首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In skeletal muscle, carnitine plays an essential role in the translocation of long-chain fatty-acids into the mitochondrial matrix for subsequent β-oxidation, and in the regulation of the mitochondrial acetyl-CoA/CoASH ratio. Interest in these vital metabolic roles of carnitine in skeletal muscle appears to have waned over the past 25 years. However, recent research has shed new light on the importance of carnitine as a regulator of muscle fuel selection. It has been established that muscle free carnitine availability may be limiting to fat oxidation during high intensity submaximal exercise. Furthermore, increasing muscle total carnitine content in resting healthy humans (via insulin-mediated stimulation of muscle carnitine transport) reduces muscle glycolysis, increases glycogen storage and is accompanied by an apparent increase in fat oxidation. By increasing muscle pyruvate dehydrogenase complex (PDC) activity and acetylcarnitine content at rest, it has also been established that PDC flux and acetyl group availability limits aerobic ATP re-synthesis at the onset of exercise (the acetyl group deficit). Thus, carnitine plays a vital role in the regulation of muscle fuel metabolism. The demonstration that its availability can be readily manipulated in humans, and impacts on physiological function, will result in renewed business and scientific interest in this compound.  相似文献   

2.
Increasing blood bicarbonate content has long been cited as a potential mechanism to improve contractile function. We investigated whether sodium bicarbonate-induced metabolic alkalosis could positively affect force development during the rest-to-work transition in ischaemic skeletal muscle. Secondly, assuming it could, we investigated whether bicarbonate could augment acetyl group availability through the same equilibrium reaction as sodium acetate pre-treatment and whether this underpins, at least in part, its ergogenic effect. Multiple biopsy samples were obtained from the canine gracilis muscle during 5 min of electrically evoked ischaemic contraction, which enabled the determination of the time course of acetyl group accumulation, substrate utilisation, pyruvate dehydrogenase complex activation and tension development in animals treated with saline (control; n = 6) or sodium bicarbonate (n = 5). Treatment with bicarbonate elevated acetylcarnitine content above the control level at rest (P < 0.05), but at no time point during subsequent contraction. The pyruvate dehydrogenase complex was activated following 40 s of contraction in both groups, with no differences existing between treatments at any time point. The requirement for ATP re-synthesis from non-oxygen-dependent routes was no different between groups at any time point during contraction. No difference in peak twitch force production existed between groups. However, at 3 min of stimulation, tension development was better maintained in the bicarbonate group (P < 0.05), being approximately 20% greater than control following 5 min of contraction (P < 0.05). The results demonstrate, for the first time, that bicarbonate can augment acetyl group availability prior to contraction, independent of pyruvate dehydrogenase complex activation, but cannot influence the requirement for non-oxidative ATP re-synthesis during subsequent contraction. It would appear, therefore, that the bicarbonate-induced improvement in muscle tension development was probably mediated through the metabolic alkalosis and not via the increased availability of acetyl groups within the cell.  相似文献   

3.
The changes in the muscle contents of CoASH and carnitine and their acetylated forms, lactate and the active form of pyruvate dehydrogenase complex were studied during incremental dynamic exercise. Eight subjects exercised for 3–4 minutes on a bicycle ergometer at work loads corresponding to 30, 60 and 90% of their V02max Muscle samples were obtained by percutaneous needle biopsy technique at rest, at the end of each work period and after 10 minutes of recovery. During the incremental exercise test there was a continuous increase in muscle lactate, from a basal value of 4.5 mmol kg-1 dry weight to 83 mmol kg-1 at the end of the final period. The active form of pyruvate dehydrogenase complex increased from 0.37 mmol acetyl-CoA formed per minute per kilogram wet weight at rest to 0.80 at 30% V02max1.28 and 1.25 at 60 and 90% V02max respectively. Both acetyl-CoA and acetylcarnitine increased at the two highest work loads. The increase of acetyl-CoA was from 12.5 μmol kg-1 dry weight at rest to 27.3 after the highest work load and for acetylcarnitine from 6.0 mmol kg-1 dry weight to 15.2. The CoASH and free carnitine contents fell correspondingly. There was a close relationship between acetyl-CoA and acetylcarnitine accumulation in muscle during exercise, with a binding of ? 500 mol acetyl groups to carnitine for each mole of acetyl-CoA accumulated. The results imply that the carnitine store in muscle functions as a buffer for excess formation of acetyl groups from pyruvate catalyzed by the pyruvate dehydrogenase complex.  相似文献   

4.
The changes in the muscle contents of CoASH and carnitine and their acetylated forms, lactate and the active form of pyruvate dehydrogenase complex were studied during incremental dynamic exercise. Eight subjects exercised for 3-4 minutes on a bicycle ergometer at work loads corresponding to 30, 60 and 90% of their VO2max. Muscle samples were obtained by percutaneous needle biopsy technique at rest, at the end of each work period and after 10 minutes of recovery. During the incremental exercise test there was a continuous increase in muscle lactate, from a basal value of 4.5 mmol kg-1 dry weight to 83 mmol kg-1 at the end of the final period. The active form of pyruvate dehydrogenase complex increased from 0.37 mmol acetyl-CoA formed per minute per kilogram wet weight at rest to 0.80 at 30% VO2max, 1.28 and 1.25 at 60 and 90% VO2max, respectively. Both acetyl-CoA and acetylcarnitine increased at the two highest work loads. The increase of acetyl-CoA was from 12.5 mumol kg-1 dry weight at rest to 27.3 after the highest work load and for acetylcarnitine from 6.0 mmol kg-1 dry weight to 15.2. The CoASH and free carnitine contents fell correspondingly. There was a close relationship between acetyl-CoA and acetylcarnitine accumulation in muscle during exercise, with a binding of approximately 500 mol acetyl groups to carnitine for each mole of acetyl-CoA accumulated. The results imply that the carnitine store in muscle functions as a buffer for excess formation of acetyl groups from pyruvate catalyzed by the pyruvate dehydrogenase complex.  相似文献   

5.
Alterations in brain metabolism after ischemia and reperfusion are described herein. Several roles played by carnitine and acetylcarnitine can be of particular relevance in counteracting these brain metabolism alterations. The effects of acetylcarnitine in several experimental models of brain ischemia in rats are described. The data obtained show that acetylcarnitine can have significant clinical neuroprotective effects when administered shortly after the onset of focal or global cerebral ischemia. In the canine cardiac arrest model, acetylcarnitine improved the postischemic neurological outcome and tissue levels of lactate and pyruvate were normalized. A trend toward reversal of pyruvate dehydrogenase inhibition in acetylcarnitine-treated dogs was also observed. The immediate postischemic administration of acetylcarnitine prevents free radical-mediated protein oxidation in the frontal cortex of dogs submitted to cardiac arrest and resuscitation. The transfer of the acetyl group to coenzyme A (CoA) to form acetyl-CoA as the primary source of energy is a plausible mechanism of action of acetylcarnitine.  相似文献   

6.
This study examined the effect of pre-exercise carbohydrate (CHO) ingestion on pyruvate dehydrogenase complex (PDC) activation, acetyl group availability and substrate level phosphorylation (glycogenolysis and phosphocreatine (PCr) hydrolysis) in human skeletal muscle during the transition from rest to steady-state exercise. Seven male subjects performed two 10 min treadmill runs at 70 % maximum oxygen uptake (VO2,max), 1 week apart. Each subject ingested 8 ml (kg body mass (BM))-1 of either a placebo solution (CON trial) or a 5.5 % CHO solution (CHO trial) 10 min before each run. Muscle biopsy samples were obtained from the vastus lateralis at rest and immediately after each trial. Muscle PDC activity was higher at the end of exercise in the CHO trial compared with the CON trial (1.78+/-0.18 and 1.27+/-0.16 mmol min(-1) (kg wet matter (WM))(-1), respectively; P 0.05) and this was accompanied by lower acetylcarnitine (7.1+/-1.2 and 9.1+/-1.1 mmol kg(-1) (dry matter (DM))(-1) in CHO and CON, respectively; P<0.05) and citrate concentrations (0.73+/-0.05 and 0.91+/-0.10 mmol (kg DM)(-1) in CHO and CON, respectively; P<0.05). No difference was observed between trials in the rates of muscle glycogen and PCr breakdown and lactate accumulation. This is the first study to demonstrate that CHO ingestion prior to exercise augments the exercise-induced activation of muscle PDC and reduces acetylcarnitine accumulation during the transition from rest to steady-state exercise. However, those changes did not affect the contribution of substrate level phosphorylation to ATP resynthesis.  相似文献   

7.
8.
The observation of a previously unidentified peak in localized 1H magnetic resonance (MR) spectra of human muscle during and after a work load is reported. Basic NMR properties of this resonance, as well as physiologic circumstances of its observation, suggest that it is due to the acetyl group of acetylcarnitine. The relatively large pool of muscular carnitine acts as a buffering system stabilizing the ratio of acetylated to free coenzyme A. Free carnitine can be acetylated to a large extent whenever a mismatch occurs between the fluxes through pyruvate dehydrogenase and the TCA cycle. Results of initial applications of 1H MR spectroscopy in several muscles and under different exercise regimens are in agreement with earlier invasive measurements of acetylcarnitine. It is demonstrated that the detailed dynamics of acetyl group formation are now likely to be observable non-invasively in humans by localized 1H magnetic resonance spectroscopy on standard MR imaging systems, and that acetylcarnitine buffering as a function of exercise type, oxygenation states, diet and pathology could thus be studied repeatedly and in various muscle groups with much improved temporal resolution.  相似文献   

9.
Hyperpolarized 13C MRS allows the in vivo assessment of pyruvate dehydrogenase complex (PDC) flux, which converts pyruvate to acetyl‐coenzyme A (acetyl‐CoA). [1‐13C]pyruvate has been used to measure changes in cardiac PDC flux, with demonstrated increase in 13C‐bicarbonate production after dichloroacetate (DCA) administration. With [1‐13C]pyruvate, the 13C label is released as 13CO2/13C‐bicarbonate, and, hence, does not allow us to follow the fate of acetyl‐CoA. Pyruvate labeled in the C2 position has been used to track the 13C label into the TCA (tricarboxylic acid) cycle and measure [5‐13C]glutamate as well as study changes in [1‐13C]acetylcarnitine with DCA and dobutamine. This work investigates changes in the metabolic fate of acetyl‐CoA in response to metabolic interventions of DCA‐induced increased PDC flux in the fed and fasted state, and increased cardiac workload with dobutamine in vivo in rat heart at two different pyruvate doses. DCA led to a modest increase in the 13C labeling of [5‐13C]glutamate, and a considerable increase in [1‐13C]acetylcarnitine and [1,3‐13C]acetoacetate peaks. Dobutamine resulted in an increased labeling of [2‐13C]lactate, [2‐13C]alanine and [5‐13C]glutamate. The change in glutamate with dobutamine was observed using a high pyruvate dose but not with a low dose. The relative changes in the different metabolic products provide information about the relationship between PDC‐mediated oxidation of pyruvate and its subsequent incorporation into the TCA cycle compared with other metabolic pathways. Using a high dose of pyruvate may provide an improved ability to observe changes in glutamate. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Hyperpolarized [1‐13C]pyruvate ([1‐13C]Pyr) has been used to assess metabolism in healthy and diseased states, focusing on the downstream labeling of lactate (Lac), bicarbonate and alanine. Although hyperpolarized [2‐13C]Pyr, which retains the labeled carbon when Pyr is converted to acetyl‐coenzyme A, has been used successfully to assess mitochondrial metabolism in the heart, the application of [2‐13C]Pyr in the study of brain metabolism has been limited to date, with Lac being the only downstream metabolic product reported previously. In this study, single‐time‐point chemical shift imaging data were acquired from rat brain in vivo. [5‐13C]Glutamate, [1‐13C]acetylcarnitine and [1‐13C]citrate were detected in addition to resonances from [2‐13C]Pyr and [2‐13C]Lac. Brain metabolism was further investigated by infusing dichloroacetate, which upregulates Pyr flux to acetyl‐coenzyme A. After dichloroacetate administration, a 40% increase in [5‐13C]glutamate from 0.014 ± 0.004 to 0.020 ± 0.006 (p = 0.02), primarily from brain, and a trend to higher citrate (0.002 ± 0.001 to 0.004 ± 0.002) were detected, whereas [1‐13C]acetylcarnitine was increased in peripheral tissues. This study demonstrates, for the first time, that hyperpolarized [2‐13C]Pyr can be used for the in vivo investigation of mitochondrial function and tricarboxylic acid cycle metabolism in brain. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
We have recently shown that PPARδ agonism, used clinically to treat insulin resistance, increases fat oxidation and up-regulates mitochondrial PDK4 mRNA and protein expression in resting skeletal muscle. We hypothesized that PDK4 up-regulation, which inhibits pyruvate dehydrogenase complex (PDC)-dependent carbohydrate (CHO) oxidation, would negatively affect muscle function during sustained contraction where the demand on CHO is markedly increased. Three groups of eight male Wistar rats each received either vehicle or a PPARδ agonist (GW610742X) at two doses (5 and 100 mg (kg body mass (bm))−1 orally for 6 days. On the seventh day, the gastrocnemius–soleus–plantaris muscle group was isolated and snap frozen, or underwent 30 min of electrically evoked submaximal intensity isometric contraction using a perfused hindlimb model. During contraction, the rate of muscle PDC activation was significantly lower at 100 mg (kg bm)−1 compared with control ( P < 0.01). Furthermore, the rates of muscle PCr hydrolysis and lactate accumulation were significantly increased at 100 mg (kg bm)−1 compared with control, reflecting lower mitochondrial ATP generation. Muscle tension development during contraction was significantly lower at 100 mg (kg bm)−1 compared with control (25%; P < 0.05). The present data demonstrate that PPARδ agonism inhibits muscle CHO oxidation at the level of PDC during prolonged contraction, and is paralleled by the activation of anaerobic metabolism, which collectively impair contractile function.  相似文献   

12.
The effect of 6-week endurance training on mitochondrial ATP production rate was investigated in 14 elderly men. Mean age, body weight and height were 63±6yr, 75.6 ± 9.2 kg and 174±4cm, respectively. Subjects trained on a Monark cycle ergometer at 79 ± 8% of their maximal heart rate for 1 h day-1, 4 days week-1. Muscle samples were obtained at rest, before and after endurance training, by a needle biopsy technique and used for determination of mitochondrial ATP production rate in isolated mitochondria and enzyme assays. Endurance training resulted in a significant increase in maximal oxygen uptake (L min-1) (P < 0.01). Citrate synthase activity, a mitochondrial marker enzyme, and hexokinase activity increased significantly (both P < 0.01) in response to training while 3-hydroxyacyl-CoA dehydrogenase and carnitine palmitoyltransferase I activities remained statistically unchanged. A higher mitochondrial ATP production rate was observed after endurance training with the substrate combinations pyruvate ± palmitoyl-L-carnitine + L-glutamate + malate (P < 0.01), L-glutamate (P < 0.001), pyruvate + malate (P < 0.05) and palmitoyl-L-carnitine + malate (P < 0.01). The largest increase was obtained with L-glutamate (170%). Significant correlations were observed between the percent increase in citrate synthase activity and those of mitochondrial ATP production rates. It was concluded that the increased mitochondrial ATP production rate of aged human skeletal muscle with training seems mainly to occur through an increased mitochondrial content, and in a way similar to those observed in young men.  相似文献   

13.
Steady state concentrations of ATP and ADP in vivo are similar at low and high cardiac workloads; however, the mechanisms that regulate the activation of substrate metabolism and oxidative phosphorylation that supports this stability are poorly understood. We tested the hypotheses that (1) there is parallel activation of mitochondrial and cytosolic dehydrogenases in the transition from low to high workload, which increases NADH/NAD+ ratio in both compartments, and (2) this response does not require an increase in fatty acid oxidation (FAO). Anaesthetized pigs were subjected to either sham treatment, or an abrupt increase in cardiac workload for 5 min with dobutamine infusion and aortic constriction. Myocardial oxygen consumption     and FAO were increased 3- and 2-fold, respectively, but ATP and ADP concentrations did not change. NADH-generating pathways were rapidly activated in both the cytosol and mitochondria, as seen in a 40% depletion in glycogen stores, a 3.6-fold activation of pyruvate dehydrogenase, and a 50% increase in tissue NADH/NAD+. Simulations from a multicompartmental computational model of cardiac energy metabolism predicted that parallel activation of glycolysis and mitochondrial metabolism results in an increase in the NADH/NAD+ ratio in both cytosol and mitochondria. FAO was blocked by 75% in a third group of pigs, and a similar increase in     and the NAHD/NAD+ ratio was observed. In conclusion, in the transition to a high cardiac workload there is rapid parallel activation of substrate oxidation that results in an increase in the NADH/NAD+ ratio.  相似文献   

14.
We describe the successful use of sodium benzoate in a neonate with hyperammonemia associated with congenital lactic acidosis caused by a partial deficiency of the E1 component of pyruvate dehydrogenase (PDH); of note, this biochemical disturbance has not been previously described in PDH deficiency. The pyruvate dehydrogenase complex in skin fibroblasts had 48% of normal activity with a deficiency of the E1 component. The infant presented with rapid onset of a severe metabolic lactic acidosis, hyperventilation, hyperammonemia, and coma. At 30 hours of age continuous peritoneal dialysis was started; however, plasma NH3 concentrations remained in the 300-400 micrograms/dl range over the next 12 hours. Sodium benzoate, 250 mg/kg, was infused intravenously with a decrease in plasma ammonia of 25 micrograms/dl/hr. Hippurate was documented in the urine and peritoneal fluid after benzoate therapy. At 10.5 months of age, 50 mg/kg dichloroacetate was administered orally under fasting conditions, which resulted in a 56 and 62% reduction in the serum lactate and pyruvate levels, respectively; after 2 weeks on dichloroacetate his fasting levels were significantly decreased. Fibroblast PDH activity responded similarly to this drug. In our patient sodium benzoate was rapidly effective in producing a decline in plasma ammonia that was associated with clinical improvement. We feel that its use in organic acidemias deserves further evaluation and, furthermore, that any child with suspected PDH deficiency requires a clinical trial of dichloroacetate.  相似文献   

15.
There is a growing appreciation that the regulation of the melatonergic pathways, both pineal and systemic, may be an important aspect in how viruses drive the cellular changes that underpin their control of cellular function. We review the melatonergic pathway role in viral infections, emphasizing influenza and covid‐19 infections. Viral, or preexistent, suppression of pineal melatonin disinhibits neutrophil attraction, thereby contributing to an initial “cytokine storm”, as well as the regulation of other immune cells. Melatonin induces the circadian gene, Bmal1, which disinhibits the pyruvate dehydrogenase complex (PDC), countering viral inhibition of Bmal1/PDC. PDC drives mitochondrial conversion of pyruvate to acetyl‐coenzyme A (acetyl‐CoA), thereby increasing the tricarboxylic acid cycle, oxidative phosphorylation, and ATP production. Pineal melatonin suppression attenuates this, preventing the circadian “resetting” of mitochondrial metabolism. This is especially relevant in immune cells, where shifting metabolism from glycolytic to oxidative phosphorylation, switches cells from reactive to quiescent phenotypes. Acetyl‐CoA is a necessary cosubstrate for arylalkylamine N‐acetyltransferase, providing an acetyl group to serotonin, and thereby initiating the melatonergic pathway. Consequently, pineal melatonin regulates mitochondrial melatonin and immune cell phenotype. Virus‐ and cytokine‐storm‐driven control of the pineal and mitochondrial melatonergic pathway therefore regulates immune responses. Virus‐and cytokine storm‐driven changes also increase gut permeability and dysbiosis, thereby suppressing levels of the short‐chain fatty acid, butyrate, and increasing circulating lipopolysaccharide (LPS). The alterations in butyrate and LPS can promote viral replication and host symptom severity via impacts on the melatonergic pathway. Focussing on immune regulators has treatment implications for covid‐19 and other viral infections.  相似文献   

16.
Pyruvate dehydrogenase deficiency is one of the genetic defects of mitochondrial energy metabolism. Clinical features are heterogeneous, ranging from fatal lactic acidosis in the newborn period to chronic neurodegenerative abnormalities. Most cases have mutations in the gene for the E1alpha subunit of the pyruvate dehydrogenase complex. Primary defects of the E3 binding protein component of the pyruvate dehydrogenase complex are rarier. We describe two unrelated Moroccan patients with the same new mutation c.1182 + 2T > C in the E3 binding protein gene PDHX and different clinical forms.  相似文献   

17.
Summary To study the changes in carnitine in muscle with sprint exercise, two Thoroughbred horses performed two treadmill exercise tests. Biopsies of the middle gluteal were taken before, after exercise and after 12 min recovery. Resting mean muscle total carnitine content was 29.5 mmol · kg−1 dry muscle (d. m.). Approximately 88% was free carnitine, 7% acetylcarnitine and acylcarnitine was estimated at 5%. Exercise did not affect total carnitine, but resulted in a marked fall in free carnitine and almost equivalent rise in acetylcarnitine. The results are consistent with a role for carnitine in the regulation of the acetyl-CoA/CoA ratio during sprint exercise in the Thoroughbred horse by buffering excess production of acetyl units.  相似文献   

18.
A moderate reduction in coronary blood flow results in decreased myocardial oxygen consumption, accelerated glycolysis, decreased pyruvate oxidation, and lactate accumulation. To quantitatively understand cardiac metabolism during ischemia, we have developed a mechanistic, mathematical model based on biochemical mass balances and reaction kinetics in cardiac cells. By numerical solution of model equations, computer simulations showed the dynamic responses in glucose, fatty acid, glucose-6-phosphate, glycogen, triglyceride, pyruvate, lactate, acetyl-CoA, and free-CoA as well as CO2, O2 phosphocreatine/creatine, nicotinamide adenine dinucleotide (reduced form)/nicotinamide adenine dinucleotide (oxidized form) NADH/NAD+, and adenosine diphosphate/adenosine triphosphate (ADP/ATP). When myocardial ischemia was simulated by a 60% reduction in coronary blood flow, the model generated myocardial concentrations, uptakes, and fluxes that were consistent with experimental data from in vivopig studies. After 60 min of ischemia the concentrations of glycogen, phosphocreatine, and ATP were decreased by 60%, 75%, and 50%, respectively. With the onset of ischemia, myocardial lactate concentration increased and the myocardium switched from net consumer to net producer of lactate. Our model predicted a rapid 13-fold increase in NADH/NAD but only a twofold increase in the ratio of acetyl-CoA to free-CoA. These findings are consistent with the concept that pyruvate oxidation is inhibited during ischemia partially by the rise in NADH/NAD+. © 2002 Biomedical Engineering Society. PAC2002: 8717Aa  相似文献   

19.
背景:阿魏酸钠预处理能对心肌细胞产生保护作用并已在大鼠体外心脏和乳鼠心肌细胞水平得以证实,尚缺乏在成年大鼠心肌细胞水平上的研究。 目的:探讨阿魏酸钠预处理对成年大鼠缺氧复氧心肌细胞的保护作用及其K+ATP通道机制。 方法:用Langendorff系统灌流心脏,以胶原酶消化法分离纯化成年大鼠心肌细胞并给予模拟缺氧复氧液以及干预因素阿魏酸钠、K+ATP通道阻断剂格列本脲处理,随机分为6组:正常对照组、缺氧复氧组、缺氧预适应+缺氧复氧组、阿魏酸钠+缺氧复氧组、格列本脲+缺氧预适应+缺氧复氧组、格列本脲+阿魏酸钠+缺氧复氧组。 结果与结论:①心肌细胞存活率:缺氧复氧组与对照组比较,细胞存活率明显降低(P < 0.01);缺氧预适应+缺氧复氧组、阿魏酸钠+缺氧复氧组与缺氧复氧组比较,细胞存活率明显增高(P < 0.01);格列本脲+缺氧预适应+缺氧复氧组、格列本脲+阿魏酸钠+缺氧复氧组与缺氧复氧组相比,差异无显著性意义,但明显高于缺氧预适应+缺氧复氧组(P < 0.01)。②乳酸脱氢酶活性:各组间乳酸脱氢酶活性比较结果与心肌细胞存活率比较结果吻合。③透射电镜观察:缺氧复氧组心肌细胞线粒体明显肿胀,嵴消失或变形,细胞膜结构破坏,有核边聚现象;缺氧预适应+缺氧复氧组、阿魏酸钠+缺氧复氧组心肌细胞超微结构改变轻微,线粒体排列规则、大小均匀,嵴及内外膜清晰完整,核膜完整,较缺氧复氧组损伤明显减轻;格列本脲+缺氧预适应+缺氧复氧组、格列本脲+阿魏酸钠+缺氧复氧组心肌细胞超微结构改变与缺氧复氧组相似。结果可见阿魏酸钠预处理对成年大鼠心肌细胞具有药理性心肌缺血预适应保护作用且该作用可能与K+ATP通道有关。 关键词:阿魏酸钠;成年大鼠;心肌细胞;缺氧复氧;心肌保护 doi:10.3969/j.issn.1673-8225.2012.11.012  相似文献   

20.
Sheline CT  Wei L 《Neuroscience》2006,140(1):235-246
We previously demonstrated that copper facilitated the formation of reactive oxygen species, and inhibited pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase in vitro and in animal models of Wilson's disease in vivo. However, direct Cu(2+) toxicity has only been demonstrated for Wilson's disease. We now hypothesize that inhibition of these mitochondrial dehydrogenases might also contribute to many other injuries and disorders that are reactive oxygen species-mediated. We have modeled reactive oxygen species-mediated injuries using inducers of reactive oxygen species such as hydrogen peroxide, ethacrynic acid or menadione, or another redox active metal (Cd(2+)). Here we demonstrated that these toxic exposures were accompanied by an early marked reduction in both pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase activities, followed by a decrease in neuronal mitochondrial transmembrane potential and ATP, prior to murine cortical neuronal death. Thiamine (6 mM), and dihydrolipoic acid (50 microM), required cofactors for pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase (thiamine as thiamine pyrophosphate), attenuated the reactive oxygen species-induced reductions in these enzyme activities, as well as subsequent loss of mitochondrial transmembrane potential and ATP, and neuronal death. We next tested the effect of thiamine supplementation on an in vivo model of reactive oxygen species-mediated injury, transient middle cerebral artery occlusion, and reperfusion in rats. Oral or i.p. thiamine administration reduced the middle cerebral artery occlusion-induced infarct. These data suggest that reactive oxygen species-induced neuronal death may be caused in part by reactive oxygen species-mediated inhibition of pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase in vitro and in vivo, and that thiamine or dihydrolipoic acid may constitute potential therapeutic agents not just against Cu(2+) neurotoxicity, but may reduce neuronal degeneration in the broader range of diseases mediated by free radical stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号