共查询到20条相似文献,搜索用时 15 毫秒
1.
K M Wilcox K P Lindsey J R Votaw M M Goodman L Martarello F I Carroll L L Howell 《Synapse (New York, N.Y.)》2002,43(1):78-85
Dopaminergic mechanisms are thought to play a central role in the reinforcing effects of cocaine. The present study examined the reinforcing effects of 3beta-(4-chlorophenyl)tropane-2beta-carboxylic acid phenyl ester (RTI-113), a long-acting, selective, high-affinity dopamine uptake inhibitor. Additionally, the effects of RTI-113 pretreatment on cocaine self-administration were determined. Monkeys were trained to respond under a second-order schedule for intravenous cocaine administration (0.10 or 0.17 mg/kg/infusion). When responding was stable, cocaine (0.0030-1.0 mg/kg/infusion) and RTI-113 (0.010-0.30 mg/kg/infusion) were substituted for the cocaine training dose. Cocaine and RTI-113 were equipotent for their reinforcing effects. However, cocaine maintained higher response rates in two of the three monkeys tested. When administered as a pretreatment, RTI-113 (0.10-0.30 mg/kg) dose-dependently reduced responding maintained by two doses of cocaine. Drug effects on behavior were related to dopamine transporter (DAT) occupancy in monkey striatum during neuroimaging with positron emission tomography. DAT occupancy was determined by displacement of 8-(2-[(18)F]fluroethyl)2beta-carbomethoxy-3beta-(4-chlorophenyl)nortropane (FECNT). DAT occupancy was between 65-76% and 94-99% for doses of cocaine and RTI-113 that maintained maximum response rates, respectively. DAT occupancy did not differ markedly across RTI-113 pretreatment doses and ranged between 72-84%. The results suggest that the pharmacokinetic profile of RTI-113 (i.e., long-acting) may influence its ability to maintain self-administration, and therefore its abuse liability. Additionally, high DAT occupancy is required for RTI-113 to reduce cocaine-maintained responding. 相似文献
2.
Postictal blockade of ischemic hippocampal neuronal death in primates using selective cathepsin inhibitors 总被引:3,自引:0,他引:3
Tsuchiya K Kohda Y Yoshida M Zhao L Ueno T Yamashita J Yoshioka T Kominami E Yamashima T 《Experimental neurology》1999,155(2):187-194
This paper is to study the participation of cathepsin in ischemic neuronal death of the monkey hippocampal cornu ammonis (CA) 1 sector and also to clarify whether its selective inhibitor epoxysuccinyl peptides such as CA-074 and E-64c can inhibit the neuronal death or not. In the preceding reports, we demonstrated mu-calpain activation and subsequent rupturing of the lysosomal membrane of postischemic CA1 neurons and also increase of enzyme activity of cathepsins B and L in monkeys undergoing a complete 20-min whole brain ischemia. Here, morphological, immunohistochemical and enzymatical analyses were performed to examine the efficacy of two selective cathepsin inhibitors in the postictal blockade of delayed neuronal death in the monkey hippocampus. Both inhibitors could significantly decrease enzyme activities of cathepsins B and L in all hippocampal sectors. When CA-074 was intravenously administered immediately after the ischemic insult, approximately 67% of CA1 neurons were saved from delayed neuronal death on day 5 after ischemia. In contrast, when E-64c was similarly administered, approximately 84% of CA1 neurons were saved from delayed neuronal death on day 5. The surviving neurons showed mild central chromatolysis and negligible immunoreactivity for cathepsins B and L. These observations indicate that the use of cathepsin inhibitors may become novel strategy for prevention of ischemic delayed neuronal death in the primate hippocampus. 相似文献
3.
Maeda J Suhara T Kawabe K Okauchi T Obayashi S Hojo J Suzuki K 《Synapse (New York, N.Y.)》2003,47(3):200-208
Although [(11)C]Ro15-4513 and [(11)C]flumazenil both bind to the central benzodiazepine (BZ) receptors, the distributions of the two ligands are not identical in vivo. Moreover, the in vivo pharmacological properties of [(11)C]Ro15-4513 have not been thoroughly examined. In the present study, we examined the pharmacological profile of [(11)C]Ro15-4513 binding in the monkey brain using positron emission tomography (PET). [(11)C]Ro15-4513 showed relatively high accumulation in the anterior cingulate cortex, hippocampus, and insular cortex, with the lowest uptake being observed in the pons. Accumulation in the cerebral cortex was significantly diminished by the BZ antagonist flumazenil (0.1 mg/kg, i.v.), but not that in the pons. Using the pons as a reference region, the specific binding of [(11)C]Ro15-4513 in most of the cerebral cortex including the limbic regions clearly revealed two different affinity sites. On the other hand, specific binding in the occipital cortex and cerebellum showed only a low affinity site. Zolpidem with affinity for alpha1, alpha2, and alpha3 subunits of GABA(A)/BZ receptor fully inhibited [(11)C]Ro15-4513 binding in the occipital cortex and cerebellum, while only about 23% of the binding was blocked in the anterior cingulate cortex. Diazepam with affinity for alpha1, alpha2, alpha3, and alpha5 subunits inhibited the binding in all brain regions. Since Ro15-4513 has relatively high affinity for the alpha5 subunit in vitro, these in vivo bindings of [(11)C]Ro15-4513 can be interpreted as the relatively high accumulation in the fronto-temporal limbic regions representing binding to the GABA(A)/BZ receptor alpha5 subunit. 相似文献
4.
5.
The CA 1 neurons in the gerbil hippocampus exhibiting necrosis with delayed onset following 5 min ischemia were reduced markedly by the systemic administration of dihydroergotoxine mesylate (Hydergine; HYG). Immediately after 5 min of forebrain ischemia, the animals were injected intraperitoneally with HYG. Seven days after ischemia, perfusion-fixed brains were processed by conventional histology. The number of neurons per millimeter in the CA 1 pyramidal cell layer were calculated and they were labelled neuronal density. In the control group, the neuronal density was 66.03 +/- 7.37 (mean +/- SEM), in the vehicle group, it was 11.25 +/- 4.93. The neuronal density in the HYG group was 69.19 +/- 6.49. The difference in the neuronal density between the HYG group and the control group was not statistically significant. These data indicate that HYG protects on the CA 1 neurons, and this suggest that the suppression of adrenoceptors by this drugs may be the main mechanism of action. This morphologic outcome may explain the functional amelioration of mental impairment by HYG. 相似文献
6.
Harada N Nishiyama S Satoh K Fukumoto D Kakiuchi T Tsukada H 《Synapse (New York, N.Y.)》2002,45(1):38-45
In the present study, age-related changes in the striatal dopaminergic system were examined in the living brains of conscious young (6.2 +/- 1.5 years old) and aged (20.2 +/- 2.6 years old) monkeys (Macaca mulatta) using positron emission tomography (PET). L-[beta-(11)C]DOPA and [(11)C]beta-CFT were applied to determine dopamine presynaptic functions such as synthesis rate and transporter (DAT) availability, respectively. Striatal dopamine D(1)- (D(1)R) and D(2)-like receptor (D(2)R) binding were measured with [(11)C]SCH23390 and [(11)C]raclopride, respectively. Although the markers of presynaptic terminals showed parallel age-related declines, the reduction of dopamine synthesis rate measured with L-[beta-(11)C]DOPA was slightly smaller than that of DAT determined with [(11)C]beta-CFT. The binding of [(11)C]raclopride to D(2)R in vivo was significantly reduced with aging, while that of [(11)C]SCH23390 to D(1)R showed no such marked age-related reduction. When the DAT inhibitor GBR12909 (0.5 and 5 mg/kg) was administered, DAT availability, dopamine synthesis, and D(2)R binding were significantly decreased in a dose-dependent manner in both age groups; however, the degrees of the decreases in these parameters were significantly higher in young rather than in aged animals. Dopamine concentration in the striatal extracellular fluid (ECF), as measured by microdialysis, was increased by administration of GBR12909 in a dose-dependent manner and the degree of the increase in dopamine level decreased with age. These results demonstrate that age-related changes of dopamine neuronal functions were not limited to the resting condition but were also seen in the functional responses to the neurotransmitter modulation. 相似文献
7.
In Koo Hwang Ki‐Yeon Yoo Hua Li Ok Kyu Park Choong Hyun Lee Jung Hoon Choi Young‐Gil Jeong Yun Lyul Lee Young‐Myeong Kim Young‐Guen Kwon Moo‐Ho Won 《Journal of neuroscience research》2009,87(9):2126-2137
Tryptophan‐derived indole compounds have been widely investigated as antioxidants and as free‐radical scavengers. Indole‐3‐propionic acid (IPA), one of these compounds, is a deamination product of tryptophan. In the present study, we used Mongolian gerbils to investigate IPA's neuroprotective effects against ischemic damage and its antioxidative effects in the hippocampal CA1 region (CA1) after 5 min of transient forebrain ischemia. The repeated oral administration of IPA (10 mg/kg) for 15 days before ischemic surgery protected neurons from ischemic damage. In this group, the percentage of cresyl violet–positive neurons in the CA1 was 56.8% compared with that in the sham group. In the vehicle‐treated group, glial fibrillary acidic protein (GFAP)‐, S‐100‐, and vimentin‐immunoreactive astrocytes and ionized calcium‐binding adapter molecule 1 (Iba‐1)– and isolectin B4 (IB4)–immunoreactive microglia were activated 4 days after ischemia/reperfusion, whereas in the IPA‐treated ischemic group, GFAP, S‐100, Iba‐1, and IB4, but not vimentin, immunoreactivity was distinctly lower than that in the vehicle‐treated ischemic groups. The administration of IPA significantly decreased the level of 4‐hydroxy‐2‐nonenal, a marker of lipid peroxidation, in ischemic hippocampal homogenates compared with that in the vehicle‐treated ischemic groups at various times after ischemia/reperfusion. In addition, immunostaining for 8‐hydroxy‐2′‐deoxyguanosine showed DNA damage in pyramidal neurons in the ischemic CA1 was significantly lower in the IPA‐treated ischemic groups than in the vehicle‐treated ischemic groups. These results suggest that IPA protects neurons from ischemia‐induced neuronal damage by reducing DNA damage and lipid peroxidation. © 2009 Wiley‐Liss, Inc. 相似文献
8.
Naoto Adachi Ryozo Oishi Yoshitaro Itano Teruo Yamada Masahisa Hirakawa Kiyomi Saeki 《Brain research》1993,602(1)
Delayed damage to hippocampal CA1 pyramidal cells was observed in rats subjected to cerebral ischemia caused by 10 min of 4-vessel occlusion. Animals pretreated with α-fluoromethylhistidine, a suicide inhibitor of histidine decarboxylase, showed significantly more necrotic cells than did control animals. Mepyramine (H1-antagonist) and (R)α-methylhistamine (H3-agonist), but not zolantidine (H2-antagonist), significantly aggravated the delayed neuronal death. These results suggest that histaminergic neurons have a protective role, probably via H1-receptors, in the development of delayed neuronal death caused by cerebral ischemia. 相似文献
9.
10.
Wilcox KM Kimmel HL Lindsey KP Votaw JR Goodman MM Howell LL 《Synapse (New York, N.Y.)》2005,58(4):220-228
Dopaminergic mechanisms are thought to play a central role in the reinforcing effects of cocaine. Similar to cocaine, other local anesthetics bind to the dopamine transporter (DAT) and inhibit DA uptake in rodent and monkey brain. Additionally, local anesthetics are self-administered in rhesus monkeys, indicative of abuse liability. The present study examined the reinforcing and DAT effects of the local anesthetics dimethocaine, procaine and cocaine using in vivo techniques. Monkeys were trained to respond under a second-order schedule for i.v. cocaine administration (0.10 or 0.30 mg/kg/infusion). When responding was stable, dimethocaine (0.030-1.7 mg/kg/ infusion) or procaine (0.10-10 mg/kg/ infusion) was substituted for the cocaine training dose. Dimethocaine administration produced higher response rates compared with that of procaine, and was a more potent reinforcer. Drug effects on behavior were related to DAT occupancy in monkey striatum during neuroimaging with positron emission tomography (PET). DAT occupancy was determined by displacement of 8-(2-[(18)F]fluroethyl)2beta-carbomethoxy-3beta-(4-chlorophenyl)nortropane (FECNT). DAT occupancy was between 66 and 82% and <10-41% for doses of dimethocaine and procaine that maintained maximum response rates, respectively. Finally, in vivo microdialysis in awake subjects determined drug-induced changes in extracellular DA in the caudate nucleus. There was close correspondence between peak increases in DA and DAT occupancy. Overall, reinforcing effects were consistent with DAT effects determined with in vivo techniques. The results further support a role for the DAT in the abuse liability of local anesthetics. 相似文献
11.
Hyperbaric oxygenation prevents delayed neuronal death following transient ischaemia in the gerbil hippocampus 总被引:3,自引:0,他引:3
A. Kondo S. Baba T. Iwaki† H. Harai H. Koga T. Kimura‡ J. Takamatsu‡ 《Neuropathology and applied neurobiology》1996,22(4):350-360
The mechanism of the neuroprotective effect of hyperbaric oxygenation remains unclear although its clinical benefits have been well recognized for human ischaemic neuronal disease. The preventive effect of hyperbaric oxygenation against delayed neuronal death was investigated in the gerbil following transient forebrain ischaemia. Delayed neuronal death in the gerbil was produced by clips on both the common carotid arteries (10 min). Morphological examination was carried out after several protocols of hyperbaric oxygenation, modified from the protocols for human ischaemic neuronal disease. Neurons in the hippocampal CA1 were well preserved in the gerbils treated with hyperbaric oxygenation, more so than in the gerbils with no hyperbaric oxygenation. Moreover, more neurons were preserved in the CA1 treated with hyperbaric oxygenation within 6 h of the ischaemia, than when the hyperbaric oxygenation was started 24 h after the ischaemia. The induction of heat shock proteins (HSP72 and HSP27) became weaker in the gerbils with hyperbaric oxygenation than in those without hyperbaric oxygenation, as seen immunohistochemically. We also observed an increase in dense bodies, that were shown to be lysosomes and myelinoid structures in the cytoplasm of the neurons ultrastructurally, in the hippocampus with hyperbaric oxygenation. However, no oxygen toxicity to the neurons was detected, up to at least two atmospheres absolute. This experimental system was useful to investigate the preventive mechanism of hyperbaric oxygenation against delayed neuronal death in the gerbil, and to determine the clinical indications and the most effective protocol for hyperbaric oxygenation for ischaemic neuronal damage in the human brain. 相似文献
12.
Ying Dong Fahuan Song Jianjuan Ma Xuexin He Said Amer Weizhong Gu Mei Tian 《神经科学通报》2014,30(5):838-844
To evaluate the effect of bevacizumab on cerebral ischemia, we used 2-deoxy-2-18F-fluoro-D-glucose (18F-FDG) small-animal positron emission tomography (PET) in the middle cerebral artery occlusion (MCAO) rat model. After baseline neurologic function tests and PET studies, MCAO Sprague-Dawley rats received bevacizumab or normal saline (controls). Weekly PET imaging and neurologic function tests showed that the 18F-FDG accumulation in the bevacizumab group was similar to that in the controls during the first 2 weeks, but lower than in controls at weeks 3 and 4. However, no difference was found in neurological scores between the groups. The number of von Willebrand factor-positive cells in the bevacizumab group was lower than that in controls. The expression of vascular endothelial growth factor was higher than in controls at week 4. These results suggested that bevacizumab does not influence functional recovery in this model of cerebral ischemia during a 4-week period, but inhibits vascular formation and metabolic recovery, which may be considered in cancer patients with a recent ischemic stroke. 相似文献
13.
14.
The neuroprotective effect of vinconate, a novel vinca alkaloid derivative, was examined in a rat model of forebrain ischemia induced by 4-vessel occlusion. Hippocampal cell loss was quantified histologically 3 days after 10 or 15 min of ischemia. Intraperitoneal application of vinconate (25 and 50 mg/kg) 10 min before and immediately after 10 min of ischemia significantly reduced the neuronal cell loss in the CA1 sector of the hippocampus. Protective effect of vinconate against 15 min of ischemia was reduced, but there was still significant protection at the higher dose. Autoradiography using 14C-vinconate showed that the drug easily penetrates the blood-brain barrier and distributes in the hippocampus. The result suggests that vinconate prevents ischemic neuronal damage by direct action on the hippocampal CA1 neurons. 相似文献
15.
目的本实验拟通过正常人的正电子发射计算机断层显像(positron emission tomography,PET)研究,检测皮质下脑区是否参与了汉语文字书写行为过程,探讨其神经心理学机制。方法选取12名志愿者PET检查前分别进行文字书写和假写书写任务,观察两种状态下皮质下脑区激活情况。结果12名受试者在文字书写状态下,双侧豆状核、双侧尾状核及双侧丘脑较假写状态下有明显激活,差异呈显著性(P<0.05);左右两侧基底神经节、左右两侧丘脑的激活值差异无显著性(P>0.05)。结论皮质下脑区双侧基底神经节与双侧丘脑共同参与了汉语文字书写过程。 相似文献
16.
Mach RH Gage HD Buchheimer N Huang Y Kuhner R Wu L Morton TE Ehrenkaufer RL 《Synapse (New York, N.Y.)》2005,58(4):267-274
A series of brain uptake studies and PET imaging studies were conducted with the sigma(1) selective imaging agent, [(18)F]FBFPA. The results of the study indicate that this radiotracer readily crosses the blood-brain barrier and labels sigma(1) receptors in vivo. In vivo blocking studies with a sigma(1) selective ligand and a nonselective sigma(1)/sigma(2) receptor ligand indicates that [(18)F]FBFPA labels sigma(1) and not sigma(2) receptors in rodent brain. PET imaging studies demonstrated a high uptake in regions of rhesus monkey brain having a high density of sigma(1) receptors. The uptake of [(18)F]FBFPA was displaced by the sigma ligand, haloperidol (1 mg/kg, i.v.). In vivo blocking studies indicate that the progesterone blocked the brain uptake of [(18)F]FBFPA in rat brain. These data indicate that [(18)F]FBFPA is a potential radiotracer for imaging sigma(1) receptors in the CNS in vivo with PET. 相似文献
17.
Tetsumori Yamashima Yukihiko Kohda Katsuhiro Tsuchiya Takashi Ueno Junkoh Yamashita Tohru Yoshioka & Eiki Kominami 《The European journal of neuroscience》1998,10(5):1723-1733
Although Cornu Ammonis (CA) 1 neurons of the hippocampus are known to be vulnerable to transient ischaemia, the mechanism of ischaemic neuronal death is still unknown, and there are very few strategies to prevent neuronal death at present. In a previous report we demonstrated μ-calpain activation at the disrupted lysosomal membrane of postischaemic CA1 neurons in the monkey undergoing a complete 20 min whole brain ischaemia. Using the same experimental paradigm, we observed that the enzyme activity of the lysosomal protease cathepsin B increased throughout the hippocampus on days 3–5 after the transient ischaemia. Furthermore, by immunocytochemistry cathepsin B showed presence of extralysosomal immunoreactivity with specific localization to the cytoplasm of CA1 neurons and the neuropil of the vulnerable CA1 sector. When a specific inhibitor of cathepsin B, the epoxysuccinyl peptide CA-074 (C18H29N3O6) was intravenously administered immediately after the ischaemic insult, ≈ 67% of CA1 neurons were saved from delayed neuronal death on day 5 in eight monkeys undergoing 20 min brain ischaemia: the extent of inhibition was excellent in three of eight and good in five of eight monkeys. The surviving neurons rescued by blockade of lysosomal activity, showed mild central chromatolysis and were associated with the decreased immunoreactivity for cathepsin B. These observations indicate that calpain-induced cathepsin B release is crucial for the development of the ischaemic neuronal death, and that a specific inhibitor of cathepsin B is of potential therapeutic utility in ischaemic injuries to the human CNS. 相似文献
18.
Influence of agonist induced internalization on [3H]Ro15‐4513 binding—an application to imaging fluctuations in endogenous GABA with positron emission tomography 下载免费PDF全文
Darren Quelch Vittorio De Santis Annette Strege James Myers Lisa Wells David Nutt Anne Lingford‐Hughes Christine Parker Robin Tyacke 《Synapse (New York, N.Y.)》2015,69(1):60-65
19.
20.
Ji Hyun Ko Yuko Koshimori Romina Mizrahi Pablo Rusjan Alan A Wilson Anthony E Lang Sylvain Houle Antonio P Strafella 《Journal of cerebral blood flow and metabolism》2013,33(3):348-350
In vivo imaging of translocator protein 18 kDa (TSPO) has received significant attention as potential biomarker of microglia activation. Several radioligands have been designed with improved properties. Our group recently developed an 18F-labeled TSPO ligand, [18F]-FEPPA, and confirmed its reliability with a 2-tissue compartment model. Here, we extended, in a group of healthy subjects, its suitability for use in voxel-based analysis with the newly proposed graphical analysis approach, Relative-Equilibrium-Gjedde-Patlak (REGP) plot. The REGP plot successfully replicated the total distribution volumes estimated by the 2-tissue compartment model. We also showed its proof-of-concept in a patient with possible meningioma showing increased [18F]-FEPPA total distribution volume. 相似文献