首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
医学遗传学实验课程是医学教育的重要组成部分。本教研室从2009年开始探索实验课程改革,重点突出学科特色、理论与实践结合、培养自主学习能力等改革目标。3-4年的教学实践表明,新课程在激发学习兴趣提高学习效果,综合运用知识解决实际问题,培养严谨的科学态度等方面收到明显效果。  相似文献   

2.
随着医学遗传学的迅速发展,理论课知识的迅速更新,实验课程无论从内容还是形式上都显示出了明显的滞后性,对医学遗传学进行深入改革势在必行。我们针对八年制学生进行了医学遗传学实验课程改革,开设独立的医学遗传学实验课,强调课程的整体性和系统性。该课程已经开展五年,本文就课程设计及带教过程中的体会与大家共同探讨,以期为医学遗传学实验课程改革提供一定的思路。  相似文献   

3.
关于医学遗传学实验课程的几点认识   总被引:1,自引:0,他引:1  
医学遗传学是一门新兴的边缘学科,在三年级的医学生中开设此理论课程,就好比在细胞生物学、生理学、生物化学、遗传学和病理生理学等基础学科与临床各学科之间架起了一座纵横贯通的桥梁,通过它,医学生们才能在融汇贯通的基础上去领悟更新、更深的分子医学(molec...  相似文献   

4.
医学遗传学实验教学改革的尝试与初探   总被引:6,自引:0,他引:6  
近几年,全国高等医学院校对课程建设相当重视,并采取了若干措施,投入了大量人力,物力,促进教学改革。我院教学改革以课程建设为龙头,制定了课程建设规化。本教研室根据学院规化,改变遗传学教学单纯理论讲授,增设了实验课。本着教改精神,我们对实验课教学内容,教...  相似文献   

5.
医学遗传学教学方法改革初探   总被引:1,自引:0,他引:1  
医学遗传学是临床医学专业第三学期开设的专业课,随着生命科学的飞速发展,本学科的内容从深度和广度两方面迅速增加。搞好医学遗传学的教学工作,达到培养具有一定遗传学知识的临床医生,应从以下几方面着手:一是选择合适的教学内容,达到知识的系统性、新颖性和实用性...  相似文献   

6.
医学遗传学课程作为必修课,这对培养学生的遗传预防意识起了一定的作用。但对成人专科临床医学专业遗传学课程到底应给学生什么东西?作为临床医生在遗传预防和提高人口质量方面应具体承担什么任务?教材应如何改革?该门课程应如何与其他课程相衔接?为一步贯彻因材施教...  相似文献   

7.
8.
医学遗传学是基础医学向临床医学过渡的一门桥梁学科,在临床和科研的地位目益突出。大专院校为适应学科的发展,应加强医学遗传学课程建设,提高教学质量,培养高素质的医学人才。  相似文献   

9.
面向21世纪医学遗传学教材改革的简介   总被引:4,自引:0,他引:4  
医学遗传学是医学科学领域中十分活跃的前沿学科。尤其是分子生物学方法的引入,使人们对遗传病的认识达到了新的高度,人类基因组研究的进展更大大地促进了医学遗传学的发展。面临这种形势,我们受教育部的委托,编写这部教材,主要是要更新教材内容,使之能反映科学发展...  相似文献   

10.
11.
目的医学遗传学是一门实验为基础的必修课,本文对遗传学实验教学效果及改革需求进行问卷调查,为遗传学实验课进行改革,提高实验课教学效率和医学生的创新思维与实验操作技能提供参考依据。方法根据调查目的自编"医学生对医学遗传学实验课程教学评估问卷",对医学遗传学实验课的认知情况、实验课程设置评价、学习效果评价、实验课教学效果评价、实验课教学改革评价等内容进行问卷调查。结果对147名同学进行问卷调查,对课程设置(4~20分)、学习效果(8~40分)、教学效果(4~20分)、教学改革(7~35分)进行评分,总体分值分别为8.82±1.60、14.39±3.10、6.22±1.71、14.37±3.77。不同综合测评成绩间学生的比较结果显示课程设置和教学效果分值差别无统计学意义(P>0.05),学习效果和教学改革分值差别具有统计学意义(P<0.05)。综合成绩为≥90分,80~90分两组学习效果和教学改革分值明显低于后两组。同时,调查结果显示有98.6%的同学认为有必要开设遗传学实验课程,60.5%的同学支持对实验课内容进行教学改革。结论学生对医学遗传学实验课学习效果、教学效果均较满意。学习成绩更好的学生对学习效果的自我评价更好,接受调查的学生具有较强的教学改革意愿。  相似文献   

12.
为了使学生深入掌握医学遗传学知识,与国际充分接轨,在本课程中开展双语教学,培养具有国际竞争力专业人才意义深远。  相似文献   

13.
目的 对SNPstream基因分型技术的原理、操作方法、效果及应用的可行性、性价比及优缺点进行系统评价.方法 根据152个单核苷酸多态性(single nucleotide polymorphism,SNP)上万份样品的SNPstream基因分型结果来分析该技术的可行性、应答率和一致率.用测序法验证SNPstream基因分型的准确性.结果 在152个SNP中有122个可用本方法分型,其中116个分型成功,成功率达95.1%.重复试验显示分型一致率为99%.测序验证显示,当SNPstream基因分型聚类清晰时,准确性可达100%,当聚类不清晰时,准确性可达93.8%.结论 SNPstream基因分型技术具有准确性高、通量灵活、性价比高的特点,在医学遗传学研究中将得到更多的应用.  相似文献   

14.
随着全球生物信息数据和技术的飞速发展,我国医学高等教育也应将"下一代"生物信息数据技术引入医学遗传学教育。本文探讨了前沿信息数据技术应用于医学遗传学教育的意义,可行性和初步尝试,以期为改革创新与完善医学遗传学教学模式和内容,推动教学科研相长,培养具有全球研究视角的国际化人才提供有益的探索。  相似文献   

15.
Deep learning (DL) is applied in many biomedical areas. We performed a scoping review on DL in medical genetics. We first assessed 14,002 articles, of which 133 involved DL in medical genetics. DL in medical genetics increased rapidly during the studied period. In medical genetics, DL has largely been applied to small data sets of affected individuals (mean = 95, median = 29) with genetic conditions (71 different genetic conditions were studied; 24 articles studied multiple conditions). A variety of data types have been used in medical genetics, including radiologic (20%), ophthalmologic (14%), microscopy (8%), and text-based data (4%); the most common data type was patient facial photographs (46%). DL authors and research subjects overrepresent certain geographic areas (United States, Asia, and Europe). Convolutional neural networks (89%) were the most common method. Results were compared with human performance in 31% of studies. In total, 51% of articles provided data access; 16% released source code. To further explore DL in genomics, we conducted an additional analysis, the results of which highlight future opportunities for DL in medical genetics. Finally, we expect DL applications to increase in the future. To aid data curation, we evaluated a DL, random forest, and rule-based classifier at categorizing article abstracts.  相似文献   

16.
17.
在多媒体教学日益盛行的现代化教学模式下,探讨传统板书在医学遗传学理论教学中的必要性。多媒体不是全能型的教学手段,单一化的教学弊端也逐渐凸显出来。本文主要从知识体系的整体性、推导式讲授、教学的灵活度以及师生互动4个角度,浅析传统板书如何有效弥补多媒体教学的不足。由此可见,在医学遗传学教学中,传统板书具备其独特的教学优势及重要性。只有正确合理的将多媒体和传统板书有机结合,才能切实提高课堂教学成效。  相似文献   

18.
19.
Knowledge of the genetic demography of Quebec is useful for gene mapping, diagnosis, treatment, community genetics and public health. The French-Canadian population of Quebec, currently about 6 million people, descends from about 8500 French settlers who arrived in Nouvelle-France between 1608 and 1759. The migrations of those settlers and their descendants led to a series of regional founder effects, reflected in the geographical distribution of genetic diseases in Quebec. This review describes elements of population history and clinical genetics pertinent to the treatment of French Canadians and other population groups from Quebec and summarizes the cardinal features of over 30 conditions reported in French Canadians. Some were discovered in French Canadians, such as autosomal recessive ataxia of the Charlevoix-Saguenay (MIM 270550), agenesis of corpus callosum and peripheral neuropathy (MIM 218000) and French-Canadian-type Leigh syndrome (MIM 220111). Other conditions are particularly frequent or have special genetic characteristics in French Canadians, including oculopharyngeal muscular dystrophy, hepatorenal tyrosinaemia, cystic fibrosis, Leber hereditary optic neuropathy and familial hypercholesterolaemia. Three genetic diseases of Quebec First Nations children are also discussed: Cree encephalitis (MIM 608505), Cree leukoencephalopathy (MIM 603896) and North American Indian childhood cirrhosis (MIM 604901).  相似文献   

20.
Molecular biology and medical genetics, one of the most dynamically developing fields of medicine, nowadays is also a base for development of basic and clinical research in internal medicine. Understanding of crucial genetic pathomechanisms of many common diseases was possible due to the newest and modern molecular methods and tools. Moreover, development of genetics also made possible the discovery and understanding of the pathogenesis of many different diseases. However, not so long ago, we discovered precise pathomechanisms leading from damage of a single gene to a related pathological phenotype. Now, we have just started to explain molecular mechanisms of complex, multifactorial diseases. To achieve these goals, we need permanent development of genetic tests, genomics and proteomics. After fulfilling these conditions, we will get a chance to implement all molecular and genetic hopes, particularly their practical application in the clinic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号