首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Theory of mind (ToM) refers to the ability to attribute independent mental states, such as beliefs, preferences and desires, to the self and others. Neuroimaging studies of normal adults have consistently demonstrated the importance of particular brain regions for ToM, the superior temporal sulcus (STS), temporal pole (TP) and the medial prefrontal cortex (MPFC). However, there are little data showing how ToM develops during childhood and adolescence. Such data are important for understanding the development of social functioning and its disorders. The authors used functional magnetic resonance imaging to study age-related changes in brain activity associated with ToM during childhood and early adolescence (9-16 years). Normally developed children and adolescents demonstrated significant activation in the bilateral STS, the TP adjacent to the amygdala (TP/Amy) and the MPFC. Furthermore, the authors found a positive correlation between age and the degree of activation in the dorsal part of the MPFC; in contrast, a negative correlation was found for the ventral part of the MPFC. The authors also found a positive correlation between the Z coordinate of the peak activation in the MPFC and age. The data indicated that activity in the MPFC associated with ToM shifted from the ventral to the dorsal part of the MPFC during late childhood and adolescence. No age-related changes were found in the STS and the TP/Amy regions. The authors consider that the age-related brain activity observed in the present study may be associated with the maturation of the prefrontal cortex and the associated development of cognitive functions.  相似文献   

2.
Joint attention behaviors include initiating one's own and responding to another's bid for joint attention to an object, person, or topic. Joint attention abilities in autism are pervasively atypical, correlate with development of language and social abilities, and discriminate children with autism from other developmental disorders. Despite the importance of these behaviors, the neural correlates of joint attention in individuals with autism remain unclear. This paucity of data is likely due to the inherent challenge of acquiring data during a real‐time social interaction. We used a novel experimental set‐up in which participants engaged with an experimenter in an interactive face‐to‐face joint attention game during fMRI data acquisition. Both initiating and responding to joint attention behaviors were examined as well as a solo attention (SA) control condition. Participants included adults with autism spectrum disorder (ASD) (n = 13), a mean age‐ and sex‐matched neurotypical group (n = 14), and a separate group of neurotypical adults (n = 22). Significant differences were found between groups within social‐cognitive brain regions, including dorsal medial prefrontal cortex (dMPFC) and right posterior superior temporal sulcus (pSTS), during the RJA as compared to SA conditions. Region‐of‐interest analyses revealed a lack of signal differentiation between joint attention and control conditions within left pSTS and dMPFC in individuals with ASD. Within the pSTS, this lack of differentiation was characterized by reduced activation during joint attention and relative hyper‐activation during SA. These findings suggest a possible failure of developmental neural specialization within the STS and dMPFC to joint attention in ASD. Hum Brain Mapp 34:2511–2523, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
4.
In this fMRI study we investigated functional connectivity between components of the mentalising system during a social emotion task, using psychophysiological interaction (PPI) analysis. Ten adults (22–32 years) and 18 adolescents (11–18 years) were scanned while thinking about scenarios in which a social or a basic emotion would be experienced. Unlike basic emotions (such as disgust and fear), social emotions (such as embarrassment and guilt) require the representation of another's mental states. In both adults and adolescents, an anterior rostral region of medial prefrontal cortex (arMPFC) involved in mentalising showed greater connectivity with the posterior superior temporal sulcus (pSTS) bordering on the temporo-parietal junction (TPJ) and with anterior temporal cortex (ATC) during social than during basic emotion. This result provides novel evidence that components of the mentalising system interact functionally during a social emotion task. Furthermore, functional connectivity differed between adolescence and adulthood. The adolescent group showed stronger connectivity between arMPFC and pSTS/TPJ during social relative to basic emotion than did the adult group, suggestive of developmental changes in functional integration within the mentalising system.  相似文献   

5.
Autism spectrum disorder (ASD) is increasingly understood to be associated with aberrant functional brain connectivity. Few studies, however, have described such atypical neural synchrony among specific brain regions. Here, we used magnetoencephalography (MEG) to characterize alterations in functional connectivity in adolescents with ASD through source space analysis of phase synchrony. Resting‐state MEG data were collected from 16 adolescents with ASD and 15 age‐ and sex‐matched typically developing (TD) adolescents. Atlas‐guided reconstruction of neural activity at various cortical and subcortical regions was performed and inter‐regional phase synchrony was calculated in physiologically relevant frequency bands. Using a multilevel approach, we characterized atypical resting‐state synchrony within specific anatomically defined networks as well as altered network topologies at both regional and whole‐network scales. Adolescents with ASD demonstrated frequency‐dependent alterations in inter‐regional functional connectivity. Hyperconnectivity was observed among the frontal, temporal, and subcortical regions in beta and gamma frequency ranges. In contrast, parietal and occipital regions were hypoconnected to widespread brain regions in theta and alpha bands in ASD. Furthermore, we isolated a hyperconnected network in the gamma band in adolescents with ASD which encompassed orbitofrontal, subcortical, and temporal regions implicated in social cognition. Results from graph analyses confirmed that frequency‐dependent alterations of network topologies exist at both global and local levels. We present the first source‐space investigation of oscillatory phase synchrony in resting‐state MEG in ASD. This work provides evidence of atypical connectivity at physiologically relevant time scales and indicates that alterations of functional connectivity in adolescents with ASD are frequency dependent and region dependent. Hum Brain Mapp 35:6049–6066, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

6.
We used functional magnetic resonance imaging (fMRI) to investigate brain processes underlying control of emotional responses towards a person in distress by cognitive social distance modulation. fMRI and peripheral physiological responses (startle response and electrodermal activity) were recorded from 24 women while they watched victim-offender scenes and modulated their social distance to the victim by cognitive reappraisal. We found that emotional responses, including startle eyeblink and amygdala responses, can effectively be modulated by social distance modulation. Furthermore, our data provide evidence that activity in the dorsomedial prefrontal cortex (dmPFC) and the anterior paracingulate cortex (aPCC), two brain regions that have previously been associated with brain processes related to distant and close others, is differentially modulated by intentional social distance modulation: activity in the dmPFC increased with increasing disengagement from the victim and activity in the aPCC increased with increasing engagement with the victim. We suggest that these two regions play opposing roles in cognitive modulation of social distance and affective responses towards persons in distress that enable the adaptive and flexible social behavior observed in humans.  相似文献   

7.
Theory of mind (ToM)—our ability to predict behaviorsof others in terms of their underlying intentions—hasbeen examined through false-belief (FB) tasks. We studied 12Japanese early bilingual children (8–12 years of age)and 16 late bilingual adults (18–40 years of age) withFB tasks in Japanese [first language (L1)] and English [secondlanguage (L2)], using fMRI. Children recruited more brain regionsthan adults for processing ToM tasks in both languages. Moreover,children showed an overlap in brain activity between the L1and L2 ToM conditions in the medial prefrontal cortex (mPFC).Adults did not show such a convergent activity in the mPFC region,but instead, showed brain activity that varied depending onthe language used in the ToM task. The developmental shift frommore to less ToM specific brain activity may reflect increasingautomatization of ToM processing as people age. These resultsalso suggest that bilinguals recruit different resources tounderstand ToM depending on the language used in the task, andthis difference is greater later in life.  相似文献   

8.
Using structural MRI, we investigated the brain substrates of both affective and cognitive theory of mind (ToM) in 19 patients with semantic dementia. We also ran intrinsic connectivity analyses to identify the networks to which the substrates belong and whether they are functionally disturbed in semantic dementia. In line with previous studies, we observed a ToM impairment in patients with semantic dementia even when semantic memory was regressed out. Our results also highlighted different neural bases according to the nature (affective or cognitive) of the representations being inferred. The affective ToM deficit was associated with atrophy in the amygdala, suggesting the involvement of emotion-processing deficits in this impairment. By contrast, cognitive ToM performances were correlated with the volume of medial prefrontal and parietal regions, as well as the right frontal operculum. Intrinsic connectivity analyses revealed decreased functional connectivity, mainly between midline cortical regions and temporal regions. They also showed that left medial temporal regions were functionally isolated, a further possible hindrance to normal social cognitive functioning in semantic dementia. Overall, this study addressed for the first time the neuroanatomical substrates of both cognitive and affective ToM disruption in semantic dementia, highlighting disturbed connectivity within the networks that sustain these abilities.  相似文献   

9.
Although empathy is crucial for successful social interactions, excessive sharing of others’ negative emotions may be maladaptive and constitute a source of burnout. To investigate functional neural plasticity underlying the augmentation of empathy and to test the counteracting potential of compassion, one group of participants was first trained in empathic resonance and subsequently in compassion. In response to videos depicting human suffering, empathy training, but not memory training (control group), increased negative affect and brain activations in anterior insula and anterior midcingulate cortex—brain regions previously associated with empathy for pain. In contrast, subsequent compassion training could reverse the increase in negative effect and, in contrast, augment self-reports of positive affect. In addition, compassion training increased activations in a non-overlapping brain network spanning ventral striatum, pregenual anterior cingulate cortex and medial orbitofrontal cortex. We conclude that training compassion may reflect a new coping strategy to overcome empathic distress and strengthen resilience.  相似文献   

10.
Everyday and clinical experience demonstrate strong interactions between emotions and cognitions. Nevertheless the neural correlates underlying emotional-cognitive interaction remain unclear. Using event-related fMRI, we investigated BOLD-signal increases and decreases in medial and lateral prefrontal cortical regions during emotional and non-emotional judgment of photographs taken from the International Affective Picture System (IAPS). Emotional and non-emotional judgment conditions were compared to each other as well as with baseline allowing for distinction between relative signal changes (comparison between conditions) and true signal changes (referring to baseline). We have found that: (1) both emotional and non-emotional judgment of IAPS pictures were characterized by signal increases in ventrally and dorsally located lateral prefrontal cortical areas and concurrent signal decreases in ventro- and dorsomedial prefrontal cortex; (2) direct comparison between emotional and non-emotional judgment showed relative signal increases in ventro- and dorsomedial prefrontal cortex, and in contrast, relative signal increases were detected in ventrally and dorsally located lateral prefrontal cortical areas when comparing non-emotional to emotional judgment; and (3) as shown in separate comparisons with baseline, these relative signal changes were due to smaller signal decreases in ventro- and dorsomedial prefrontal cortex and smaller signal increases in ventrally and dorsally located lateral prefrontal cortical areas during emotional judgment. Therefore, the emotional load of a cognitive task lead to both less deactivation of medial prefrontal regions and, at the same time, less activation of lateral prefrontal regions. Analogous patterns of reciprocal modulation and attenuation have previously been described for other cortical regions such as visual and auditory areas. Reciprocal modulation and attenuation in medial and lateral prefrontal cortex might constitute the neurophysiologic basis for emotional-cognitive interaction as observed in both healthy and psychiatric subjects.  相似文献   

11.
BACKGROUND: Successful control of affect partly depends on the capacity to modulate negative emotional responses through the use of cognitive strategies. Although the capacity to regulate emotions is critical to mental well-being, its neural substrates remain unclear. METHODS: We used functional magnetic resonance imaging to ascertain brain regions involved in the voluntary regulation of emotion and whether dynamic changes in negative emotional experience can modulate their activation. Fourteen healthy subjects were scanned while they either maintained the negative affect evoked by highly arousing and aversive pictures (e.g., experience naturally) or suppressed their affect using cognitive reappraisal. In addition to a condition-based analysis, online subjective ratings of intensity of negative affect were used as covariates of brain activity. RESULTS: Inhibition of negative affect was associated with activation of dorsal anterior cingulate, dorsal medial prefrontal, and lateral prefrontal cortices, and attenuation of brain activity within limbic regions (e.g., nucleus accumbens/extended amygdala). Furthermore, activity within dorsal anterior cingulate was inversely related to intensity of negative affect, whereas activation of the amygdala was positively covaried with increasing negative affect. CONCLUSIONS: These findings highlight a functional dissociation of corticolimbic brain responses, involving enhanced activation of prefrontal cortex and attenuation of limbic areas, during volitional suppression of negative emotion.  相似文献   

12.
Observers were scanned while they watched a video of an actor using an object. Three conditions were contrasted in which the same object was used: (i) normally (e.g. using a tennis racket to hit a ball), (ii) in an unusual way (e.g. using a tennis racket to strain spaghetti), (iii) in a pretend play (e.g. playing a tennis racket like a banjo). Observing real and unusual uses of objects activated areas previously seen in studies of tool use including areas associated with a mirror system for action. Observing pretend play activated additional areas previously associated with theory of mind tasks and listening to narrative, including medial prefrontal cortex, posterior superior temporal sulcus and temporal poles. After presentation of each video, observers were asked to name the object as used in the preceding action video (e.g. racket, sieve or banjo). Naming the pretend object elicited activity in medial prefrontal cortex. These results are consistent with proposals that pretend play is a form of communicative narrative, associated with the ability to mentalize. However, this leaves open the question as to whether pretence or mentalizing is the more basic process.  相似文献   

13.
Several recent studies suggest that autism may result from abnormal communication between brain regions. We directly assessed this hypothesis by testing the presence of abnormalities in a model of the functional cerebral network engaged during explicit emotion processing in adults with high functioning autism or Asperger syndrome. Comparison of structural equation models revealed abnormal patterns of effective connectivity, with the prefrontal cortex as a key site of dysfunction. These findings provide evidence that abnormal long-range connectivity between structures of the ‘social brain’ could explain the socio-emotional troubles that characterize the autistic pathology.  相似文献   

14.
Faced with a moral dilemma, conflict arises between a cognitive controlled response aimed at maximizing welfare, i.e. the utilitarian judgment, and an emotional aversion to harm, i.e. the deontological judgment. In the present study, we investigated moral judgment in adult individuals with high functioning autism/Asperger syndrome (HFA/AS), a clinical population characterized by impairments in prosocial emotions and social cognition. In Experiment 1, we compared the response patterns of HFA/AS participants and neurotypical controls to moral dilemmas with low and high emotional saliency. We found that HFA/AS participants more frequently delivered the utilitarian judgment. Their perception of appropriateness of moral transgression was similar to that of controls, but HFA/AS participants reported decreased levels of emotional reaction to the dilemma. In Experiment 2, we explored the way in which demographic, clinical and social cognition variables including emotional and cognitive aspects of empathy and theory of mind influenced moral judgment. We found that utilitarian HFA/AS participants showed a decreased ability to infer other people’s thoughts and to understand their intentions, as measured both by performance on neuropsychological tests and through dispositional measures. We conclude that greater prevalence of utilitarianism in HFA/AS is associated with difficulties in specific aspects of social cognition.  相似文献   

15.
16.
17.
While some recent neuroimaging studies have implicated medialrostral prefrontal cortex (MPFC) in ‘mentalizing’and self-reflection, others have implicated this region in attentiontowards perceptual vs self-generated information. In order toreconcile these seemingly contradictory findings, we used fMRIto investigate MPFC activity related to these two functionsin a factorial design. Participants performed two separate tasks,each of which alternated between ‘stimulus-oriented phases’(SO), where participants attended to task-relevant perceptualinformation, and ‘stimulus-independent phases’ (SI),where participants performed the same tasks in the absence ofsuch information. In half of the blocks (‘mentalizingcondition’), participants were instructed that they wereperforming these tasks in collaboration with an experimenter;in other blocks (‘non-mentalizing condition’), participantswere instructed that the experimenter was not involved. In fact,the tasks were identical in these conditions. Neuroimaging datarevealed adjacent but clearly distinct regions of activationwithin MPFC related to (i) mentalizing vs non-mentalizing conditions(relatively caudal/superior) and (ii) SO vs SI attention (relativelyrostral/inferior). These results generalized from one task tothe other, suggesting a new axis of functional organizationwithin MPFC.  相似文献   

18.
There have been many functional imaging studies of the brain basis of theory of mind (ToM) skills, but the findings are heterogeneous and implicate anatomical regions as far apart as orbitofrontal cortex and the inferior parietal lobe. The functional imaging studies are reviewed to determine whether the diverse findings are due to methodological factors. The studies are considered according to the paradigm employed (e.g., stories vs. cartoons and explicit vs. implicit ToM instructions), the mental state(s) investigated, and the language demands of the tasks. Methodological variability does not seem to account for the variation in findings, although this conclusion may partly reflect the relatively small number of studies. Alternatively, several distinct brain regions may be activated during ToM reasoning, forming an integrated functional “network.” The imaging findings suggest that there are several “core” regions in the network—including parts of the prefrontal cortex and superior temporal sulcus—while several more “peripheral” regions may contribute to ToM reasoning in a manner contingent on relatively minor aspects of the ToM task. Hum Brain Mapp, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

19.
Richard, A.E., I.E. Scheffer and S.J. Wilson. Features of the broader autism phenotype in people with epilepsy support shared mechanisms between epilepsy and autism spectrum disorder. NEUROSCI BIOBEHAV REV 21(1) XXX–XXX, 2016. To inform on mechanisms underlying the comorbidity of epilepsy and autism spectrum disorder (ASD), we conducted meta-analyses to test whether impaired facial emotion recognition (FER) and theory of mind (ToM), key phenotypic traits of ASD, are more common in people with epilepsy (PWE) than controls. We contrasted these findings with those of relatives of individuals with ASD (ASD-relatives) compared to controls. Furthermore, we examined the relationship of demographic (age, IQ, sex) and epilepsy-related factors (epilepsy onset age, duration, seizure laterality and origin) to FER and ToM. Thirty-one eligible studies of PWE (including 1449 individuals: 77% with temporal lobe epilepsy), and 22 of ASD-relatives (N = 1295) were identified by a systematic database search. Analyses revealed reduced FER and ToM in PWE compared to controls (p < 0.001), but only reduced ToM in ASD-relatives (p < 0.001). ToM was poorer in PWE than ASD-relatives. Only weak associations were found between FER and ToM and epilepsy-related factors. These findings suggest shared mechanisms between epilepsy and ASD, independent of intellectual disability.  相似文献   

20.
Individuals with autism spectrum disorders (ASD) often have difficulty recognizing and interpreting facial expressions of emotion, which may impair their ability to navigate and communicate successfully in their social, interpersonal environments. Characterizing specific differences between individuals with ASD and their typically developing (TD) counterparts in the neural activity subserving their experience of emotional faces may provide distinct targets for ASD interventions. Thus we used functional magnetic resonance imaging (fMRI) and a parametric experimental design to identify brain regions in which neural activity correlated with ratings of arousal and valence for a broad range of emotional faces. Participants (51 ASD, 84 TD) were group‐matched by age, sex, IQ, race, and socioeconomic status. Using task‐related change in blood‐oxygen‐level‐dependent (BOLD) fMRI signal as a measure, and covarying for age, sex, FSIQ, and ADOS scores, we detected significant differences across diagnostic groups in the neural activity subserving the dimension of arousal but not valence. BOLD‐signal in TD participants correlated inversely with ratings of arousal in regions associated primarily with attentional functions, whereas BOLD‐signal in ASD participants correlated positively with arousal ratings in regions commonly associated with impulse control and default‐mode activity. Only minor differences were detected between groups in the BOLD signal correlates of valence ratings. Our findings provide unique insight into the emotional experiences of individuals with ASD. Although behavioral responses to face‐stimuli were comparable across diagnostic groups, the corresponding neural activity for our ASD and TD groups differed dramatically. The near absence of group differences for valence correlates and the presence of strong group differences for arousal correlates suggest that individuals with ASD are not atypical in all aspects of emotion‐processing. Studying these similarities and differences may help us to understand the origins of divergent interpersonal emotional experience in persons with ASD. Hum Brain Mapp 37:443–461, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号