首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Gly972Arg polymorphism in the insulin receptor substrate (IRS)-1 was found in some studies to have a higher prevalence in type 2 diabetic subjects than in control subjects. Previously, transfection of IRS-1 with this polymorphism into insulin-secreting cells resulted in a marked reduction of glucose-stimulated insulin secretion compared with the wild-type transfected cells. In the present study, we compared insulin secretion in well-matched normal glucose-tolerant subjects with and without this polymorphism. Several validated indexes of beta-cell function from the oral glucose tolerance test were significantly lower in X/Arg (n = 31) compared with Gly/Gly (n = 181) (P between 0.002 and 0.05), whereas insulin sensitivity (measured with a euglycemic clamp) was not different. During a modified hyperglycemic clamp, insulin secretion rates were significantly lower in Gly/Arg (n = 8) compared with Gly/Gly (n = 36) during the first phase (1,711+/-142 vs. 3,014+/-328 pmol/min, P = 0.05) and after maximal stimulation with arginine (5,340+/-639 vs. 9,075+/-722 pmol/min, P = 0.03). In summary, our results suggest that the Gly972Arg polymorphism in IRS-1 is associated with decreased insulin secretion in response to glucose but not with insulin sensitivity. It is possible that this polymorphism causes insulin resistance at the level of the beta-cell and contributes to the polygenic etiology of type 2 diabetes.  相似文献   

2.
The aim of the present study was to examine the relationships among beta-cell function, proinsulin conversion to insulin, and age. We studied insulin and proinsulin secretion in nondiabetic subjects during an oral glucose tolerance test (OGTT) using published indexes of beta-cell function (n = 379, age 16--68 years) and a modified hyperglycemic clamp (10 mmol/l, additional glucagon-like peptide [GLP-1] infusion, final arginine bolus; n = 50, age 19--68 years). Proinsulin conversion to insulin was assessed using proinsulin/insulin (PI/I) ratios immediately after an acute stimulus (OGTT, 30 min; hyperglycemic clamp, 2.5-5.0 min after glucose and arginine). There was a negative correlation between age and beta-cell function (adjusted for insulin sensitivity, BMI, and fasting glucose) in the OGTT (r = -0.21, P < 0.001) and first phase of the hyperglycemic clamp (r = -0.30, P = 0.03), but not second phase (r = -0.08, P = 0.6) or arginine-induced insulin secretion (r = 0.06, P = 0.7). There was a positive correlation between age and the PI/I ratio in the OGTT (r = 0.24, P < 0.001). Analogously, there was also a positive correlation between age and the PI/I ratio during first phase (r = 0.37, P = 0.009) and arginine stimulation (r = 0.33, P = 0.01) of the hyperglycemic clamp. First-phase insulin secretion of the hyperglycemic clamp was inversely correlated with the PI/I ratio (r = -0.60, P < 0.001). Interestingly, adjusting first-phase secretion rate for the PI/I ratio abolished the linear relationship with age (r = -0.06, P = 0.7). In conclusion, aging is associated with deteriorating beta-cell function and deteriorating proinsulin conversion to insulin. The age effect on insulin secretion appears to be attributable at least in part to an impairment of proinsulin conversion to insulin.  相似文献   

3.
Effect of acute hyperglycemia on insulin secretion in humans   总被引:1,自引:0,他引:1  
First-phase insulin response to intravenous glucose is impaired both in type 2 diabetic patients and in subjects at risk for the disease. Hyperglycemia can modify beta-cell response by either inhibiting or potentiating both first- and second-phase insulin release. In normal subjects, the effect of acute hyperglycemia on insulin secretion is controversial. We measured (in 13 healthy volunteers) insulin secretion (by deconvolution of plasma C-peptide concentrations) during three consecutive 30-min hyperglycemic steps (2.8, 2.8, and 5.6 mmol/l), followed by an intravenous arginine bolus. First-phase insulin secretion in response to the first hyperglycemic step (456 +/- 83 pmol.min(-1).m(-2)) was significantly larger than that in response to the second step (311 +/- 37 pmol.min(-1).m(-2), P < 0.01); the subsequent increase in glycemia failed to stimulate first-phase secretion any further (377 +/- 60 pmol.min(-1).m(-2), NS vs. the previous value). This inhibition was also evident when insulin release rates were corrected for the respective increments (absolute or percentage) in plasma glucose levels and was not due to beta-cell exhaustion because the arginine bolus still elicited a large peak of insulin secretion (4,790 +/- 2,330 pmol.min(-1).m(-2)). In contrast, second-phase insulin secretion was related to the prevailing glucose levels across the three hyperglycemic steps in a direct quasilinear manner. We conclude that first-phase insulin secretion is inhibited by short-term modest hyperglycemia, whereas the second-phase insulin secretion increases linearly with hyperglycemia.  相似文献   

4.
Our objective was to study whether young first-degree relatives of patients with type 2 diabetes (FDRs) have altered insulin secretion and insulin clearance in response to gastric inhibitory polypeptide (GIP) in combination with glucose and arginine. A hyperglycemic clamp (11.1 mmol/l for 115 min), followed by addition of GIP (2 pmol. kg(-1). min(-1), 60-115 min) and an arginine bolus and infusion (10 mg. kg(-1). min(-1), 90-115 min), was conducted on 14 healthy volunteers and 13 FDRs. Both groups had normal glucose tolerance. FDRs were more insulin resistant (HOMA(IR)) under basal conditions (P = 0.003). FDRs demonstrated significant global impairment in insulin secretion capacity, which was not specific for one of the secretagogues. Insulin clearance was significantly reduced in the group of FDRs under basal conditions and in response to GIP, but there was no general defect in insulin clearance in response to glucose and arginine. The HOMA(IR) correlated negatively (P < 0.01) with insulin clearance under basal conditions (r = -0.96) and under GIP infusion (r = -0.56). We propose that impairment in insulin secretion capacity and decreased insulin sensitivity is compensated for several mechanisms, one of which includes a GIP-dependent reduction of the insulin clearance that will increase peripheral insulin levels to maintain normoglycemia.  相似文献   

5.
6.
In a double-blind, placebo-controlled, randomized crossover study, 15 stable mild hyperglycemic patients without treatment and with features of metabolic syndrome were treated with cerivastatin (0.4 mg/day) or placebo for 3 months. The insulin sensitivity index during the euglycemic-hyperinsulinemic clamp (EHC; 5.4 mmol/l; 80 mU x m(-2) x min(-1)) was increased by cerivastatin treatment (66.39 +/- 3.9 nmol x lean body mass [LBM](-1) x min(-1) x pmol(-1) x l(-1)) as compared with placebo (58.37 +/- 3.69 nmol x LBM(-1) x min(-1) x pmol(-1) x l(- 1); P < 0.01) by 13.7%. Glucose oxidation during EHC was significantly higher with statin treatment (16.1 +/- 1.37 micromol x LBM(-1) x min(-1)) as compared with placebo (14.58 +/- 1.48 micromol x LBM(-1) x min(-1); P < 0.05). During hyperinsulinemia (approximately 800 pmol/l) in EHC steady-state, lipid oxidation was significantly decreased and respiratory quotient was significantly increased with statin treatment (0.33 +/- 0.05 mg x LBM(-1) x min(- 1), 0.94 +/- 0.01) as compared with placebo (0.48 +/- 0.06 mg x LBM(-1) x min(-1), 0.91 +/- 0.01; P < 0.01 and P < 0.05, respectively). During statin treatment, the first-phase insulin response increased from 2.07 +/- 0.28 to 2.82 +/- 0.38 pmol x l(-1) x pmol(-1) (P < 0.05). The second phase of insulin responses examined by C-peptide and insulin levels averaged during the hyperglycemic clamp (20 mmol/l) was unchanged. In conclusion, this study demonstrates that 0.4 mg cerivastatin therapy improves first-phase insulin secretion and increases insulin-mediated glucose uptake and respiratory quotient in the early state of obese type 2 diabetes.  相似文献   

7.
We have recently described a novel phenotype in a group of subjects with type 1 diabetes that is manifested by glucose >11.1 mmol/l 120 min after an oral glucose load, but with normal fasting glucose levels. We now describe the metabolic characteristics of these subjects by comparing parameters of islet hormone secretion and glucose disposal in these subjects to age-matched nondiabetic control subjects. The patients with type 1 diabetes had fasting glucose, insulin, and glucagon values similar to those of control subjects. Additionally, the insulin secretory response to intravenous arginine at euglycemia was similar in the control and diabetic groups (264 +/- 33.5 and 193 +/- 61.3 pmol/l; P = 0.3). However, marked differences in beta-cell function were found in response to hyperglycemia. Specifically, the first-phase insulin response was lower in diabetic subjects (329.1 +/- 39.6 vs. 91.3 +/- 34.1 pmol/l; P < 0.001), as was the slope of glucose potentiation of the insulin response to arginine (102 +/- 18.7 vs. 30.2 +/- 6.1 pmol/l per mmol/l; P = 0.005) and the maximum insulin response to arginine (2,524 +/- 413 vs. 629 +/- 159 pmol/l; P = 0.001). Although plasma levels of glucagon-like peptide (GLP)-1 and gastric inhibitory peptide (GIP) did not differ between control and diabetic subjects, the incretin effect was lower in the diabetic patients (70.3 +/- 5.4 vs. 52.1 +/- 5.9%; P = 0.03). Finally, there was a lack of suppression of glucagon in the patients after both oral and intravenous glucose administration, which may have contributed to their postprandial hyperglycemia. Glucose effectiveness did not differ between patients and control subjects, nor did insulin sensitivity, although there was a tendency for the patients to be insulin resistant (9.18 +/- 1.59 vs. 5.22 +/- 1.17 pmol.(-1).min(-1); P = 0.08). These data characterize a novel group of subjects with type 1 diabetes manifested solely by hyperglycemia following an oral glucose load in whom islet function is normal at euglycemia, but who have marked defects in both alpha- and beta-cell secretion at hyperglycemia. This pattern of abnormalities may be characteristic of islet dysfunction early in the development of type 1 diabetes.  相似文献   

8.
Prolonged exposure of pancreatic islets to free fatty acids (FFAs) inhibits glucose-stimulated insulin secretion (GSIS) in vitro. However, FFA inhibition of GSIS has not been clearly demonstrated in vivo. We examined the in vivo effect of prolonged elevation of plasma FFAs on GSIS using a two-step hyperglycemic clamp in rats treated with a 48-h intravenous infusion of either 20% Intralipid plus heparin (INT) (5 microl/min plus heparin, 0.1 U/min; n = 8), oleate (OLE) (1.3 microEq/min; n = 6), saline (SAL) (n = 6), or bovine serum albumin (BSA) (vehicle for OLE; n = 5). Because there was no difference in any of the parameters between BSA and SAL rats, these groups were combined as control rats (CONT) (n = 11). At the end of the 48-h OLE/INT/CONT infusions, after an overnight fast, plasma glucose was clamped for 2 h at 13 mmol/l and for another 2 h at 22 mmol/l. Preclamp plasma FFAs were elevated twofold (P < 0.01) versus CONT with both INT and OLE (NS, INT vs. OLE). Preclamp glucose, insulin, and C-peptide levels were higher in INT than in CONT rats (P < 0.05), suggesting insulin resistance, but they were not different in OLE and CONT rats. The insulin and C-peptide responses to the rise in plasma glucose from basal to 13 mmol/l were lower in OLE (336 +/- 72 pmol/l and 1.2 +/- 0.1 nmol/l, P < 0.01 and P < 0.05, respectively) than in CONT (552 +/- 54 and 1.9 +/- 0.1) rats, but they were not different between CONT and INT rats (648 +/- 150 and 2.0 +/- 0.4). The insulin and C-peptide responses to the rise in plasma glucose from 13 to 22 mmol/l were lower in both INT (1,188 +/- 204 pmol/l and 3.0 +/- 0.3 nmol/l, P < 0.01 and P < 0.001) and OLE (432 +/- 60 and 1.7 +/- 0.2, P < 0.001 vs. CONT or INT) rats than in CONT rats (1,662 +/- 174 and 5.0 +/- 0.6). In summary, 1) both INT and OLE decreased GSIS in vivo in rats, and 2) the impairing effect of INT on GSIS was less than that of OLE, which might be due to the different type of fatty acid (mostly polyunsaturated in INT versus monounsaturated as OLE) and/or to differential effects of INT and OLE on insulin sensitivity. In conclusion, prolonged elevation of plasma FFAs can desensitize the insulin secretory response to glucose in vivo, thus inducing a beta-cell defect that is similar to that found in type 2 diabetes.  相似文献   

9.
Insulin secretion and clearance were studied in eight normal subjects who underwent hyperglycemic clamp studies at plasma glucose levels of 120, 225, and 300 mg/dl on three occasions. Insulin secretion rates were calculated during a 1-h baseline period and during 3 h of glucose clamping from a two-compartmental analysis of peripheral C-peptide concentrations with individual kinetic parameters derived after intravenous bolus injections of biosynthetic human C-peptide. At the 300-mg/dl clamp level, the insulin secretion rate increased to a value 9.9 +/- 0.7 times that of basal at the end of the clamp (mean +/- SE), whereas over the same period, the peripheral insulin concentrations increased to a greater extent, reaching a value 15.4 +/- 1.2 times that of basal (P = .002). This greater relative increase in the insulin concentration in comparison with the corresponding insulin secretion rate suggests a reduction in the clearance of endogenous insulin. A similar trend was seen at the 225-mg/dl clamp level, but the relative increase in the insulin concentration (9.9 +/- 1.5 times that of basal) was not significantly higher than the relative increase in the insulin secretion rate (8.1 +/- 0.5 times that of basal, P = .17). At the 120-mg/dl clamp level, the relative increases in the insulin secretion rate (2.7 +/- 0.2 times that of basal) and the insulin concentration (2.4 +/- 0.2 times that of basal) were similar (P = .26), indicating no reduction in endogenous insulin clearance during moderate stimulation of insulin secretion. In conclusion, a reduction in endogenous insulin clearance occurs during greater stimulation of insulin secretion at higher glucose-clamp levels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Genetic factors play an important role in the pathogenesis of type 2 diabetes. The relevance to type 2 diabetes of the common polymorphism Glu23Lys in the potassium inward rectifier 6.2 (KIR6.2) gene is still controversial. The aim of this study was to assess whether this polymorphism influences beta-cell function, alpha-cell function, or insulin action. We therefore studied 298 nondiabetic subjects using an oral glucose tolerance test (OGTT) and 75 nondiabetic subjects using a hyperglycemic clamp (10 mmol/l) with additional glucagon-like peptide (GLP)-1 and arginine stimulation. The prevalence of the Lys allele was approximately 37%, and the Lys allele was associated with higher incremental plasma glucose during the OGTT (P = 0.03, ANOVA). Neither first- nor second-phase glucose-stimulated C-peptide secretion was affected by the presence of the polymorphism; nor were maximal glucose-, GLP-1-, or arginine-induced C-peptide secretion rates; nor was insulin sensitivity (all P > 0.7). However, the relative decrease in plasma glucagon concentrations during the 10 min after the glucose challenge was reduced in carriers of the Lys allele (10 +/- 3% decrease from baseline in Lys/Lys, 18 +/- 2% in Glu/Lys, and 20 +/- 2% in Glu/Glu; P = 0.01, ANOVA). In conclusion, our findings suggest that the common Glu23Lys polymorphism in KIR6.2 is not necessarily associated with beta-cell dysfunction or insulin resistance but with diminished suppression of glucagon secretion in response to hyperglycemia. Our findings thus confirm its functional relevance for glucose metabolism in humans.  相似文献   

11.
Although steroids can induce insulin resistance, it is not known whether additional defects in insulin secretion are necessary for the development of diabetes. To address this question, we measured insulin sensitivity (euglycemic insulin clamp in combination with indirect calorimetry and infusion of tritiated glucose) and insulin secretion (hyperglycemic clamp) in three groups of subjects: (1) 10 kidney transplant patients with normal oral glucose tolerance, (2) 14 patients who developed diabetes after kidney transplantation, and (3) 10 healthy controls. Glucose utilization, primarily storage of glucose as glycogen, was reduced by 34% in kidney transplant patients with normal glucose tolerance when compared with healthy control subjects (18.2 +/- 2.9 vs. 27.5 +/- 2.7 microM/L; P less than 0.05). Insulin secretion was normal in relation to the degree of insulin resistance in transplanted non-diabetic patients, thus maintaining a normal oral glucose tolerance. Development of transplantation diabetes was associated with only minor further deterioration of glucose storage (14.7 +/- 2.7 microM/L; P less than 0.001 vs. control subjects), whereas first-phase, second-phase, and glucagon-stimulated insulin secretion measured during hyperglycemic clamping (incremental area under the insulin curve 287 +/- 120, 1275 +/- 419, and 3515 +/- 922 pM) became impaired as compared with nondiabetic kidney transplant patients (769 +/- 216, 3084 +/- 545, and 6293 +/- 533 pM; P less than 0.05). We conclude that both insulin resistance and insulin deficiency are necessary for the development of diabetes in kidney transplant patients.  相似文献   

12.
Role of the human kidney in glucose counterregulation.   总被引:3,自引:0,他引:3  
C Meyer  J M Dostou  J E Gerich 《Diabetes》1999,48(5):943-948
Animal experiments indicate that the kidney may play an important role in glucose counterregulation. Because the human kidney normally takes up and releases glucose, and since patients with end-stage renal disease are prone to hypoglycemia, we examined whether the kidney is also involved in human glucose counterregulation. Accordingly, we compared renal glucose release (RGR) and uptake (RGU) during 4-h hyperinsulinemic-hypoglycemic (approximately 3.2 mmol/l, n = 9) and -euglycemic (approximately 5 mmol/l, n = 10) control clamp experiments in normal postabsorptive subjects. A combination of renal balance and isotopic ([3H]glucose, [14C]glutamine) techniques was used, which permitted hepatic glucose release (HGR) and glutamine gluconeogenesis to be calculated as the difference between systemic (overall) and renal values. In both experiments, infusion of insulin increased plasma insulin comparably (approximately 210 pmol/l). In euglycemic control experiments, RGR and HGR decreased more than 50% (both P<0.001) and RGU increased approximately 35% (P = 0.02). In hypoglycemic experiments, both HGR (P = 0.034) and RGR (P<0.001) increased to a comparable extent (1.69+/-0.47 and 1.67+/-0.15 pmol x kg-(-1) x min(-1), respectively, P = 0.96) above rates observed in control experiments; hepatic and renal glutamine gluconeogenesis increased by 0.19+/-0.06 (P<0.008) and 0.30+/-0.07 pmol x kg(-1) x min(-1) (P< 0.001), respectively. RGU decreased by 65% compared with control experiments (P<0.001), so that renal glucose balance changed from a net uptake of 80+/-19 micromol/min to a net release of 130+/-9 micromol/min, P< 0.001. These observations provide evidence that the kidney may play an important role in human glucose counterregulation.  相似文献   

13.
To examine the effect of increased hexosamine flux in liver, the rate-limiting enzyme in hexosamine biosynthesis (glutamine:fructose-6-phosphate amidotransferase [GFA]) was overexpressed in transgenic mice using the PEPCK promoter. Liver from random-fed transgenic mice had 1.6-fold higher GFA activity compared with nontransgenic control littermates (276 +/- 24 pmol x mg(-1) x min(-1) in transgenic mice vs. 176 +/- 18 pmol x mg(-1) x min(-1) in controls, P < 0.05) and higher levels of the hexosamine end product UDP-N-acetyl glucosamine (288 +/- 11 pmol/g in transgenic mice vs. 233 +/- 10 pmol/g in controls, P < 0.001). Younger transgenic mice compared with control mice had lower fasting serum glucose (4.8 +/- 0.5 mmol/l in transgenic mice vs. 6.5 +/- 0.8 mmol/l in controls, P < 0.05) without higher insulin levels (48.0 +/- 7.8 pmol/l in transgenic mice vs. 56.4 +/- 5.4 pmol/l in controls, P = NS); insulin levels were significantly lower in transgenic males (P < 0.05). At 6 months of age, transgenic animals had normal insulin sensitivity by the hyperinsulinemic clamp technique. Hepatic glycogen content was higher in the transgenic mice (108.6 +/- 5.2 pmol/g in transgenic mice vs. 32.8 +/- 1.3 micromol/g in controls, P < 0.01), associated with an inappropriate activation of glycogen synthase. Serum levels of free fatty acids (FFAs) and triglycerides were also elevated (FFAs, 0.67 +/- 0.03 mmol/l in transgenic mice vs. 0.14 +/- 0.01 in controls; triglycerides, 1.34 +/- 0.15 mmol/l in transgenic mice vs. 0.38 +/- 0.01 in controls, P < 0.01). Older transgenic mice became heavier than control mice and exhibited relative glucose intolerance and insulin resistance. The glucose disposal rate at 8 months of age was 154 +/- 5 mg x kg(-1) x min(-1) in transgenic mice vs. 191 +/- 6 mg x kg(-1) x min(-1) in controls (P < 0.05). We conclude that hexosamines are mediators of glucose sensing for the regulation of hepatic glycogen and lipid metabolism. Increased hexosamine flux in the liver signals a shift toward fuel storage, resulting ultimately in obesity and insulin resistance.  相似文献   

14.
In a cross-sectional study, we assessed beta-cell function and insulin sensitivity index (ISI) with hyperglycemic clamps (10 mmol/l) in 24 subjects with impaired fasting glycemia (IFG, fasting plasma glucose [FPG] between 6.1 and 7.0 mmol/l), 15 type 2 diabetic subjects (FPG >7.0 mmol/l), and 280 subjects with normal fasting glycemia (NFG, FPG <6.1 mmol/l). First-phase insulin release (0-10 min) was lower in IFG (geometric mean 541 pmol/l.10 min; 95% confidence interval [CI] 416-702 pmol/l.10 min) and in type 2 diabetes (geometric mean 376 pmol/l.10 min; 95% CI 247-572 pmol/l.10 min) than NFG (geometric mean 814 pmol/l.10 min; 95% CI 759-873 pmol/l.10 min) (P < 0.001). Second-phase insulin secretion (140-180 min) was also lower in IFG (geometric mean 251 pmol/l; 95% CI 198-318 pmol/l; P = 0.026) and type 2 diabetes (geometric mean 157 pmol/l; 95% CI 105-235 pmol/l; P < 0.001) than NFG (geometric mean 295 pmol/l; 95% CI 276-315 pmol/l). IFG and type 2 diabetic subjects had a lower ISI (0.15 plus minus 0.02 and 0.16 plus minus 0.02 micromol/kg fat-free mass [FFM]/min/pmol/l, respectively) than NFG (0.24 plus minus 0.01 micromol/kg FFM/min/pmol/l, P < 0.05). We found a stepwise decline in first-phase (and second-phase) secretion in NFG subjects with progressive decline in oral glucose tolerance (P < 0.05). IFG subjects with impaired glucose tolerance (IGT) had lower first-phase secretion than NFG subjects with IGT (P < 0.02), with comparable second-phase secretion and ISI. NFG and IFG subjects with a diabetic glucose tolerance (2-h glucose >11.1 mmol/l) had a lower ISI than their respective IGT counterparts (P < 0.05). We conclude that the early stages of glucose intolerance are associated with disturbances in beta-cell function, while insulin resistance is seen more markedly in later stages.  相似文献   

15.
Seaquist ER  Damberg GS  Tkac I  Gruetter R 《Diabetes》2001,50(10):2203-2209
The continuous delivery of glucose to the brain is critically important to the maintenance of normal metabolic function. However, elucidation of the hormonal regulation of in vivo cerebral glucose metabolism in humans has been limited by the lack of direct, noninvasive methods with which to measure brain glucose. In this study, we sought to directly examine the effect of insulin on glucose concentrations and rates of glucose transport/metabolism in human brain using (1)H-magnetic resonance spectroscopy at 4 Tesla. Seven subjects participated in paired hyperglycemic (16.3 +/- 0.3 mmol/l) clamp studies performed with and without insulin. Brain glucose remained constant throughout (5.3 +/- 0.3 micromol/g wet wt when serum insulin = 16 +/- 7 pmol/l vs. 5.5 +/- 0.3 micromol/g wet wt when serum insulin = 668 +/- 81 pmol/l, P = NS). Glucose concentrations in gray matter-rich occipital cortex and white matter-rich periventricular tissue were then simultaneously measured in clamps, where plasma glucose ranged from 4.4 to 24.5 mmol/l and insulin was infused at 0.5 mU. kg(-1). min(-1). The relationship between plasma and brain glucose was linear in both regions. Reversible Michaelis-Menten kinetics fit these data best, and no differences were found in the kinetic constants calculated for each region. These data support the hypothesis that the majority of cerebral glucose uptake/metabolism is an insulin-independent process in humans.  相似文献   

16.
de Heer J  Holst JJ 《Diabetes》2007,56(2):438-443
Glucagon-like peptide (GLP)-1 mimetics have been reported to cause hypoglycemia when combined with sulfonylureas. This study investigated the impact of tolbutamide on the glucose dependence of the GLP-1-mediated effects on insulin, glucagon, and somatostatin secretion in the in situ perfused rat pancreas. At 3 mmol/l glucose, GLP-1 alone did not augment insulin secretion, whereas tolbutamide alone caused a rapid increase in insulin secretion. However, when GLP-1 and tolbutamide were administered simultaneously, insulin secretion increased significantly to 43.7 +/- 6.2 pmol/min (means +/- SE), exceeding the sum of the responses to GLP-1 (2.0 +/- 0.6 pmol/min; P = 0.019) and tolbutamide (11.3 +/- 3.8; P = 0.005) alone by a factor of 3.3. At 11 mmol/l glucose, co-infusion of GLP-1 and tolbutamide augmented insulin secretion to 141.7 +/- 10.3 vs. 115.36 +/- 14.1 (GLP-1) and 42.5 +/- 7.3 pmol/min (tolbutamide). Interestingly, increases in somatostatin secretion, both by glucose and GLP-1, were consistently paralleled by suppression of glucagon release. In conclusion, we demonstrate uncoupling of GLP-1 from its glucose dependence by tolbutamide. This uncoupling probably explains the tendency of GLP-1 to provoke hypoglycemia in combination with sulfonylureas. The results suggest that closure of ATP-sensitive K(+) channels by glucose might be involved in the glucose dependence of GLP-1's insulinotropic effect and that somatostatin acts as a paracrine regulator of glucagon release.  相似文献   

17.
Islet amyloid polypeptide (IAPP) has been identified as the major constituent of the pancreatic amyloid of non-insulin-dependent diabetes mellitus (NIDDM) and is also present in normal beta-cell secretory granules. To determine whether IAPP is a pancreatic secretory product, we measured the quantity of IAPP-like immunoreactivity (IAPP-LI), insulin, and glucagon released into 5 ml of incubation medium during a 2-h incubation of monolayer cultures (n = 5) of neonatal (3- to 5-day-old) Sprague-Dawley rat pancreases under three conditions: 1.67 mM glucose, 16.7 mM glucose, and 16.7 mM glucose plus 10 mM arginine and 0.1 mM isobutylmethylxanthine (IBMX). The quantity of IAPP-LI, insulin, and glucagon in the cell extract was also determined. Mean +/- SE IAPP-LI in the incubation medium increased from 0.041 +/- 0.003 pmol in 1.67 mM glucose to 0.168 +/- 0.029 pmol in 16.7 mM glucose (P less than 0.05) and 1.02 +/- 0.06 pmol in 16.7 mM glucose plus arginine and IBMX (P less than 0.05 vs. 1.67 or 16.7 mM glucose). Insulin secretion increased similarly from 4.34 +/- 0.27 to 20.2 +/- 0.6 pmol (P less than 0.05) and then to 135 +/- 5 pmol (P less than 0.05 vs. 1.67 or 16.7 mM glucose). Glucagon release tended to decrease with the increase in glucose concentration (0.39 +/- 0.01 vs. 0.33 +/- 0.02 pmol, P less than 0.1), whereas with the addition of arginine and IBMX to high glucose, glucagon release increased to 1.32 +/- 0.03 pmol (P less than 0.05 vs. 1.67 or 16.7 mM glucose).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
19.
Acute elevations in free fatty acids (FFAs) stimulate insulin secretion, but prolonged lipid exposure impairs beta-cell function in both in vitro studies and in vivo animal studies. In humans data are limited to short-term (< or =48 h) lipid infusion studies and have led to conflicting results. We examined insulin secretion and action during a 4-day lipid infusion in healthy normal glucose tolerant subjects with (FH+ group, n = 13) and without (control subjects, n = 8) a family history of type 2 diabetes. Volunteers were admitted twice to the clinical research center and received, in random order, a lipid or saline infusion. On days 1 and 2, insulin and C-peptide concentration were measured as part of a metabolic profile after standardized mixed meals. Insulin secretion in response to glucose was assessed with a +125 mg/dl hyperglycemic clamp on day 3. On day 4, glucose turnover was measured with a euglycemic insulin clamp with [3-3H]glucose. Day-long plasma FFA concentrations with lipid infusion were increased within the physiological range, to levels seen in type 2 diabetes (approximately 500-800 micromol/l). Lipid infusion had strikingly opposite effects on insulin secretion in the two groups. After mixed meals, day-long plasma C-peptide levels increased with lipid infusion in control subjects but decreased in the FH+ group (+28 vs. -30%, respectively, P < 0.01). During the hyperglycemic clamp, lipid infusion enhanced the insulin secretion rate (ISR) in control subjects but decreased it in the FH+ group (first phase: +75 vs. -60%, P < 0.001; second phase: +25 vs. -35%, P < 0.04). When the ISR was adjusted for insulin resistance (ISRRd = ISR / [1/Rd], where Rd is the rate of insulin-stimulated glucose disposal), the inadequate beta-cell response in the FH+ group was even more evident. Although ISRRd was not different between the two groups before lipid infusion, in the FH+ group, lipid infusion reduced first- and second-phase ISR(Rd) to 25 and 42% of that in control subjects, respectively (both P < 0.001 vs. control subjects). Lipid infusion in the FH+ group (but not in control subjects) also caused severe hepatic insulin resistance with an increase in basal endogenous glucose production (EGP), despite an elevation in fasting insulin levels, and impaired suppression of EGP to insulin. In summary, in individuals who are genetically predisposed to type 2 diabetes, a sustained physiological increase in plasma FFA impairs insulin secretion in response to mixed meals and to intravenous glucose, suggesting that in subjects at high risk of developing type 2 diabetes, beta-cell lipotoxicity may play an important role in the progression from normal glucose tolerance to overt hyperglycemia.  相似文献   

20.
The aim of the current study was to evaluate the effect of sustained physiologic increase of ∼50 mg/dL in plasma glucose concentration on insulin secretion in normal glucose-tolerant (NGT) subjects. Twelve NGT subjects without family history of type 2 diabetes mellitus (T2DM; FH−) and 8 NGT with family history of T2DM (FH+) received an oral glucose tolerance test and two-step hyperglycemic clamp (100 and 300 mg/dL) followed by intravenous arginine bolus before and after 72-h glucose infusion. Fasting plasma glucose increased from 94 ± 2 to 142 ± 4 mg/dL for 72 h. First-phase insulin secretion (0–10 min) increased by 70%, while second-phase insulin secretion during the first (10–80 min) and second (90–160 min) hyperglycemic clamp steps increased by 3.8-fold and 1.9-fold, respectively, following 72 h of physiologic hyperglycemia. Insulin sensitivity during hyperglycemic clamp declined by ∼30% and ∼55% (both P < 0.05), respectively, during the first and second hyperglycemic clamp steps. Insulin secretion/insulin resistance (disposition) index declined by 60% (second clamp step) and by 62% following arginine (both P < 0.005) following 72-h glucose infusion. The effect of 72-h glucose infusion on insulin secretion and insulin sensitivity was similar in subjects with and without FH of T2DM. Following 72 h of physiologic hyperglycemia, metabolic clearance rate of insulin was markedly reduced (P < 0.01). These results demonstrate that sustained physiologic hyperglycemia for 72 h 1) increases absolute insulin secretion but impairs β-cell function, 2) causes insulin resistance, and 3) reduces metabolic clearance rate of insulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号