 2-MeS-ADP, ADP beta S, or 2-MeS-ATP are additive. In contrast, ADP in combination with either 2-MeS-ADP, ADP beta S, 2-MeS-ATP, or 2-Cl-ATP are not additive. UTP desensitized Dami cells to ATP but not to ADP, 2-MeS-ADP, ADP beta S, or 2-MeS-ATP. Addition of ATP after UTP desensitization antagonized subsequent responsiveness to ADP. The data suggest that the receptor for ADP may be a unique P2T subtype, and the receptor for ATP and UTP is distinct from that of ADP and is most characteristic of the P2U (nucleotide) receptor subtype. Activation of either the P2T or P2U receptor causes a rapid generation of inositol trisphosphate in Dami cells.  相似文献   

11.
Identification of hemopoietic factors and the molecular mechanisms by which they regulate the various stages of megakaryocyte development and platelet protein expression has been hampered by the lack of a purified, self-renewing, and responsive biological assay system. Previously, the human megakaryocytic Dami cell line has been shown to differentiate in response to phorbol ester by increasing the expression of platelet membrane glycoproteins Ib, IIb/IIIa, and the platelet protein, von Willebrand Factor (vWF). In this report, we demonstrate that this cell line is a suitable model for investigating the effects of specific cytokines and hemopoietic factors on the terminal differentiation of megakaryocytes as measured by the stimulated biosynthesis of vWF in serum-free culture. Although a low concentration (10 U/ml) of purified recombinant interleukin 3 (IL-3) had no effect, a higher concentration (100 U/ml) stimulated a three- to four fold increase in vWF synthesis. Purified thrombopoiesis-stimulating factor (TSF) alone induced a two- to threefold increase, and when used in combination with 10 U/ml IL-3, TSF induced a synergistic five- to sixfold increase in vWF synthesis. Recombinant erythropoietin (EPO) and human interleukin 6 (IL-6) each induced a twofold increase in vWF, and each acted additively with 10 U/ml IL-3. IL-3 and TSF stimulated similar increases in vWF expression by human megakaryocytes contained in nonadherent bone marrow preparations. These results demonstrate the usefulness of the Dami cell line as a serum-free culture system in which to study the direct effects of purified humoral factors on megakaryocyte and platelet protein synthesis during megakaryocyte maturation.  相似文献   

12.
A R Moliterno  J L Spivak 《Blood》1999,94(8):2555-2561
Recently, we demonstrated a marked reduction in the expression of the thrombopoietin receptor, Mpl, in polycythemia vera (PV) platelets and megakaryocytes using an antiserum against the Mpl extracellular domain. To further examine this abnormality, we raised an antibody to the Mpl C-terminus. Immunologic analysis of PV platelets with this antiserum confirmed the reduction in Mpl expression. However, the C-terminal antiserum detected 2 forms of Mpl in PV platelets in contrast to normal platelets, in which a single form of Mpl was detected by both the extracellular domain and C-terminal antisera. Two-dimensional gel electrophoresis studies with isoelectric focusing in the first dimension identified normal platelet Mpl as an 85 to 92 kD protein with an isoelectric point (pI) of 5.5. PV platelets contained an additional 80 to 82 kD Mpl Mpl isoform with a pI of 6.5. Analysis of Mpl expressed by the human megakaryocytic cell line, Dami, showed 2 isoforms similar to those found in PV platelets suggesting a precursor-product relationship. Digestion of Dami cell and normal platelet lysates with neuraminidase converted the more acidic Mpl isoform to the more basic one, indicating that the 2 isoforms differed with respect to posttranslational glycosylation. Furthermore, in contrast to normal platelet Mpl, PV platelet Mpl was susceptible to endoglycosidase H digestion, indicating defective Mpl processing by PV megakaryocytes. The glycosylation defect was specific for Mpl, as 2 other platelet membrane glycoproteins, glycoprotein IIb and multimerin, were processed normally. Importantly, the extent of the PV platelet Mpl glycosylation defect correlated with disease duration and extramedullary hematopoiesis.  相似文献   

13.
Megakaryocytes (MKs) from 40 patients with quantitative platelet disorders and 19 normal volunteers were analyzed by flow cytometry for size, fine cell internal structure and granularity, membrane expression of the glycoprotein (GP) IIb/IIIa complex, and for ploidy distribution. Analysis was performed on unfractionated minimally manipulated marrows obtained from routine bone marrow aspirates. MKs were labeled with a fluorescent lineage-specific monoclonal antibody to the GPIIb/IIIa complex followed by DNA staining with propidium iodide. Eight hundred to 3,000 MKs were analyzed in each sample. The modal ploidy distribution in normals was 16N, comprising about half of the megakaryocytic population, with 22.6% of the cells less than or equal to 8N and 22.0% greater than or equal to 32N. Twelve thrombocytopenic patients with decreased marrow MKs on biopsy (mean platelet count [MPC] 44,600/microliters) showed an increase in low ploidy cells with 53.2% less than or equal to 8N (P less than .01); cell size was reduced in three patients when compared to normal cells of identical ploidy (P less than .05). Eight thrombocytopenic patients with enhanced platelet destruction (with normal or increased MKs on biopsy and shortened platelet survival; MPC 41,400/microliters) showed an increased proportion of high ploidy cells greater than or equal to 32N to 39.2% (P less than .01). Increased cell size and granularity were found in four of these patients (P less than .05). Six patients with thrombocytopenia secondary to multiple mechanisms affecting both platelet production and destruction (MPC 66,700/microliters) showed no shift in ploidy. Four patients with primary thrombocytosis (two with thrombocythemia and two with polycythemia vera; MPC 822,500/microliters) showed a marked shift toward high ploidy cells with 42.3% greater than or equal to 32N and 7.6% greater than or equal to 64N cells (P less than .01). The shift was accompanied by a marked increase in cell size and granularity in the patients with thrombocythemia. Ten patients with thrombocytosis secondary to chronic blood loss, malignant or inflammatory disorders (MPC 714,000/microliters), showed variable distributions with four patients exhibiting a shift in ploidy to the right similar to that found in the patients with increased platelet destruction. Based upon the present data, flow cytometric ploidy distribution may be diagnostically useful in thrombocytopenic patients by discriminating between disorders of platelet production and destruction. (ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
15.
16.
The proliferation and differentiation of human megakaryocytes in liquid culture has been obtained using cryopreserved light-density blood cell concentrates from chronic myelogenous leukemia (CML) patients. A large number of megakaryocytes, representing 20%-60% of total cells cultured, developed after 12-14 days in liquid cultures supplemented with human plasma, while fetal calf serum supported the development of cells of the megakaryocytic lineage poorly. Ploidy studies showed the presence of 8N and 16N cells in human plasma-supplemented cultures while very few cells with DNA content greater than 4N were found in those supplemented with fetal calf serum. Using the FACS IV cytofluorometer, 1-2 X 10(6) megakaryocytes/h were sorted after immunolabeling of the human plasma-cultured cells with a monoclonal antibody reacting against the platelet glycoprotein complex IIb-IIIa. Thus, cryopreserved CML blood stem cell concentrates seem to offer a reproducible source of human megakaryocytes that retain their capacity to proliferate and differentiate in liquid cultures. These megakaryocytes can be used for the study of platelet glycoprotein biosynthesis as well as the regulation of megakaryocytopoiesis.  相似文献   

17.
The platelet membrane glycoproteins GPIIb and GPIIIa form a calcium- dependent heterodimer that functions as a receptor for adhesive proteins on stimulated platelets. In this study, we have investigated the kinetics of the assembly reaction that result in GPIIb-IIIa dimerization. Pulse-chase experiments analysis performed on human megakaryocytes obtained from liquid cultures of chronic myelogenous leukemic patients with antibodies specific for GPIIIa or GPIIb demonstrated the existence of a pro-GPIIb-GPIIIa complex and of a large pool (60%) of unassociated GPIIIa; nearly all the GPIIb and the pro- GPIIb molecules were found associated with GPIIIa. This free GPIIIa was not exposed on the cell surface. Pulse-chase experiments on a subclone of the human megakaryocytic cell line LAMA-84 revealed that the cells from this subclone produced only the pro-GPIIb, which was neither processed into mature GPIIb nor expressed on the cell surface. The expression of GPIIIa in PMA treated cells resulted in the production of the mature GPIIb form and the expression of the GPIIb-IIIa complex on the cell surface. These results indicate that assembly between the early forms of pro-GPIIb and GPIIIa is an obligatory step for the maturation of the heterodimer and its expression on the cell surface.  相似文献   

18.
The pathobiological role of p53 has been widely studied, however, its role in normophysiology is relatively unexplored. We previously showed that p53 knock-down increased ploidy in megakaryocytic cultures. This study aims to examine the effect of p53 loss on in?vivo megakaryopoiesis, platelet production, and function, and to investigate the basis for greater ploidy in p53(-/-) megakaryocytic cultures. Here, we used flow cytometry to analyze ploidy, DNA synthesis, and apoptosis in murine cultured and bone marrow megakaryocytes following thrombopoietin administration and to analyze fibrinogen binding to platelets in?vitro. Culture of p53(-/-) marrow cells for 6 days with thrombopoietin gave rise to 1.7-fold more megakaryocytes, 26.1% ± 3.6% of which reached ploidy classes ≥64 N compared to 8.2% ± 0.9% of p53(+/+) megakaryocytes. This was due to 30% greater DNA synthesis in p53(-/-) megakaryocytes and 31% greater apoptosis in p53(+/+) megakaryocytes by day 4 of culture. Although the bone marrow and spleen steady-state megakaryocytic content and ploidy were similar in p53(+/+) and p53(-/-) mice, thrombopoietin administration resulted in increased megakaryocytic polyploidization in p53(-/-) mice. Although their platelet counts were normal, p53(-/-) mice exhibited significantly longer bleeding times and p53(-/-) platelets were less sensitive than p53(+/+) platelets to agonist-induced fibrinogen binding and P-selectin secretion. In summary, our in?vivo and ex?vivo studies indicate that p53 loss leads to increased polyploidization during megakaryopoiesis. Our findings also suggest for the first time a direct link between p53 loss and the development of fully functional platelets resulting in hemostatic deficiencies.  相似文献   

19.
CFU-M-derived human megakaryocytes synthesize glycoproteins IIb and IIIa   总被引:1,自引:0,他引:1  
Jenkins  RB; Nichols  WL; Mann  KG; Solberg  LA Jr 《Blood》1986,67(3):682-688
Human megakaryocytes have been shown by immunofluorescent techniques to express platelet glycoprotein IIb/IIIa antigen. We report evidence that megakaryocytes derived from human committed megakaryocytic progenitor cells in vitro (CFU-M) synthesize glycoproteins IIb and IIIa. Nonadherent light-density human bone marrow cells were cultured in human plasma and methylcellulose using conditions that promote large megakaryocytic colonies. On day 13 the megakaryocytic colonies were picked, pooled, and pulsed with 35S-methionine in methionine-free media. Populations of approximately 100,000 cells with greater than or equal to 95% viability and containing 70% to 90% megakaryocytes were obtained reliably for study. After the radioactive pulse, the cell suspension was solubilized with nonionic detergent. To reduce nonspecific binding of 35S-labeled proteins to agarose, the lysate was chromatographed sequentially on glycine-quenched Affi-gel and antihuman factor X-Sepharose. The unbound material from these resins was then chromatographed on an antiglycoprotein IIb/IIIa monoclonal antibody resin (HP1-1D-Sepharose) or on a control monoclonal antibody resin. Bound fractions were eluted and analyzed by polyacrylamide gel electrophoresis and autoradiography. Autoradiograms of diethylamine eluates from HP1-1D-Sepharose revealed two labeled proteins with electrophoretic mobilities identical with those of human platelet membrane glycoproteins IIb and IIIa, isolated using similar conditions. Autoradiograms of material synthesized by control macrophages from the same donors revealed no significant labeling of proteins in the glycoprotein IIb/IIIa molecular weight range, nor were such proteins bound by HP1-1D-Sepharose. Our observations show that protein synthesis by CFU-M-derived human megakaryocytes can be readily studied using a small amount of bone marrow aspirate as starting material. This approach will allow the study of protein synthesis by megakaryocytes from normal subjects or from subjects with clinical disorders, and it will circumvent the need to obtain large amounts of bone marrow to prepare enriched populations of megakaryocytes.  相似文献   

20.
Gewirtz  AM; Burger  D; Rado  TA; Benz  EJ Jr; Hoffman  R 《Blood》1982,60(3):785-789
The human leukemia cell line K562 was derived from a patient with chronic granulocytic leukemia. This cell line has subsequently been shown to possess phenotypic markers typical of erythroid and myeloid cells. Using a rabbit antiserum directed against purified platelet glycoproteins (PGPs), we have obtained evidence for the constitutive expression of PGPs on the surface of K562 cells. PGPs expressed have been tentatively identified as IIa and III based on their apparent migration in a 7% sodium dodecylsulfate polyacrylamide gel. K562 may become an important tool for the study of early events involved in megakaryocytic differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号