首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The putative inhibitory effects of verapamil and diltiazem on neuronal non-L-type Ca2+ channels were studied by investigating their effects on either K+- or veratridine-evoked [3H]-dopamine ([3H]-DA) release in rat striatal slices. Involvement of N-, P- and Q-type channels was identified by sensitivity of [3H]-DA release to omega-conotoxin GVIA (omega-CTx-GVIA), omega-agatoxin IVA (omega-Aga-IVA) and omega-conotoxin MVIIC (omega-CTx-MVIIC), respectively. 2. KCl (50 mM)-evoked [3H]-DA release was abolished in the absence of Ca2+, and was insensitive to dihydropyridines (up to 30 microM). It was significantly blocked by omega-CTx-GVIA (1 microM), omega-Aga-IVA (30 nM) and was confirmed to be abolished by omega-CTx-MVIIC (3 microM), indicating involvement of N-, P- and Q-type channel subtypes. 3. Verapamil and diltiazem inhibited K+-evoked [3H]-DA release in a concentration-dependent manner. The inhibitory effects of verapamil or diltiazem (each 30 microM) were fully additive to the effect of omega-CTx-GVIA (1 microM), whereas co-application with omega-Aga-IVA (30 nM) produced similar effects to those of omega-Aga-IVA alone. 4. As shown previously, veratridine-evoked [3H]-DA release in Ca2+ containing medium exclusively involves Q-type Ca2+ channels. Here, diltiazem (30 microM) did not inhibit veratridine-evoked [3H]-DA release, whereas verapamil (30 microM) partially inhibited it, indicating possible involvement of Q-type channels in verapamil-induced inhibition. However, verapamil (30 microM) inhibited this release even in the absence of extracellular Ca2+, suggesting that Na+ rather than Q-type Ca2+ channels are involved. 5. Taken together, our results suggest that verapamil can block P- and at higher concentrations possibly N- and Q-type Ca2+ channels linked to [3H]-DA release, whereas diltiazem appears to block P-type Ca2+ channels only.  相似文献   

2.
The influence of rat phrenic nerve stimulation frequency (5-50 Hz) and of pulse duration (0.04-1 ms) on Ca(2+) mobilization triggering [3H]acetylcholine release was investigated. The P-type voltage-dependent Ca(2+) channel (VDCC) blocker, omega-agatoxin IVA (100 nM), decreased [3H]acetylcholine release evoked by pulses of 0. 04-ms duration delivered at 5 Hz frequency. When the stimulus pulse duration was increased to 1 ms (5 Hz frequency) or the stimulation frequency to 50 Hz (0.04-ms duration), inhibition of [3H]acetylcholine release became evident after blockade of L-type VDCC, with nifedipine (1 microM), and/or depletion of thapsigargin-sensitive internal stores. The inhibitory effect of thapsigargin (2 microM) was still observed in Ca(2+)-free medium. Neither omega-conotoxin GVIA (1 microM) nor omega-conotoxin MVIIC (150 nM) modified neurotransmitter release. The results suggest that, depending on the stimulus paradigm, both internal (thapsigargin-sensitive) and external (either P- or L-type channels) Ca(2+) pools can be mobilized to promote acetylcholine release from motor nerve terminals.  相似文献   

3.
In order to reveal the role of axon reflexes and sensory receptors in sensory neuropeptide release in response to capsaicin, liberation of substance P, calcitonin gene-related peptide and somatostatin from isolated rat tracheae was investigated in the presence of voltage-sensitive Na(+) and Ca(2+) channel blocking agents. Neuropeptide release induced by capsaicin (10 nM) remained unchanged in the presence of 25 mM lidocaine, 1 microM tetrodotoxin or the N-type Ca(2+) channel inhibitor, omega-conotoxin GVIA (100-300 nM). Peptide release by 100 pulses of 2 Hz field stimulation was prevented by lidocaine or tetrodotoxin. Omega-agatoxin TK (250 nM) significantly inhibited and Cd(2+) (200 microM) prevented capsaicin-induced neuropeptide release. These results suggest that chemical stimulation-induced neuropeptide release does not involve activation of fast Na(+) channels or N- and P-type voltage-dependent Ca(2+) channels, but contribution of Q-type Ca(2+) channels is possible. Sensory neuropeptides are released by capsaicin from sensory receptors without axon reflexes.  相似文献   

4.
INTRODUCTION: The sarcoplasmic reticulum present in eukaryotic cells contains Ca(2+) pumps (SERCA type) that accumulate Ca(2+) from the cytosol and Ca(2+) channels, such as ryanodine receptors and inositol 1,4,5-trisphosphate receptors, that release Ca(2+) from the lumen of this organelle. The use of a preparation rich in sarcoplasmic reticulum vesicles and poorly contaminated with plasmalemmal vesicles would be a prerequisite for studies of Ca(2+) efflux through ryanodine and inositol 1,4,5-trisphosphate receptors, so the present work was aimed to characterize the distribution profiles of various markers of sarcoplasmic reticulum and plasma membrane among fractions obtained from rat vas deferens. METHODS: Oxalate-dependent Ca(2+) uptake, thapsigargin-sensitive (Ca(2+)-Mg(2+)) ATPase activity and binding of [3H]ryanodine and [3H]inositol 1,4,5-trisphosphate were measured in the nuclear, mitochondrial, and microsomal fractions obtained by differential centrifugation of rat vas deferens homogenate. RESULTS: The recovery of the thapsigargin-resistant (Ca(2+)-Mg(2+)) ATPase activity, supposed to label the plasma membrane, was the same among nuclear, mitochondrial, and microsomal fractions, whereas the recovery of the thapsigargin-sensitive (Ca(2+)-Mg(2+)) activity, oxalate-dependent Ca(2+) uptake, and [3H]inositol 1,4,5-trisphosphate binding, used as sarcoplasmic reticulum markers, was higher in nuclear fraction than in the others. The recovery profiles of the four sarcoplasmic reticulum markers, including [3H]ryanodine binding, were statistically the same among the different subcellular fractions. Caffeine, an agonist of ryanodine receptors, induced the release of 17% of Ca(2+) taken up by the vesicles present in the nuclear fraction but had no effect in microsomes. DISCUSSION: Although this nuclear fraction is less purified in sarcoplasmic reticulum markers than the microsomal fraction, it is more suitable for studying Ca(2+) release through ryanodine receptors, primarily because it is less contaminated with vesicles from the plasma membrane which are able to take up Ca(2+) but are insensitive to caffeine.  相似文献   

5.
Mastoparan (MP) and radiolabeled [Tyr(3)]MP caused a transient Ca(2+) release from the heavy fraction of sarcoplasmic reticulum, which was inhibited by ryanodine. MP enhanced [(3)H]ryanodine binding in a concentration-dependent manner with an EC(50) value of approximately 0.3 microM. The (45)Ca(2+) release was accelerated by MP, [Tyr(3)]MP, or caffeine in a concentration-dependent manner. The EC(50) values for MP, [Tyr(3)]MP, and caffeine were approximately 2. 0 microM, 7.7 microM, and 1.8 mM, respectively. MP, like caffeine, shifted the stimulatory limb of a bell-shaped curve of Ca(2+) dependence to the left. (45)Ca(2+) release induced by caffeine was completely inhibited by typical blockers of Ca(2+)-induced Ca(2+) release, such as Mg(2+), ruthenium red, or procaine. However, (45)Ca(2+) release induced by MP was completely inhibited by Mg(2+), but it was only partially inhibited by ruthenium red or procaine. The rate of (45)Ca(2+) release induced by MP was further increased in the presence of caffeine, showing that the MP binding site is different from that of caffeine on Ca(2+) release channels. We succeeded in the synthesis of (125)I-[Tyr(3)]MP with a high specific activity. (125)I-[Tyr(3)]MP bound specifically to heavy fraction of sarcoplasmic reticulum with a K(d) value of 4.0 microM and a B(max) value of 3.0 nmol/mg. Furthermore, (125)I-[Tyr(3)]MP specifically cross-linked to the 97-kDa protein without direct binding to ryanodine receptor. The protein was not triadin or Ca(2+)-pump, because antitriadin antibody and anti-Ca(2+)-pump antibody did not immunoprecipitate the protein. These results suggest that the 97-kDa MP-binding protein may have an important role in the excitation-contraction coupling of skeletal muscle.  相似文献   

6.
Cytosolic calcium ion concentrations ([Ca(2+)](i)) were measured in rat neocortical synaptosomes using fura-2, and depolarization of synaptosomal membranes was induced by K(+) (30 mM). The release of the endogenous excitatory amino acids glutamate and aspartate was evoked by K(+) (50 mM) and determined by HPLC. The release of [(3)H]-noradrenaline from rat neocortical synaptosomes or slices was evoked by K(+) (15 and 25 mM) and measured by liquid scintillation counting. Gabapentin produced a concentration-dependent inhibition of the K(+)-induced [Ca(2+)](i) increase in synaptosomes (IC(50)=14 microM; maximal inhibition by 36%). The inhibitory effect of gabapentin was abolished in the presence of the P/Q-type Ca(2+) channel blocker omega-agatoxin IVA, but not by the N-type Ca(2+) channel antagonist omega-conotoxin GVIA. Gabapentin (100 microM) decreased the K(+)-evoked release of endogenous aspartate and glutamate in neocortical slices by 16 and 18%, respectively. Gabapentin reduced the K(+)-evoked [(3)H]-noradrenaline release in neocortical slices (IC(50)=48 microM; maximal inhibition of 46%) but not from synaptosomes. In the presence of the AMPA receptor antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 2, 3-dioxo-6-nitro-1,2,3,4-tetrahydro[f]quinoxaline-7-sulphonamide (NBQX), gabapentin did not reduce [(3)H]-noradrenaline release. Gabapentin did, however, cause inhibition in the presence of the NMDA receptor antagonist DL-(E)-2-amino-4-methyl-5-phosphono-3-pentanoic acid (CGP 37849). Gabapentin is concluded to reduce the depolarization-induced [Ca(2+)](i) increase in excitatory amino acid nerve terminals by inhibiting P/Q-type Ca(2+) channels; this decreased Ca(2+) influx subsequently attenuates K(+)-evoked excitatory amino acid release. The latter effect leads to a reduced activation of AMPA receptors which contribute to K(+)-evoked noradrenaline release from noradrenergic varicosities, resulting in an indirect inhibition of noradrenaline release.  相似文献   

7.
The effects of different potassium channel blockers on tritiated dopamine [( 3H]DA) release were investigated in rat striatal slices in the presence of pargyline and nomifensine (10 microM each). 4-Aminopyridine (4-AP; 10 and 30 microM) and 3,4-diaminopyridine (3,4-DAP; 30 microM) markedly increased the basal tritium outflow, whereas tetraethylammonium (TEA; 100-1000 microM) was without effect. The facilitating effect of 4-AP (10 microM) on spontaneous release was Ca(2+)- and K(+)-dependent. Moreover, the 4-AP-induced increase in spontaneous release was abolished in the presence of tetrodotoxin, indicating that voltage-dependent Na+ channels were involved in the release mechanism. 4-AP (10 and 30 microM) induced a dose-dependent decrease in K(+)-evoked [3H]DA release. This effect was confirmed with 3,4-DAP (30 microM). When striatal slices were depolarized with veratridine (5 microM), these two aminopyridines increased the evoked release of [3H]DA. TEA increased both K(+)- and veratridine-evoked [3H]DA release. These biochemical results are consistent with electrophysiological differences between the mechanism of action of aminopyridines and that of TEA.  相似文献   

8.
Population spikes associated with the paired pulse ratio protocol were used to measure the presynaptic inhibition of corticostriatal transmission caused by mu-opioid receptor activation. A 1 microM of [D-Ala(2), N-MePhe(4), Gly-ol(5)]-enkephalin (DAMGO), a selective mu-opioid receptor agonist, enhanced paired pulse facilitation by 44+/-8%. This effect was completely blocked by 2 nM of the selective mu-receptor antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-NH (CTOP). Antagonists of N- and P/Q-type Ca(2+) channels inhibited, whereas antagonists of potassium channels enhanced, synaptic transmission. A 1 microM of omega-conotoxin GVIA, a blocker of N-type Ca(2+) channels, had no effect on the action of DAMGO, but 400 nM omega-agatoxin TK, a blocker of P/Q-type Ca(2+)-channels, partially blocked the action of this opioid. However, 5 mM Cs(2+) and 400 microM Ba(2+), unselective antagonists of potassium conductances, completely prevented the action of DAMGO on corticostriatal transmission. These data suggest that presynaptic inhibition of corticostriatal afferents by mu-opioids is mediated by the modulation of K(+) conductances in corticostriatal afferents.  相似文献   

9.
The effect of palytoxin (C(129)H(223)N(3)O(54)) on Ca(2+) homeostasis in immune cells has not been studied. Therefore, we investigated the effect of palytoxin on the cytosolic-free Ca(2+) concentration ([Ca(2+)](i)) in mouse spleen cells using a fluorescence Ca(2+) indicator, fura-2. Palytoxin (0.1-100 nM) increased [Ca(2+)](i) in a concentration-dependent manner. The palytoxin-induced increase in [Ca(2+)](i) was abolished by the omission of extracellular Ca(2+) or 1-[beta-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl]-1H-imidazole hydrochloride (SKF-96365, 100 microM), and was greatly inhibited by Ni(2+) (2 mM). Ouabain (0.5-1 mM) partially inhibited the palytoxin-induced response. There was no effect of decreased extracellular Na(+) (6.2 mM), tetrodotoxin (1 microM), verapamil (10 microM), nifedipine (10 microM), omega-agatoxin IVA (200 nM), omega-conotoxin GVIA (1 microM), omega-conotoxin MVIIC (500 nM), or La(3+) (100 microM). These results suggest that palytoxin increases [Ca(2+)](i) in mouse spleen cells by stimulating Ca(2+) entry through an SKF-96365-, Ni(2+)-sensitive pathway.  相似文献   

10.
1. In a sarcoplasmic reticulum fraction obtained from rat hearts, the analysis of equilibrium [3H]-ryanodine binding showed high and low affinity sites (KD = 1.3 nM and 2.8 microM, Bmax = 2.2 pmol mg-1 and 27.8 pmol mg-1). The dissociation rate constant increased at 1 microM vs 4 nM [3H]-ryanodine concentration, and micromolar ryanodine slowed the dissociation of nanomolar ryanodine. 2. The binding of 4 nM [3H]-ryanodine was not affected by gallopamil, while the binding of 100 nM to 18 microM [3H]-ryanodine was partly displaced. Data analysis suggested that gallopamil inhibited low affinity [3H]-ryanodine binding, with IC50 in the micromolar range. 3. Gallopamil decreased the dissociation rate constant of 1 microM [3H]-ryanodine. While gallopamil alone did not affect the dissociation of 4 nM [3H]-ryanodine, gallopamil and micromolar ryanodine slowed it to a greater extent than micromolar ryanodine alone. 4. Our results are consistent with the hypothesis that the ryanodine receptor is a negatively cooperative oligomer, which undergoes a sequential alteration after ryanodine binding. Gallopamil has complex actions: it inhibits ryanodine binding to its low affinity site(s), and probably modulates the cooperativity of ryanodine binding and/or the transition to a receptor state characterized by slow ryanodine dissociation. These molecular actions could account for the previously reported effect of gallopamil on the sarcoplasmic reticulum calcium release channel.  相似文献   

11.
1. Ryanodine-sensitive, Ca(2+) release ('Ca(2+) sparks') from the sarcoplasmic reticulum (SR) can activate plasmalemmal Ca(2+)-activated K(+) channels (K(Ca)) to cause membrane hyperpolarization and smooth muscle relaxation. Since cyclic guanosine monophosphate (cyclic GMP) can modulate Ca(2+) spark activity, the aim of the present study was to determine if Ca(2+) spark-like events are involved in NO-dependent, NANC relaxations to electrical field stimulation (EFS) of mouse, longitudinal smooth muscle of the gastric fundus in isolated strips contracted to approximately 40% of their maximum contraction. 2. NANC relaxations to EFS were almost abolished by both the NO synthase inhibitor, N(G)-nitro-L-arginine (L-NOARG; 100 microM) and the guanylate cyclase inhibitor, 1-H-oxodiazol-[1,2,4]-[4,3-alpha] quinoxaline-1-one (ODQ; 10 microM). Also, ODQ abolished relaxations to the NO donor, sodium nitroprusside (SNP; 1 nM - 30 microM). NANC relaxations and SNP-evoked relaxations were both partly ryanodine (10 microM)- and nifedipine (0.3 microM)-sensitive, but in each case, the inhibitory effects of ryanodine and nifedipine were additive. 3. Apamin (1 microM), charybdotoxin (0.1 microM), iberiotoxin (0.1 microM), tetraethylammonium (TEA; 1 mM), glibenclamide (10 microM) and 4-aminopyridine (1 mM) had no effect on either NANC- or SNP-evoked relaxations, the latter of which were also unaffected by high extracellular K(+) (68 mM). 4. Caffeine (0.1 - 1 mM) caused concentration-dependent relaxations of gastric fundus which were inhibited by ryanodine but unaffected by L-NOARG. 5. Relaxation to ATP (30 microM) was abolished by nifedipine, partly inhibited by apamin and ryanodine, but was unaffected by L-NOARG. 6. In conclusion, the results of the present study show that nitrergic relaxations in the mouse longitudinal gastric fundus occur via a cyclic GMP-activated ryanodine-sensitive mechanism, which does not appear to involve activation of K(+) channels.  相似文献   

12.
To examine the Ca(2+) buffering function of the sarcoplasmic reticulum during arterial contraction, we studied Ca(2+) movement during stimulation with K(+) or norepinephrine in arteries with a leaky sarcoplasmic reticulum. Responses were compared in endothelium-denuded strips of femoral, mesenteric and carotid arteries of the rat. To make the sarcoplasmic reticulum leaky to Ca(2+), Ca(2+)-induced Ca(2+) release channels of the sarcoplasmic reticulum were locked open by treatment with ryanodine plus caffeine. After ryanodine treatment, the contractile responses to K(+) (3-20 mM) were augmented when compared with control responses in femoral and mesenteric arteries, but were inhibited in the carotid artery. Similar results were obtained when the contractile responses to norepinephrine were determined. The inhibition by ryanodine of the K(+)- or norepinephrine-contractions seen in the carotid artery was reversed by pretreatment with cyclopiazonic acid (10 microM), an inhibitor of the sarcoplasmic reticulum Ca(2+)-ATPase, but was not by charybdotoxin (100 nM), a blocker of Ca(2+)-activated K(+) channels. We conclude that (1) after ryanodine treatment, Ca(2+) entering from the extracellular space during stimulation with K(+) or norepinephrine is first taken up into the leaky sarcoplasmic reticulum and then reaches the myofilaments in femoral and mesenteric arteries, while in the carotid artery, Ca(2+) leaked from the sarcoplasmic reticulum reaches mainly the plasma membrane from where it is extruded into the extracellular space, and (2) the different movement of Ca(2+) may be due to the relative location of the sarcoplasmic reticulum in the smooth muscle cell of each artery.  相似文献   

13.
1. The possible involvement of pre-junctional non-N-type Ca2+ channels in noradrenaline (NA)-mediated neurogenic contraction by electrical field stimulation (EFS) was examined pharmacomechanically in the isolated rat mesenteric artery. 2. EFS-generated contraction of endothelium-denuded mesenteric artery was frequency-dependent (2 - 32 Hz) and was abolished by tetrodotoxin (TTX, 1 microM), guanethidine (5 microM) or prazosin (100 nM), indicating that NA released from sympathetic nerve endings mediates the contractile response. 3. NA-mediated neurogenic contractions to lower frequency stimulations (2 - 8 Hz) were almost abolished by an N-type Ca2+ channel blocker, omega-conotoxin-GVIA (1 microM) whereas the responses to higher frequency stimulations (12 - 32 Hz) were less sensitive to omega-conotoxin-GVIA. The omega-conotoxin-GVIA-resistant component of the contractile response to 32 Hz stimulation was inhibited partly (10 - 20%) by omega-agatoxin-IVA (10 - 100 nM; concentrations which are relatively selective for P-type channels) and to a greater extent by omega-agatoxin-IVA (1 microM) and omega-conotoxin-MVIIC (3 microM), both of which block Q-type channels at the concentrations used. 4. omega-Agatoxin-IVA (10 - 100 nM) alone inhibited 32 Hz EFS-induced contraction by 10 approximately 20% whereas omega-conotoxin-MVIIC (3 microM) alone inhibited the response by approximately 60%. 5. These omega-toxin treatments did not affect the contractions evoked by exogenously applied NA. 6. These findings show that P- and Q-type as well as N-type Ca2+ channels are involved in the sympathetic neurogenic vascular contraction, and suggest the significant role of non-N-type Ca2+ channels in NA release from adrenergic nerve endings when higher frequency stimulations are applied to the nerve.  相似文献   

14.
1. Human neuroblastoma (SH-SY5Y) cells were preincubated with [3H]-noradrenaline ([3H]-NA) in the presence of 0.2 mM pargyline to examine the modulation of K(+)-evoked [3H]-NA release by muscarinic agonists. 2. Release of [3H]-NA evoked by 4 min exposure to 100 mM K+ could be partially inhibited by 5 microM nifedipine and partially inhibited by 100 nM omega-conotoxin GVIA (omega-CgTx). When nifedipine and omega-CgTx were added together, evoked release was inhibited by approximately 93%. 3. K(+)-evoked [3H]-NA release was inhibited by > 90% by pretreatment of cells for 2 min with muscarine, carbachol or oxotremorine methiodide (each at 300 microM). For muscarine, inhibition of evoked release was both time- and concentration-dependent and was reversible. Muscarine also inhibited [3H]-NA release evoked by veratridine (28 microM) and replacement of extracellular Ca2+ with Ba2+, but not that evoked by the Ca2+ ionophore, A23187 (19 microM). 4. Residual K(+)-evoked [3H]-NA release measured in the presence of either nifedipine (5 microM) or omega-CgTx (100 nM) was inhibited by muscarine with a similar potency as release evoked in the absence of either Ca2+ channel blocker. Pretreatment of cells for 16-24 h with pertussis toxin (200 ng ml-1) did not affect K(+)-evoked release per se or the ability of muscarine to inhibit such release. 5. Muscarinic inhibition of K(+)-evoked [3H]-NA release was potently antagonized by pirenzepine (pA2 8.14) and by hexahydrosiladiphenidol (pA2 9.03), suggesting the involvement of an M1 receptor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
In the present study, the effects of 3,5-di-t-butylcatechol (DTCAT) on ryanodine receptor Ca(2+) channel (RyRC) of skeletal muscle sarcoplasmic reticulum (SR) vesicles were investigated, both by monitoring extravesicular Ca(2+) concentration directly with the Ca(2+) indicator dye arsenazo III and by studying the high-affinity [(3)H]ryanodine binding. DTCAT stimulated Ca(2+) release from junctional (terminal cisternae) vesicles in a concentration-dependent manner, with a threshold activating concentration of 30 microM and a pEC(50) value of 3.43+/-0.03 M. The release of Ca(2+) induced by DTCAT was antagonized in a concentration-dependent manner by ruthenium red, thus indicating that RyRC is involved in the mechanism of stimulation. A structure-activity relationship analysis carried out on a limited number of compounds suggested that both hydroxy and t-butyl groups in DTCAT were important for the activation of RyRC. DTCAT inhibited [(3)H]ryanodine binding to SR vesicles with a K(i) of 232.5 microM, thus indicating that it acted directly at the skeletal muscle ryanodine receptor binding site to stimulate Ca(2+) release. In conclusion, the ability of DTCAT to release Ca(2+) from TC vesicles of skeletal muscle is noteworthy in view of its possible use as an alternative compound to either caffeine or halothane for performing the "In vitro contracture test" to diagnose the susceptibility of some patients to develop malignant hyperthermia under particular pharmacological treatments.  相似文献   

16.
Ryanodine, a highly toxic alkaloid known to react specifically with the Ca2+ release channels in sarcoplasmic reticulum (SR), was employed to study Ca2+ sequestration in the liver. Ryanodine at a 200 microM concentration increased cytosolic free Ca2+ levels and phosphorylase a activity in isolated hepatocytes. These effects may involve microsomal Ca2+ sequestration, because ryanodine, in the presence of inhibitors of mitochondrial Ca2+ uptake, at concentrations of 1 nM, 1 microM, 50 microM and 100 microM decreased 45Ca2+ retention in permeabilized hepatocytes. This inhibition of Ca2+ retention by ryanodine was not due to inhibition of the microsomal Ca(2+)-ATPase. Dantrolene, a compound shown previously to inhibit ryanodine binding in the liver, also decreased 45Ca2+ retention in permeabilized hepatocytes, and activated phosphorylase a. These results show that ryanodine administration alters calcium sequestration in liver. The possibility of the existence of a ryanodine-sensitive Ca(2+)-release channel in liver is discussed.  相似文献   

17.
1. We have examined the mechanisms by which the K(+)-channel blocker 4-aminopyridine (4-AP) can dose-dependently increase both basal [3H]-noradrenaline ([3H]-NA) release and the [3H]-NA release evoked by electrical stimulation, but not the release of [3H]-acetylcholine ([3H]-ACh), from slices of rat hippocampus. 2. Both the electrically evoked and the 4-AP-induced release were blocked by tetrodotoxin (TTX) (3 microM). The Ca(2+)-dependence of the 4-AP-induced release (EC50 0.15 mM) was, however, different from that of the electrically evoked [3H]-NA release (EC50 0.76 mM). 3. The 4-AP-induced release could be inhibited by CdCl2(10 microM) and omega-conotoxin (30 nM), but not by nifedipine (1 microM). 4. Transmitter release evoked by 100 microM 4-AP could be blocked by the alpha 2-adrenoceptor agonist, UK 14,304 (0.1 microM) and by the A1-receptor agonist R-N6-phenylisopropyl adenosine (R-PIA, 1 microM) and increased by the alpha 2-adrenoceptor antagonist, yohimbine (1 microM), both in 0.25 and 1.3 mM Ca(2+)-containing medium. By contrast, the effect of alpha 2-adrenoceptor agonist and antagonists on transmitter release evoked by electrical stimulation was markedly reduced in the presence of 4-AP (100 microM). 5. The results suggest that 4-AP can depolarize some nerve endings in the central nervous system, leading to transmitter release that is dependent on nerve impulses and Ca2+. Furthermore, the fact that alpha 2-receptors and adenosine A1 receptor agonists can influence the release of NA evoked by 4-AP suggests that these drugs may have actions that are independent of blockade of aminopyridine-sensitive K(+)-channels.  相似文献   

18.
Transient local releases of Ca(2+) from the sarcoplasmic reticulum activate nearby Ca(2+)-activated K(+) channels to produce spontaneous transient outward current (STOC) in smooth muscle cells. We examined if cADP-ribose, an endogenous mediator of Ca(2+) release channels of the sarcoplasmic reticulum, could modify STOC activity. In freshly isolated rat tail arterial cells, cADP-ribose (5 microM) increased STOC frequency significantly from 308+/-26.2 to 398.8+/-28.8 per minute. The average current at a test potential of -20 mV was increased significantly from 47.8+/-0.7 to 101.1+/-0.7 pA in the presence of cADP-ribose. The cell permeant antagonist 8-bromo-cADP-ribose (50 microM) reduced significantly the STOC frequency to 52.5+/-7.5 per minute and the average current to 24.7+/-0.1 pA. The STOCs were inhibited significantly by ryanodine (1 microM) and charybodotoxin (150 nM). These findings suggest the presence of basal cADP-ribose activity in resting vascular smooth muscle cells and that STOC activity is stimulated by cADP-ribose.  相似文献   

19.
The effect of the alpha 2-adrenoceptor agonist clonidine on 3,4-diaminopyridine (3,4-DAP)-evoked [3H]noradrenaline ([32H]NA) release in rat hippocampus slices was studied in the presence or absence (+1 mM EGTA) of extracellular Ca2+. 3H overflow (consisting mainly of unmetabolized [3H]NA) was evoked by addition of 100 microM 3,4-DAP for 10 min to the medium, which always contained 1 microM desipramine. Ligands for L-type voltage-sensitive Ca2+ channels (VSCC) did not affect the evoked [3H]NA release, whereas the preferential N-type VSCC antagonist omega-conotoxin was inhibitory, both in the presence and even more potently in the absence of Ca2+, suggesting an involvement of N-type VSCC in the mechanism of 3,4-DAP-evoked [3H]NA release. In the absence of extracellular Ca2+ the initial Na+ influx, which has been previously proposed to liberate Ca2+ from intracellular stores for the exocytotic process, most probably occurs via N-type VSCC. Clonidine inhibited the 3,4-DAP-evoked [3H]NA release in a concentration-dependent manner, both in the presence and even more potently in the absence of Ca2+; its effects were antagonized by yohimbine. In the presence of extracellular Ca2+ the clonidine effect was not changed by addition of omega-conotoxin. Similar effects of clonidine were found in slices from the rabbit hippocampus. Since the availability of Ca2+ from intracellular stores seems to predominate in the present model, our results lend some support to the suggestion that alpha 2-adrenoceptor activation might affect intracellular mechanisms of Ca2+ homeostasis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
In the present study, the effect of the blockade of membrane calcium channels activated by intracellular Ca(2+) store depletion on basal and depolarization-induced [3H]norepinephrine ([3H]NE) release from SH-SY5Y human neuroblastoma cells was examined. The second-generation H(1) receptor blockers astemizole, terfenadine, and loratadine, as well as the first-generation compound hydroxyzine, inhibited [3H]NE release induced by high extracellular K(+) concentration ([K(+)](e)) depolarization in a concentration-dependent manner (the IC(50)s were 2.3, 1.7, 4.8, and 9.4 microM, respectively). In contrast, the more hydrophilic second-generation H(1) receptor blocker cetirizine was completely ineffective (0.1-30 microM). The inhibition of high [K(+)](e)-induced [3H]NE release by H(1) receptor blockers seems to be related to their ability to inhibit Ca(2+) channels activated by Ca(i)(2+) store depletion (SOCs). In fact, astemizole, terfenadine, loratadine, and hydroxyzine, but not cetirizine, displayed a dose-dependent inhibitory action on the increase in intracellular Ca(2+) concentrations ([Ca(2+)](i)) obtained with extracellular Ca(2+) reintroduction after Ca(i)(2+) store depletion with thapsigargin (1 microM), an inhibitor of the sarcoplasmic-endoplasmic reticulum calcium ATPase (SERCA) pump. The rank order of potency for SOC inhibition by these compounds closely correlated with their inhibitory properties on depolarization-induced [3H]NE release from SH-SY5Y human neuroblastoma cells. Nimodipine (1 microM) plus omega-conotoxin (100 nM) did not interfere with the present model for SOC activation. In addition, the inhibition of depolarization-induced [3H]NE release does not seem to be attributable to the blockade of the K(+) currents carried by the K(+) channels encoded by the human Ether-a-Gogo Related Gene (I(HERG)) by these antihistamines. In fact, whole-cell voltage-clamp experiments revealed that the IC(50) for astemizole-induced hERG blockade is about 300-fold lower than that for the inhibition of high K(+)-induced [3H]NE release. Furthermore, current-clamp experiments in SH-SY5Y cells showed that concentrations of astemizole (3 microM) which were effective in preventing depolarization-induced [3H]NE release were unable to interfere with the cell membrane potential under depolarizing conditions (100 mM [K(+)](e)), suggesting that hERG K(+) channels do not contribute to membrane potential control during exposure to elevated [K(+)](e). Collectively, the results of the present study suggest that, in SH-SY5Y human neuroblastoma cells, the inhibition of SOCs by some second-generation antihistamines can prevent depolarization-induced neurotransmitter release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号