首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The occurrence of spontaneous seizures in mesial temporal lobe epilepsy (MTLE) is preceded by a latent phase that provides a time window for identifying and treating patients at risk. However, a reliable biomarker of epileptogenesis has not been established and the underlying processes remain unclear. Growing evidence suggests that astrocytes contribute to an imbalance between excitation and inhibition in epilepsy. Here, astrocytic and neuronal neurotransmitter metabolism was analyzed in the latent phase of the kainate model of MTLE in an attempt to identify epileptogenic processes and potential biomarkers. Fourteen days after status epilepticus, [1-13C]glucose and [1,2-13C]acetate were injected and the hippocampal formation, entorhinal/piriform cortex, and neocortex were analyzed by 1H and 13C magnetic resonance spectroscopy. The 13C enrichment in glutamate, glutamine, and γ-aminobutyric acid (GABA) from [1-13C]glucose was decreased in all areas. Decreased GABA content was specific for the hippocampal formation, together with a pronounced decrease in astrocyte-derived [1,2-13C]GABA and a decreased transfer of glutamine for the synthesis of GABA. Accumulation of branched-chain amino acids combined with decreased [4,5-13C]glutamate in hippocampal formation could signify decreased transamination via branched-chain aminotransferase in astrocytes. The results point to astrocytes as major players in the epileptogenic process, and 13C enrichment of glutamate and GABA as potential biomarkers.  相似文献   

2.
A decline in brain function is a characteristic feature of healthy aging; however, little is known about the biologic basis of this phenomenon. To determine whether there are alterations in brain mitochondrial metabolism associated with healthy aging, we combined 13C/1H magnetic resonance spectroscopy with infusions of [1-13C]glucose and [2-13C]acetate to quantitatively characterize rates of neuronal and astroglial tricarboxylic acid cycles, as well as neuroglial glutamate–glutamine cycling, in healthy elderly and young volunteers. Compared with young subjects, neuronal mitochondrial metabolism and glutamate–glutamine cycle flux was ∼30% lower in elderly subjects. The reduction in individual subjects correlated strongly with reductions in N-acetylaspartate and glutamate concentrations consistent with chronic reductions in brain mitochondrial function. In elderly subjects infused with [2-13C]acetate labeling of glutamine, C4 and C3 differed from that of the young subjects, indicating age-related changes in glial mitochondrial metabolism. Taken together, these studies show that healthy aging is associated with reduced neuronal mitochondrial metabolism and altered glial mitochondrial metabolism, which may in part be responsible for declines in brain function.  相似文献   

3.
γ-Aminobutyric acid (GABA) synthesis from glutamate is catalyzed by glutamate decarboxylase (GAD) of which two isoforms, GAD65 and GAD67, have been identified. The GAD65 has repeatedly been shown to be important during intensified synaptic activity. To specifically elucidate the significance of GAD65 for maintenance of the highly compartmentalized intracellular and intercellular GABA homeostasis, GAD65 knockout and corresponding wild-type mice were injected with [1-13C]glucose and the astrocyte-specific substrate [1,2-13C]acetate. Synthesis of GABA from glutamine in the GABAergic synapses was further investigated in GAD65 knockout and wild-type mice using [1,2-13C]acetate and in some cases γ-vinylGABA (GVG, Vigabatrin), an inhibitor of GABA degradation. A detailed metabolic mapping was obtained by nuclear magnetic resonance (NMR) spectroscopic analysis of tissue extracts of cerebral cortex and hippocampus. The GABA content in both brain regions was reduced by ∼20%. Moreover, it was revealed that GAD65 is crucial for maintenance of biosynthesis of synaptic GABA particularly by direct synthesis from astrocytic glutamine via glutamate. The GAD67 was found to be important for synthesis of GABA from glutamine both via direct synthesis and via a pathway involving mitochondrial metabolism. Furthermore, a severe neuronal hypometabolism, involving glycolysis and tricarboxylic acid (TCA) cycle activity, was observed in cerebral cortex of GAD65 knockout mice.  相似文献   

4.
Alzheimer''s disease (AD) is characterized by age-dependent biochemical, metabolic, and physiologic changes. These age-dependent changes ultimately converge to impair cognitive functions. This study was carried out to examine the metabolic changes by probing glucose and tricarboxylic acid cycle metabolism in a 7-month-old triple transgenic mouse model of AD (3xTg-AD). The effect of lipoic acid, an insulin-mimetic agent, was also investigated to examine its ability in modulating age-dependent metabolic changes. Seven-month-old 3xTg-AD mice were given intravenous infusion of [1-13C]glucose followed by an ex vivo 13C nuclear magnetic resonance to determine the concentrations of 13C-labeled isotopomers of glutamate, glutamine, aspartate, gamma aminobutyric acid, and N-acetylaspartate. An intravenous infusion of [1-13C]glucose+[1,2-13C]acetate was given for different periods of time to distinguish neuronal and astrocytic metabolism. Enrichments of glutamate, glutamine, and aspartate were calculated after quantifying the total (12C+13C) concentrations by high-performance liquid chromatography. A hypermetabolic state was clearly evident in 7-month-old 3xTg-AD mice in contrast to the hypometabolic state reported earlier in 13-month-old mice. Hypermetabolism was evidenced by prominent increase of 13C labeling and enrichment in the 3xTg-AD mice. Lipoic acid feeding to the hypermetabolic 3xTg-AD mice brought the metabolic parameters to the levels of nonTg mice.  相似文献   

5.
Glial–neuronal interactions were investigated in rats injected intraperitoneally with [1-13C]glucose and killed after 15, 30, 45, or 60 min. Brain extracts were analyzed by 13C-NMR spectroscopy and the fractional 13C-enrichment at individual carbon positions was measured for amino acids, lactate, and N-acetyl-aspartate. [1-13C]Glucose was shown to be metabolized by both neurons and glia, with the anaplerotic pathway through pyruvate carboxylase (PC) accounting for 10% of total cerebral glucose metabolism. The PC-mediated pathway accounted for 39% of the glutamine synthesis, and for 8, 6, 14% of glutamate, GABA, and aspartate synthesis, respectively. These results reflect a compartmentation of the cerebral amino acids synthesis within glial and neuronal cells. The appearance of the 13C-label in C5 of glutamate and glutamine, C1 of GABA and C2 of lactate, is suggestive of pyruvate, formation from TCA cycle intermediates and provides evidence of metabolite trafficking between astrocytes and neurons.  相似文献   

6.
Regional hypometabolism of glucose in the brain is a hallmark of Alzheimer''s disease (AD). However, little is known about the specific alterations of neuronal and astrocytic metabolism involved in homeostasis of glutamate and GABA in AD. Here, we investigated the effects of amyloid β (Aβ) pathology on neuronal and astrocytic metabolism and glial-neuronal interactions in amino acid neurotransmitter homeostasis in the transgenic McGill-R-Thy1-APP rat model of AD compared with healthy controls at age 15 months. Rats were injected with [1-13C]glucose and [1,2-13C]acetate, and extracts of the hippocampal formation as well as several cortical regions were analyzed using 1H- and 13C nuclear magnetic resonance spectroscopy and high-performance liquid chromatography. Reduced tricarboxylic acid cycle turnover was evident for glutamatergic and GABAergic neurons in hippocampal formation and frontal cortex, and for astrocytes in frontal cortex. Pyruvate carboxylation, which is necessary for de novo synthesis of amino acids, was decreased and affected the level of glutamine in hippocampal formation and those of glutamate, glutamine, GABA, and aspartate in the retrosplenial/cingulate cortex. Metabolic alterations were also detected in the entorhinal cortex. Overall, perturbations in energy- and neurotransmitter homeostasis, mitochondrial astrocytic and neuronal metabolism, and aspects of the glutamate–glutamine cycle were found in McGill-R-Thy1-APP rats.  相似文献   

7.
The 13C-label incorporation into glutamate, glutamine, aspartate and γ-aminobutyric acid (GABA) from [2-13C] glucose was measured by 13C nuclear magnetic resonance (NMR) spectroscopy to directly examine the effects of ammonia on the activity of pyruvate carboxylase (i.e., the anaplerotic pathway) and the amino acid metabolism in the rat brain in vivo. Rats were sacrificed by exposure to microwaves at 7.5, 15, 30, and 60 min after an i.v. injection of [2-13C] glucose with or without ammonium acetate. After the injection of ammonium acetate, the brain contents of glutamate, aspartate and GABA had decreased, however, the percentage of 13C enrichment of C3 of glutamine, glutamate and GABA, and C2 and C3 of aspartate had increased. The 13C entered the TCA cycle via pyruvate carboxylase from [2-13C] glucose, labeling the C2 or C3 positions of aspartate, the C2 or C3 positions of glutamate and glutamine, and the C3 or C4 positions of GABA first and second turns of the tricarboxylic acid (TCA) cycle. The C4/C3 labeling ratio in GABA was lower than the analogous ratio in glutamate (C2/C3) and higher than that of glutamine (C2/C3). The order of these ratios (glutamate>GABA>glutamine) was not altered by the injection of ammonium acetate. These findings directly indicate that ammonia increases the anaplerotic pathway and that the 13C-skeletons entered glial glutamine through the anaplerotic pathway flow from glia to neuron. A fraction of the glutamine is used in the direct synthesis of GABA via glutamate, whereas the remaining fraction of glutamine passed through the neuronal TCA cycle before synthesizing GABA.  相似文献   

8.
Alexander disease is a rare and usually fatal neurological disorder characterized by the abundant presence of protein aggregates in astrocytes. Most cases result from dominant missense de novo mutations in the gene encoding glial fibrillary acidic protein (GFAP), but how these mutations lead to aggregate formation and compromise function is not known. A transgenic mouse line (Tg73.7) over‐expressing human GFAP produces astrocytic aggregates indistinguishable from those seen in the human disease, making them a model of this disorder. To investigate possible metabolic changes associated with Alexander disease Tg73.7 mice and controls were injected simultaneously with [1‐13C]glucose to analyze neuronal metabolism and [1,2‐13C]acetate to monitor astrocytic metabolism. Brain extracts were analyzed by 1H magnetic resonance spectroscopy (MRS) to quantify amounts of several key metabolites, and by 13C MRS to analyze amino acid neurotransmitter metabolism. In the cerebral cortex, reduced utilization of [1,2‐13C]acetate was observed for synthesis of glutamine, glutamate, and GABA, and the concentration of the marker for neuronal mitochondrial metabolism, N‐acetylaspartate (NAA) was decreased. This indicates impaired astrocytic and neuronal metabolism and decreased transfer of glutamine from astrocytes to neurons compared with control mice. In the cerebellum, glutamine and GABA content and labeling from [1‐13C]glucose were increased. Evidence for brain edema was found in the increased amount of water and of the osmoregulators myo‐inositol and taurine. It can be concluded that astrocyte—neuronal interactions were altered differently in distinct regions. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
The branched chain amino acid transaminase (BCAT) has an important role in nitrogen shuttling and glutamate metabolism in the brain. The purpose of this study was to describe the cerebral distribution and metabolism of hyperpolarized 2-keto[1-13C]isocaproate (KIC) in the normal rat using magnetic resonance modalities. Hyperpolarized KIC is metabolized to [1-13C]leucine (leucine) by BCAT. The results show that KIC and its metabolic product, leucine, are present at imageable quantities 20 seconds after end of KIC administration throughout the brain. Further, significantly higher metabolism was observed in hippocampal regions compared with the muscle tissue. In conclusion, the cerebral metabolism of hyperpolarized KIC is imaged and hyperpolarized KIC may be a promising substrate for evaluation of cerebral BCAT activity in conjunction with neurodegenerative disease.  相似文献   

10.
Ketone bodies are important alternate brain fuels, but their capacity to replace glucose and support neural function is unclear. In this study, the contributions of ketone bodies and glucose to cerebral cortical metabolism were measured in vivo in halothane-anesthetized rats fasted for 36 hours (n=6) and receiving intravenous [2,4-13C2]--β-hydroxybutyrate (BHB). Time courses of 13C-enriched brain amino acids (glutamate-C4, glutamine-C4, and glutamate and glutamine-C3) were measured at 9.4 Tesla using spatially localized 1H-[13C]-nuclear magnetic resonance spectroscopy. Metabolic rates were estimated by fitting a constrained, two-compartment (neuron–astrocyte) metabolic model to the 13C time-course data. We found that ketone body oxidation was substantial, accounting for 40% of total substrate oxidation (glucose plus ketone bodies) by neurons and astrocytes. -β-Hydroxybutyrate was oxidized to a greater extent in neurons than in astrocytes (∼70:30), and followed a pattern closely similar to the metabolism of [1-13C]glucose reported in previous studies. Total neuronal tricarboxylic acid cycle (TCA) flux in hyperketonemic rats was similar to values reported for normal (nonketotic) anesthetized rats infused with [1-13C]glucose, but neuronal glucose oxidation was 40% to 50% lower, indicating that ketone bodies had compensated for the reduction in glucose use.  相似文献   

11.
Dynamic hyperpolarized [1-13C]pyruvate metabolic imaging in the normal anesthetized rat brain is demonstrated on a clinical 3-T magnetic resonance imaging scanner. A 12-second bolus injection of hyperpolarized [1-13C]pyruvate is imaged at a 3-second temporal resolution. The observed dynamics are evaluated with regard to cerebral blood volume (CBV), flow, transport, and metabolic exchange with the cerebral lactate pool. A model for brain [1-13C]lactate, based on blood–brain transport kinetics, CBV, and the observed pyruvate dynamics is described.  相似文献   

12.
Astrocytes are intimately involved in both glutamate and gamma-aminobutyric acid (GABA) synthesis, and ischemia-induced disruption of normal neuroastrocytic interactions may have important implications for neuronal survival. The effects of middle cerebral artery occlusion (MCAO) on neuronal and astrocytic intermediary metabolism were studied in rats 30, 60, 120, and 240 minutes after MCAO using in vivo injection of [1-13C]glucose and [1,2- 13C]acetate combined with ex vivo 13C magnetic resonance spectroscopy and high-performance liquid chromatography analysis of the ischemic core (lateral caudoputamen and lower parietal cortex) and penumbra (upper frontoparietal cortex). In the ischemic core, both neuronal and astrocytic metabolism were impaired from 30 minutes MCAO. There was a continuous loss of glutamate from glutamatergic neurons that was not replaced as neuronal glucose metabolism and use of astrocytic precursors gradually declined. In GABAergic neurons astrocytic precursors were not used in GABA synthesis at any time after MCAO, and neuronal glucose metabolism and GABA-shunt activity declined with time. No flux through the tricarboxylic acid cycle was found in GABAergic neurons at 240 minutes MCAO, indicating neuronal death. In the penumbra, the neurotransmitter pool of glutamate coming from astrocytic glutamine was preserved while neuronal metabolism progressively declined, implying that glutamine contributed significantly to glutamate excitotoxicity. In GABAergic neurons, astrocytic precursors were used to a limited extent during the initial 120 minutes, and tricarboxylic acid cycle activity was continued for 240 minutes. The present study showed the paradoxical role that astrocytes play in neuronal survival in ischemia, and changes in the use of astrocytic precursors appeared to contribute significantly to neuronal death, albeit through different mechanisms in glutamatergic and GABAergic neurons.  相似文献   

13.
3-Nitropropionic acid (3-NPA) is a selective and irreversible inhibitor of succinate dehydrogenase. The effect of this compound on the metabolism of [U-13C]glutamate was studied in astrocytes using 13C nuclear magnetic resonance spectroscopy. The appearance of [1,2,3-13C]glutamate in cell extracts and [1,2,3-13C]glutamine and [U-13C]lactate in cell media demonstrated the metabolism of labeled glutamate via the tricarboxylic acid cycle. Such labeling was observed in the control situation and also in cells treated with 3 mM 3-NPA. In the cells treated with 3 mM 3-NPA, however, the labeling was significantly reduced, and with 10 mM 3-NPA no such labeling was observed. Labeled aspartate was observed in untreated cells only. Labeled succinate was not detectable under control conditions, but increased dose dependently in the presence of 3-NPA. Glutamate uptake and conversion of [U-13C]glutamate to U-13C]glutamine was largely unaffected by 3-NPA, and ATP content was unchanged. In a previous study using cerebellar neurons, tricarboxylic acid cycle metabolism was blocked with 3 mM 3-NPA. The present results show that astrocyte metabolism is more adaptable to blockade of the tricarboxylic acid cycle by 3-NPA than neuronal metabolism. J. Neurosci. Res. 47:650–654, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

14.
Supercompensated brain glycogen may contribute to the development of hypoglycemia unawareness in patients with type 1 diabetes by providing energy for the brain during periods of hypoglycemia. Our goal was to determine if brain glycogen content is elevated in patients with type 1 diabetes and hypoglycemia unawareness. We used in vivo 13C nuclear magnetic resonance spectroscopy in conjunction with [1-13C]glucose administration in five patients with type 1 diabetes and hypoglycemia unawareness and five age-, gender-, and body mass index-matched healthy volunteers to measure brain glycogen content and metabolism. Glucose and insulin were administered intravenously over ∼51 hours at a rate titrated to maintain a blood glucose concentration of 7 mmol/L. 13C-glycogen levels in the occipital lobe were measured at ∼5, 8, 13, 23, 32, 37, and 50 hours, during label wash-in and wash-out. Newly synthesized glycogen levels were higher in controls than in patients (P<0.0001) for matched average blood glucose and insulin levels, which may be due to higher brain glycogen content or faster turnover in controls. Metabolic modeling indicated lower brain glycogen content in patients than in controls (P=0.07), implying that glycogen supercompensation does not contribute to the development of hypoglycemia unawareness in humans with type 1 diabetes.  相似文献   

15.
Obesity and type 2 diabetes have reached epidemic proportions; however, scarce information about how these metabolic syndromes influence brain energy and neurotransmitter homeostasis exist. The objective of this study was to elucidate how brain glycogen and neurotransmitter homeostasis are affected by these conditions. [1-13C]glucose was administered to Zucker obese (ZO) and Zucker diabetic fatty (ZDF) rats. Sprague–Dawley (SprD), Zucker lean (ZL), and ZDF lean rats were used as controls. Several brain regions were analyzed for glycogen levels along with 13C-labeling and content of glutamate, glutamine, GABA, aspartate, and alanine. Blood glucose concentrations and 13C enrichment were determined. 13C-labeling in glutamate was lower in ZO and ZDF rats in comparison with the controls. The molecular carbon labeling (MCL) ratio between alanine and glutamate was higher in the ZDF rats. The MCL ratios of glutamine and glutamate were decreased in the cerebellum of the ZO and the ZDF rats. Glycogen levels were also lower in this region. These results suggest that the obese and type 2 diabetic models were associated with lower brain glucose metabolism. Glucose metabolism through the TCA cycle was more decreased than glycolytic activity. Furthermore, reduced glutamate–glutamine cycling was also observed in the obese and type 2 diabetic states.  相似文献   

16.
Carbon metabolism in the rat brain was studied in animals anesthetized with a light dose of pentobarbital and in awake animals under morphine, which were infused with either [1-13C]glucose+acetate or glucose+[2-13C]acetate for various periods of time. Brain amino-acid enrichments in tissue extracts were determined by nuclear magnetic resonance (NMR) spectroscopy and their time evolution was analyzed by automatic fitting. Acetyl-coenzyme A C2 enrichment and ratio between pyruvate carboxylase and pyruvate dehydrogenase activity (PC/PDH) were determined from glutamate and glutamine labeling. The following results were obtained: (i) amino-acid enrichment patterns implied metabolic compartmentation and occurrence of the glutamate-glutamine cycle; (ii) kinetics of aspartate, GABA, and glutamate labeling from [1-13C]glucose and of glutamine labeling from [2-13C]acetate indicated a twofold higher metabolic activity in awake than in anesthetized rat brain; (iii) evaluation of the contributions of the astrocytic and neuronal metabolisms to glutamine synthesis in both groups of rats indicated a coupling between neuronal tricarboxylic acid (TCA) cycle, glutamate-glutamine cycle and glial TCA cycle; and (iv) analyzing the extrapolations back to time zero and the steady-state values of PC/PDH indicated a close coupling between PC activity and both astrocytic and neuronal TCA cycles. All these results suggest a cooperative-like behavior of astrocytic and neuronal metabolisms to fulfill the anabolic and energy needs linked to brain activation.  相似文献   

17.
Although certain metabolic characteristics such as interictal glucose hypometabolism are well established for temporal lobe epilepsy (TLE), its pathogenesis still remains unclear. Here, we performed a comprehensive study of brain metabolism in a mouse model of TLE, induced by pilocarpine–status epilepticus (SE). To investigate glucose metabolism, we injected mice 3.5–4 weeks after SE with [1,2-13C]glucose before microwave fixation of the head. Using 1H and 13C nuclear magnetic resonance spectroscopy, gas chromatography—mass spectrometry and high-pressure liquid chromatography, we quantified metabolites and 13C labeling in extracts of cortex and hippocampal formation (HF). Hippocampal levels of glutamate, glutathione and alanine were decreased in pilocarpine–SE mice compared with controls. Moreover, the contents of N-acetyl aspartate, succinate and reduced nicotinamide adenine dinucleotide (phosphate) NAD(P)H were decreased in HF indicating impairment of mitochondrial function. In addition, the reduction in 13C enrichment of hippocampal citrate and malate suggests decreased tricarboxylic acid (TCA) cycle turnover in this region. In cortex, we found reduced 13C labeling of glutamate, glutamine and aspartate via the pyruvate carboxylation and pyruvate dehydrogenation pathways, suggesting slower turnover of these amino acids and/or the TCA cycle. In conclusion, mitochondrial metabolic dysfunction and altered amino-acid metabolism is found in both cortex and HF in this epilepsy model.  相似文献   

18.
A central question in manganese neurotoxicity concerns mitochondrial dysfunction leading to cerebral energy failure. To obtain insight into the underlying mechanism(s), the authors investigated cell-specific pathways of [1-13C]glucose metabolism by high-resolution multinuclear NMR-spectroscopy. Five-day treatment of neurons with 100-micro mol/L MnCl(2) led to 50% and 70% decreases of ATP/ADP and phosphocreatine-creatine ratios, respectively. An impaired flux of [1-13C]glucose through pyruvate dehydrogenase, which was associated with Krebs cycle inhibition and hence depletion of [4-13C]glutamate, [2-13C]GABA, and [13C]glutathione, hindered the ability of neurons to compensate for mitochondrial dysfunction by oxidative glucose metabolism and further aggravated neuronal energy failure. Stimulated glycolysis and oxidative glucose metabolism protected astrocytes against energy failure and oxidative stress, leading to twofold increased de novo synthesis of [3-13C]lactate and fourfold elevated [4-13C]glutamate and [13C]glutathione levels. Manganese, however, inhibited the synthesis and release of glutamine. Comparative NMR data obtained from cocultures showed disturbed astrocytic function and a failure of astrocytes to provide neurons with substrates for energy and neurotransmitter metabolism, leading to deterioration of neuronal antioxidant capacity (decreased glutathione levels) and energy metabolism. The results suggest that, concomitant to impaired neuronal glucose oxidation, changes in astrocytic metabolism may cause a loss of intercellular homeostatic equilibrium, contributing to neuronal dysfunction in manganese neurotoxicity.  相似文献   

19.
The ketogenic diet (KD) is an effective alternative treatment for refractory epilepsy in children, but the mechanisms by which it reduces seizures are poorly understood. To investigate how the KD modifies brain metabolism, we infused control (CT) and 7-day KD rats with either [1-13C]glucose (Glc) or [2,4-13C2]β-hydroxybutyrate (β-HB). Specific enrichments of amino acids (AAs) measured by 1H- and 13C-NMR in total brain perchloric acid extracts were similar between CT and KD rats after [1-13C]Glc infusion whereas they were higher in KD rats after [2,4-13C2]β-HB infusion. This suggests better metabolic efficiency of ketone body utilization on the KD. The relative rapid metabolic adaptation to the KD included (1) 11%-higher brain γ-amino butyric acid (GABA)/glutamate (Glu) ratio versus CT, (2) liver accumulation of the ketogenic branched-chain AAs (BCAAs) leucine (Leu) and isoleucine (ILeu), which were never detected in CT, and (3) higher brain Leu and ILeu contents. Since Glu and GABA are excitatory and inhibitory neurotransmitters, respectively, higher brain GABA/Glu ratio could contribute to the mechanism by which the KD reduces seizures in epilepsy. Increased BCAA on the KD may also contribute to better seizure control.  相似文献   

20.
Synaptic transmission is closely linked to brain energy and neurotransmitter metabolism. However, the extent of brain metabolism of the inhibitory neurotransmitter γ-aminobutyric acid (GABA), and the relative metabolic contributions of neurons and astrocytes, are yet unknown. The present study was designed to investigate the functional significance of brain GABA metabolism using isolated mouse cerebral cortical slices and slices of neurosurgically resected neocortical human tissue of the temporal lobe. By using dynamic isotope labeling, with [15N]GABA and [U-13C]GABA as metabolic substrates, we show that both mouse and human brain slices exhibit a large capacity for GABA metabolism. Both the nitrogen and the carbon backbone of GABA strongly support glutamine synthesis, particularly in the human cerebral cortex, indicative of active astrocytic GABA metabolism. This was further substantiated by pharmacological inhibition of the primary astrocytic GABA transporter subtype 3 (GAT3), by (S)-SNAP-5114 or 1-benzyl-5-chloro-2,3-dihydro-1H-indole-2,3-dione (compound 34), leading to significant reductions in oxidative GABA carbon metabolism. Interestingly, this was not the case when tiagabine was used to specifically inhibit GAT1, which is predominantly found on neurons. Finally, we show that acute GABA exposure does not directly stimulate glycolytic activity nor oxidative metabolism in cultured astrocytes, but can be used as an additional substrate to enhance uncoupled respiration. These results clearly show that GABA is actively metabolized in astrocytes, particularly for the synthesis of glutamine, and challenge the current view that synaptic GABA homeostasis is maintained primarily by presynaptic recycling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号