首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of myoplasmic Mg2+ (0.05–10 mM) on Ca2+ accumulation (net Ca2+ flux) and Ca2+ uptake (pump-driven Ca2+ influx) by the intact sarcoplasmic reticulum (SR) was studied in skinned fibres from the toad iliofibularis muscle (twitch portion), rat extensor digitorum longus (EDL) muscle (fast twitch), rat soleus muscle (slow twitch) and rat cardiac trabeculae. Ca2+ accumulation was optimal between 1 and 3 mM Mg2+ in toad fibres and reached a plateau between 1 and 10 mM Mg2+ in the rat EDL fibres and between 3 and 10 mM Mg2+ in the rat cardiac fibres. In soleus fibres, optimal Ca2+ accumulation occurred at 10 mM Mg2+. The same trend was obtained with all preparations at 0.3 and 1 M Ca2+. Experiments with 2,5-di-(tert-butyl)-1,4-benzohydroquinone, a specific inhibitor of the Ca2+ pump, revealed a marked Ca2+ efflux from the SR of toad iliofibularis fibres in the presence of 0.2 M Ca2+ and 1 mM Mg2+. Further experiments indicated that the SR Ca2+ leak could be blocked by 10 M ruthenium red without affecting the SR Ca2+ pump and this allowed separation between SR Ca2+ uptake and SR Ca2+ accumulation. At 0.3 M Ca2+, Ca2+ uptake was optimal with 1 mM Mg2+ in the toad iliofibularis and rat EDL fibres and between 1 and 10 mM Mg2+ in the rat soleus and trabeculae preparations. At higher [Ca2+] (1 M), Ca2+ uptake was optimal with 1 mM Mg2+ in the iliofibularis fibres and between 1 and 3 mM Mg2+ in the EDL fibres. In the soleus and cardiac preparations Ca2+ uptake was optimal between 1 and 10 mM Mg2+. The results of this study demonstrate that SR Ca2+ accumulation is different from SR Ca2+ uptake and that these two important determinants of muscle function are differently affected by Mg2+ in different muscle fibre types.  相似文献   

2.
Prolonged exercise decreased the rate of Ca+ release in sarcoplasmic reticulum (SR) vesicles isolated from rat muscle by 20–30% when release was initiated by 5, 10, and 20 M AgNO3. [3H]Ryanodine binding was also depressed by 20% in SR vesicles isolated from the exercised animals. In contrast, the maximum amount of Ca2+ released by Ag+ remained unaffected by exercise. The passive permeability of SR vesicles and the rate of Ca2+ release in the presence of ruthenium red, a known inhibitor of the Ca2+ release mechanism, was not affected by prolonged exercise. These results suggest that exercise depressed Ca2+ release from SR by directly modifying the Ca2+ release channel. Current address: Department of Physics, Portland State University, Portland, OR 97207, USA  相似文献   

3.
The mechanism(s) of ryanodine-induced contracture of skeletal muscle were studied in skinned fibers from soleus (SL) and adductor magnus (AM) (slow- and fast-twitch skeletal muscles) of rabbits. Pieces of SL or AM were homogenized (sarcolemma disrupted). Single fibers were dissected from the homogenate and mounted on photodiode force transducers. At concentrations 1–50 M, ryanodine slightly but significantly increased the submaximal Ca2+-activated tension development of the contractile proteins in skinned fibers of AM but not of SL. Ryanodine in uptake phase or release phase increased caffeine-induced tension transients in the SR of both muscle types; however, no dose-response relation was found. Ryanodine 1 M decreased, however, the second control tension transients in a dose-dependent manner. The depression was nearly irreversible and activity-dependent. The concentrations of ryanodine that inhibited the second control tension transients by 50% were 10 M and 5 M for SL and AM, respectively, following ryanodine administration in the release phase, and 100 M and 30 M, respectively, for these preparations after the drug was present in the uptake phase. The quantity of calcium released from the SR by Triton X-100 and caffeine in the second control tension transient was unchanged by ryanodine at all concentrations tested when compared with that of the absence of ryanodine. The present findings suggest that the ability of ryanodine to increase immediate calcium release from the SR, and in AM but not SL, to increase the sensitivity of the contractile proteins to Ca2+ underlies the contracture caused by this agent in intact skeletal muscles. The delayed decreased Ca2+ efflux by caffeine, as evidenced by depression of tension transient with no change in the calcium content may be responsible for the decreased twitch tension caused by this agent.  相似文献   

4.
Summary We have developed a procedure to discriminate actomyosin-type ATPase activity from Ca2+-ATPase activity of sarcoplasmic reticulum (SR) in mechanically skinned fibres, determining simultaneously their Ca2+-induced tension and accompanying ATPase activity. When they were treated with an alkaline CyDTA-containing solution of low ionic strength which was reported to remove troponin C, the fibres showed a considerable amount of Ca2+-dependent ATPase activity, in spite of having little or no Ca2+-induced isometric tension. The residual ATPase activity is ascribed to the Ca2+-ATPase activity of SR, because it is completely abolished by 1% CHAPS treatment for 10 min. This conclusion is also supported by the finding that the Ca2+-dependence of the ATPase activity is very similar to that of Ca2+-ATPase of SR isolated from rabbit skeletal muscle, and that the estimated activity is consistent with the reported values of direct determinations. On the other hand, treatment with a detergent such as CHAPS or Triton X-100 removes SR activities (ATPase and Ca-uptake), leaving Ca2+-induced tension and actomyosin-type ATPase activity unchanged. This procedure indicated that the contribution of Ca2+-ATPase activity of SR may be minimal in total steady-state ATPase activity of mechanically skinned mammalian skeletal muscle fibres. Successive CyDTA and CHAPS treatments eliminated both Ca2+-induced tension and ATPase activity, which were recovered by the addition of troponin C. Using these procedures, we also examined the effect of cyclopiazonic acid (CPA) which was reported to be a specific inhibitor of Ca2+-ATPase of SR. Ca2+-ATPase activity of SR in skinned fibres was inhibited completely by 10 m CPA and held to one-half by about 0.2 m. This effect was only partially reversible. CPA at 10 m or higher concentrations showed Ca2+-sensitizing action on myofibrils, which was readily reversible. CPA at 3 m inhibited almost completely the Ca2+-ATPase activity of SR, while it had no effect on either actomyosin-type ATPase or isometric tension of myofibrils.  相似文献   

5.
 Ruthenium red inhibits mitochondrial Ca2+ uptake and is widely used as an inhibitor of ryanodine-sensitive Ca2+ channels that function to release Ca2+ from the sarcoplasmic reticulum (SR) of muscle cells. It also has effects on other Ca2+ channels and ion transporters. To study the effects of ruthenium red on Ca2+ transport into the SR of cardiac muscle cells, fluorescence measurements of Ca2+ uptake into cardiac SR vesicles were made. Ruthenium red significantly decreased the Ca2+ sensitivity of SR uptake in a dose-dependent manner at concentrations ranging from 5 μM to 20 μM. There were no significant effects of ruthenium red on the maximum velocity or the Hill coefficient of SR Ca2+ uptake. Received: 14 January 1998 / Received after revision: 12 March 1998 / Accepted: 16 March 1998  相似文献   

6.
Summary The local anaesthetics, tetracaine and procaine have previously been found to block, induce or potentiate Ca2+ release from the sarcoplasmic reticulum (SR) of skeletal muscle depending on the preparation, experimental conditions and design. We now show that low concentrations of tetracaine and procaine block SR Ca2+ release whereas high concentrations induce release from the SR of amphibian and mammalian skinned fibres. Both actions depend on pCa, such that a shift in pCa can alter their effect from blocking to releasing Ca2+. In skinned fibres with Ca2+-loaded SR, tetracaine (1mm) produced a tonic contraction with a time to half-peak of 15–20 s and a magnitude reaching 80% of maximum force. Ca2+ release by tetracaine or procaine occured at pCa 6.5 and was not blocked by Ruthenium Red (RR) (25 m). This action of tetracaine was attributed to SR Ca2+ release rather than to a displacement of bound Ca2+ because fibres lacking a functional SR due to pre-treatment with quercetin (100 m), A 23187 (100 g ml–1) or Triton X-100 (1%) did not contract after additions of tetracaine. Lower concentrations of tetracaine (0.5mm) and procaine (10mm) blocked contractions due to caffeine (at pCa 6.73), sulphydryl oxidizing agents, or Ca2+-induced Ca2+ release (CICR). The inhibition of CICR as a function of pCa was difficult to measure quantitatively since lowering pCa to elicit CICR twitches was sufficient to initiate tetracaine-induced tonic contractions.Experiments with isolated SR vesicles showed that 1mm tetracaine inhibited CICR, over a wide range of pCa but 3–5mm tetracaine induced rapid Ca2+ release. The opposite effects of tetracaine and procaine depend mostly on their concentration in SR vesicles and/or pCa in skinned fibres. Blockade of release seems to occur via the CICR pathway, and induction of release through an increase in SR membrane permeability.Abbreviations SR sarcoplasmic reticulum - HEPES N-2-hydroxy-ethylpiperazine-N1-2-ethanesulphonic acid - EGTA ethylene glycol bis (-aminoethyl ether)-N,N,N1,-N1-tetraacetic acid - CICR Ca2+-induced Ca2+ release - MOPS morpholinopropane sulphonic acid - RR Ruthenium Red  相似文献   

7.
Thapsigargin has been reported to inhibit ATP-dependent Ca2+ uptake by isolated sarcoplasmic reticulum (SR) vesicles of vertebrate skeletal muscle fibres at nanomolar concentrations. There have been no reports confirming this effect in skinned muscle fibre preparations. We have examined the ability of thapsigargin to inhibit the uptake of Ca2+ by the SR in mechanically skinned fibres of frog iliofibularis muscles, using the size of the caffeine-induced contracture to assess the Ca2+ content of the SR. The SR was first depleted of Ca2+ and then reloaded for 1 min at pCa 6.2 in the presence and absence of thapsigargin. When 5 min were allowed for diffusion, a thapsigargin concentration of at least 131 M was required to inhibit Ca2+ loading by 50%. In contrast, another SR Ca2+ uptake inhibitor, cyclopiazonic acid, was more effective, producing 50% inhibition at 7.0 M and total inhibition at 50 M. When cyclopiazonic acid (100 M) was applied after, rather than during, Ca2+ loading, the caffeine-induced contracture was not changed. Thapsigargin (300 M), on the other hand, caused some reduction in the peak amplitude of the caffeine-induced contracture when applied after Ca2+ loading. The poor effectiveness of thapsigargin in the skinned fibres, compared with in SR vesicles, is attributed to its slow diffusion into the skinned fibres, perhaps as a result of binding to myofibrillar components.  相似文献   

8.
The essential conditions for the Ca2+ releasing action of caffeine from isolated sarcoplasmic reticulum (SR) of rabbits were evaluated by an investigation into the effects of Ca2+, Mg2+, MgATP2–, and ATP concentration, ionic strength, and degree of loading. The heavy fraction (4,500×g) of the reticulum was used. Except for the study on degree of loading, 0.2 mg protein·ml–1 SR was loaded actively with 0.02 mM45CaCl2, resulting in >90 nmol·mg protein–1 at steady state, and then the effects of various parameters with or without (control) caffeine were tested.It was found that (1) caffeine induces a transient, dosedependent release of Ca2+, (2) the absolute amount of Ca2+ released by caffeine increases with the Ca2+ load of the SR, (3) increasing the ionic strength () from 0.09 to 0.3 lowers the threshold concentration of caffeine, (4) the SR is refractory to a repeated challenge by a caffeine concentration causing maximal effect, (5) caffeine-induced Ca2+ release increases with increasing (a) external Ca2+ concentrations up to 5 M total Ca2+ (or 3 M free Ca2+) and (b) free ATP concentrations up to 0.45 mM, and (6) caffeine-induced Ca2+ release is not affected by changes of either the Mg2+ or the MgATP2– concentration.  相似文献   

9.
This study was performed to compare skinned fibers from rabbit adductor magnus (AM) and soleus (SL) muscles with regard to the influence of caffeine, Ca2+ and Mg2+ on the depressive effects of ryanodine (RYA) on the caffeine-induced tension transients. Single skinned fibers were immersed in solution: to load Ca2+ into, and release Ca2+ from the SR (a load-release cycle). Three cycles were sequentially performed in each skinned fiber: (1) a control (no RYA) (2) a conditioning period in which activation was car ried out in the presence of ryanodine plus various con centrations of the modulators, i.e. caffeine, Ca2+ or Mg2+, and (3) a test (no RYA) which monitored the release activity retained after the conditioning cycle. The depressive effect of RYA was found to be a function of [ryanodine], [caffeine], or [Ca2+], and an inverse function of [Mg2+], where [caffeine] denotes concentration. The half-maximal effects of RYA in AM (5 M RYA) and SL (10 M RYA), respectively, occurred at a pCa50 of 5.32 versus 5.43 without caffeine, or pCa50 of 7.24 versus 6.88 and pMg50 of 3.29 versus 3.61 with 25 mM caffeine, at a [caffeine] of 4.96 versus 7.29 mM, and at a [ryanodine] of 31.0 versus 101.6 M. Thus, the RYA depression in skinned muscle fibers is modulated by caffeine, Ca2+, and Mg2+ in both muscle types, and AM is at least two- to fourfold more sensitive than SL.  相似文献   

10.
Ryanodine causes depression of the caffeine-induced tension transient (ryanodine depression) in skinned muscle fibers, because it blocks the sarcoplasmic reticulum (SR) Ca2+-release channels [Su, J. Y. (1988) Pflügers Arch 411:132–136, 371–377; (1992) Pflügers Arch 421:1–6]. This study was performed to examine the sensitivity of SR Ca2+-release channels to ryanodine in fetal compared to adult myocardium and to investigate the influence of Ca2+, caffeine, and Mg2+ on ryanodine depression in skinned fibers. Ryanodine (0.3 nM–1 M) caused a dose-dependent depression in skinned myocardial fibers of the rat, and the fetal fibers (IC5074 nM) were 26-fold less sensitive than those of the adult (IC502.9 nM). The depression induced by 0.1 M or 1 M ryanodine was a function of [caffeine], or [Ca2+] (pCa<6.0), which was potentiated by caffeine, and an inverse function of [Mg2+]. At pCa>8.0 plus 25 mM caffeine, a 20% ryanodine depression was observed in both the fetal and adult fibers, indicating independence from Ca2+. Ryanodine depression in skinned fibers of the fetus was less affected than that seen in the adult by pCai, [caffeine]i, or 25 mM caffeine plus pCai or plus pMgi (IC50pCa 4.5 versus 5.1; caffeine 12.7 mM versus 2 mM; pCa 6.7 versus 7.3; and pMg 3.9 versus 3.3 respectively). The results show that the SR Ca2+-release channel in both fetal and adult myocardium is modulated by Ca2+, caffeine, and Mg2+. It is concluded that less ryanodine depression seen in the skinned fibers of the fetus, indicating a relatively insensitive SR Ca2+-release channel, could contribute to the resistance of intact myocardium to ryanodine.  相似文献   

11.
The ability of myofilament space Ca2+ to modulate Ca2+ release from the sarcoplasmic reticulum (SR) of skeletal muscle was investigated. Single fibers of the frog Rana pipiens belindieri were manually skinned (sarcolemma removed). Following a standard load and pre-incubation in varying myoplasmic Ca2+ concentrations, SR Ca2+ release was initiated by caffeine. Ca2+ release rates were calculated from the changes in absorbance of a Ca2+ sensitive dye, antipyrylazo III. An apparent dissociation constant (K d) for dye-Ca2+ binding of 8000 M2 was determined by comparing the buffering action of the dye with that of ethylenebis(oxonitrilo)tetraacetate (EGTA) using the contractile proteins of the skinned fiber as a measure of free Ca2+. This value for K d was used in the calculation of Ca2+ release rates. As the myoplasmic space Ca2+ was increased from pCa 7.4, Ca2+ release rates declined sharply such that at pCa 6.9 the calculated release rate was 72±3% (mean ± SEM) of control (pCa 8.4). Further increases in myoplasmic Ca2+ from pCa 6.9 to pCa 6.1 did not result in a further decline in release rate. The effect of a decreased driving force on Ca2+ ions was investigated to determine whether it could account for the change in release rates observed. At pCa 6.9, where the greatest degree of inactivation occurred, the measured effects of a change in driving force could account for at most 40% of the observed inactivation. Varying concentrations of Ba2+ and Sr2+ in the myofilament space had no inactivating effect on the SR Ca2+ release rates. The ability of myofilament Ca2+ to inhibit SR Ca2+ release at concentrations normally encountered during muscle activation suggests a role for released Ca2+ as a modulator of the SR Ca2+ channel.  相似文献   

12.
The goal of this study was to characterize the interrelationship between sarcomere length and interfilament spacing in the control of Ca2+ sensitivity in skinned rabbit psoas muscle fibers. Measurements were made at sarcomere lengths 2.0, 2.7 and 3.4 m. At 2.7 m the fiber width was reduced by 17% relative to that at 2.0 m and the pCa50 for force development was increased by 0.3 pCa units. In the presence of 5% Dextran T-500 the fiber width at sarcomere length 2.0 m was also decreased by 17% and the Ca2+ sensitivity was increased to the same value as at 2.7 m. In contrast, at sarcomere length 2.7 m the addition of as much as 10% Dextran T-500 had no effect on Ca2+ sensitivity. At sarcomere length 3.4 m there was an additional 7% compression and the Ca2+ sensitivity was increased slightly (0.1 pCa units) relative to that at 2.7 m. However at 3.4 m the addition of 5% Dextran T-500 caused the Ca2+ sensitivity to decrease to the level seen at 2.0 m. Given that the skinning process causes a swelling of the filament lattice it is evident that the relationship between sarcomere length and Ca2+ sensitivity observed in skinned fibers may not always be applicable to intact fibers. These data are consistent with measurements of Ca2+ in intact fibers which indicate that there might be a decline in Ca2+ sensitivity at long sarcomere lengths.  相似文献   

13.
To study the essential features of acetylcholine (ACh)-and caffeine-sensitive cellular Ca2+ storage sites in single vascular smooth muscle cells of the porcine coronary artery, the effects of ryanodine on both ACh- and caffeine-induced Ca2+ mobilization were investigated by measuring intracellular Ca2+ concentration ([Ca2+]i) using Fura 2 in Ca2+-containing or Ca2+-free solution. The resting [Ca2+]i of the cells was 122 nM in normal physiological solution and no spontaneous activity was observed. In a solution containing 2.6 mM Ca2+, 10 M ACh or 128 mM K+ produced a phasic, followed by a tonic, increase in [Ca2+]i but 20 mM caffeine produced only a phasic increase. In Ca2+-free solution containing 0.5 mM ethylenebis(oxonitrilo)tetraacetate (EGTA), the resting [Ca2+]i rapidly decreased to 102 nM within 5 min, and 10 M ACh or 20 mM caffeine (but not 128 mM K+) transiently increased [Ca2+]i. Ryanodine (50 M) greatly inhibited the phasic increase in [Ca2+]i induced by 10 M ACh or 5 mM caffeine and increased the time to peak and to the half decay after the peak in the presence or absence of extracellular Ca2+. By contrast, ryanodine (50 M) enhanced the tonic increase in [Ca2+]i induced by 128 mM K+ and also by 10 M ACh in Ca2+-containing solution. In Ca2+-free solution containing 0.5 mM EGTA, ACh (10 M) failed to increase [Ca2+]i following application of 20 mM caffeine. The level of [Ca2+]i induced by 20 mM caffeine was greatly reduced, but not abolished, following application of 10 M ACh in Ca2+-free solution. These results suggest that both ACh and caffeine release Ca2+ from the ryanodine-sensitive sarcoplasmic reticulum (SR) in smooth muscle cells of the porcine coronary artery. The finding that ryanodine significantly increased the resting [Ca2+]i and inhibited the rate of decline of [Ca2+]i following wasthout of high K+ or ACh in Ca2+-containing solution suggests that SR may negatively regulate the resting [Ca2+]i in smooth muscle cells of the porcine coronary artery.  相似文献   

14.
Effects of tetraalkylammonium ions, having tetraalkyl chains of increasing length from ethyl to octyl, on inositol-trisphosphate (InsP 3)-induced Ca2+ release and contractile mechanics were examined in guinea-pig skinned ileal smooth muscle longitudinal strips. Although tetrahexylammonium ions (THexA) appeared to be the most potent inhibitor of Ca2+ release among the tetraalkylammonium ions examined, an additional and more prominent effect was found, i.e., the contraction induced by Ca2+ release showed a large sustained component in the presence of THexA. Potentiation of the contraction by THexA (above 30 M) was also observed in skinned fibers in which the sarcoplasmic reticulum function was destroyed by treatment with A23187. The potentiating effect of THexA was the most potent by far among the tetraalkylammonium ions examined and was elicited by Ca2+-dependent and GTP-binding-protein-independent mechanisms. The potentiation was not due to activation of myosin light-chain kinase. The selective inhibitors of myosin light-chain kinase, protein kinase C and calmodulin reduced THexA-induced potentiation of contraction only at concentrations above 30 M, at which non-specific effects are likely. Furthermore, relaxation induced by changing pCa from 4.5 to 8.5 was not affected by 1 mM THexA, suggesting that the potentiating effect is not mainly due to inhibition of myosin light-chain phosphatase. In conclusion, THexA sensitizes guinea-pig skinned ileal smooth muscle to Ca2+ in a structure-selective manner. This sensitization appears not to be mediated mainly by a GTP-binding protein, by activation of myosin light-chain kinase or protein kinase C, by enhanced Ca2+ binding to calmodulin, or by inhibition of myosin light-chain phosphatase.  相似文献   

15.
Rise in free cytosolic calcium concentrations [Ca2+]i in response to bradykinin and guanosine 5-O-thiotriphosphate (GTPS) was related to the action of phospholipase A2 (arachidonic acid release). At 900 M extracellular CaCl2, bradykinin induced a typical Ca2+ movement consisting of an initial [Ca2+]i peak at approximately 400 nM followed by a sustained increase in the steady-state cytosolic Ca2+ level at approximately 290 nM. As the extracellular CaCl2 concentration was reduced to 100 M, the bradykinin induced initial spike was reduced followed by only a marginal increase in steady-state cytosolic Ca2+ levels. Treatment of endothelial cells with saponin (0.002% w/w) did not increase [Ca2+]i and saponin treated cells exhibited a very similar pattern of Ca2+ mobilization in response to bradykinin. However, with saponin treatment, GTPS (100 M) increased [Ca2+]i at an almost identical tracing exhibited with 50 nM bradykinin stimulation (in either the presence or absence of 0.002% saponin). No additive increase in [Ca2+]i was observed in cells stimulated with both 100 M GTPS and 50 nM bradykinin or in bradykinin stimulated cells subsequently exposed to GTPS. Pertussis toxin (PTX) did not affect the bradykinin induced Ca2+ mobilization. However, as we showed previously [1], PTX inhibited bradykinin stimulated arachidonic acid release. These results indicate transduction of the bradykinin signal by G-protein for both phospholipase A2 (PLA2) activation and Ca2+ mobilization but likely by different G subunits, a PTX sensitive and an insensitive subunit. Furthermore, the bradykinin and GTPS stimulated release of arachidonic acid appears to be only partially dependent on [Ca2+]i. For example, 10 M ionomycin, a calcium ionophore, did not release arachidonic acid at extracellular CaCl2 concentrations below 300 M while GTPS stimulated a greater release of arachidonic acid at 300 and 100 M CaCl2 than at 900 M CaCl2. However, at 100 M CaCl2, ionomycin increased [Ca2+]i to the same level as bradykinin or GTPS stimulated cells incubated in 900 M CaCl2.In previously published experiments [1], we showed that phorbol 12-myristate 13-acetate (TPA) augments bradykinin activated arachidonic acid release in endothelial cells. In the absence of bradykinin, TPA had little effect on arachidonic acid release by endothelial cells. However, in the saponin treated cells, TPA alone (in the absence of bradykinin) caused a marked release of arachidonic acid. The bradykinin and TPA activated arachidonic acid releases were additive. The TPA activated release did not require an increase in [Ca2+]i and occurred in the absence of any added extracellular CaCl2. TPA did not induce an increase in [Ca2+]i in either saponin treated or untreated endothelial cells. This TPA stimulated release of arachidonic acid was totally down-regulated by an 18 h preincubation of the cells in 500 nM TPA but was not inhibited by protein kinase C inhibitor H7.  相似文献   

16.
We used isolated ventricular myocytes to study45Ca2+ transport in the presence of three concentrations of ouabain (10 nM, 1 M, and 100 M) in Tyrode solution containing 1 mM CaCl2. The cells were quiescent and during45Ca2+ uptake and45Ca2+ efflux experiments 10 nM ouabain decreased Ca2+ content, 1 M, didn't change it appreciably, and 100 M increased it significantly. Qualitatively, the same results were obtained at 22°C and 35°C. Ouabain did not significantly affect the electrical activity of isolated, electrically stimulated myocytes, but it increased the amplitude of shortenings of these myocytes in a dose-dependent manner. Thus, the positive inotropic effect of ouabain at therapeutic doses (10 nM) occurs in spite of decreased Ca2+ content, while at high toxic doses the positive inotropic effect is accompanied by an increment in Ca2+ content. These data support the hypothesis that the mechanisms of positive inotropy of ouabain are different at therapeutic and toxic concentrations of this drug. Finally, our study demonstrates that the effects of low doses of ouabain are independent of the release of endogenous catecholamines.  相似文献   

17.
The mechanism(s) involved in the halothane-induced increase in skeletal muscle contraction was studied using functionally skinned soleus muscle fibers from rabbits: For the tension study, single functionally skinned fibers were individually mounted on two pairs of forceps, with one end attached to a photodiode tension transducer. Ca2+-activated tension development of the contractile proteins, and Ca2+ uptake and release from the sarcoplasmic reticulum (SR) using caffeine-induced tension transients were studied. To measure the amount of calcium, skinned fibers at 0.1 g/ml were used and 0.075 Ci45Ca/ml was spiked in the solution 3 (pCa 6.5 and 1 mM [EGTA]) which promoted rapid loading of Ca2+. Halothane (1–3%) did not change the [Ca2+]-tension relationship; 2 and 3% halothane reduced the maximum Ca2+-activated tension by 6–7%. Halothane (1–3%) added to the solution 3, reduced45Ca uptake by 3, 22 and 23%; however, the subsequent caffeine-induced tension transient and45Ca release were increased by 10–40%. During the release phase only halothane increased both caffeine-induced tension transient and45Ca release by 20–60%. The effects of halothane on the tension transient and on the45Ca release were comparable. There was no dose-response relationship to the effects of halothane on the above parameters. It is concluded that halothane affects the SR by increasing its membrane permeability to Ca2+, resulting in an increase in myoplasmic [Ca2+] and thus in the twitch tension in skeletal muscle.  相似文献   

18.
Increases in solution pH from 6.5 to 7.0 to 7.5 at 0.1 M free Ca2+ concentration had no effect on the isometric tension of barnacle myofibrillar bundles in relaxing solutions containing 0.1–0.16 mM BAPTA. Decreases in pH in the same range were also without effect. Under the same conditions CO2-induced Ca2+ release from the SR could be readily obtained by replacing the Cl-containing relaxing solution with one containing HCO 3 and 100% CO2 at the same pH. At a higher free Ca2+ of 2.5 M, there was a contraction on increasing the pH of the Cl-containing solution from 7.0 to 7.5. This reponse could be abolished by 1 mM procaine suggesting that it was due to Ca2+ release from the SR. The protonophores monensin, gramicidin, CCCP and FCCP at concentrations of 10–100 M had no effect on resting tension at either free Ca2+ concentration and did not inhibit the response to 100% CO2. It is concluded that dissipation of a possible pH gradient across the SR membrane by protonophores does not release Ca2+ from the SR of barnacle muscle. Since both CO2 (by possibly lowering SR pH) and an increase in solution pH can release Ca2+ at 2.5 M free Ca2+, the existence of a Ca2+ release channel which is opened by a change in the trans-SR pH gradient cannot be discounted. In a separate series of experiments, the CO2-releasable Ca2+ store was first depleted by exposure of bundles to 100% CO2 in the presence of 1 mM BAPTA for 10 min and then partially reloaded by 15 s exposure to a free Ca2+ of 0.6 M buffered by 2 mM EGTA (total) in the Cl relaxing solution. The same level of reloading was obtained when the loading solution contained HCO 3 –/100% CO2; this result tends to discount inhibition of the Ca2+ uptake pump as a possible mechanism for CO2-induced Ca2+ release. Loading at 2.6 M free Ca2+ for 1 min resulted in almost complete recovery of the CO2 response to its value before depletion of the store.  相似文献   

19.
The increased rate of Ca2+ uptake and ATPase activity in isolated cardiac sarcoplasmic reticulum (SR) by adenosine 3,5-monophosphate (cAMP) has been shown to be activated by a cAMP-dependent protein kinase (cAMP kinase). Functionally skinned myocardial fiber preparations were used to study the mechanisms of cAMP action on the SR at the same time that tension was monitored. cAMP effects were studied on Ca2+-activated tension of the contractile proteins, and on Ca2+ uptake and release from the SR using caffeine-induced tension transients. Neither cyclic AMP (0.1–5 M) nor the catalytic subunit of cAMP kinase (0.1–1 M) (PK-C) significantly changed either the maximal or the submaximal Ca2+-activated tension. The areas of the tension transients were unchanged when cAMP was present in the releasing solution (release phase), and were significantly increased up to a mean of about 80% when cAMP or PK-C was present in the Ca2+ loading solutions (uptake phase). The increased tension transient was blocked by the heat-stable inhibitor of cAMP kinase. We conclude that cAMP-induced increases in Ca2+ uptake by the SR could play an important role in the positive inotropic effect. cAMP kinase could thus play a crucial role in the regulation of myocardial contractility.  相似文献   

20.
This study investigated the effects of the protein kinase A (PKA) inhibitor, H-89, in mechanically-skinned muscle fibres and intact muscle fibres, in order to determine whether PKA phosphorylation is essential for normal excitation–contraction (E–C) coupling. In skinned EDL fibres of the rat, force responses to depolarization (by ion substitution) were inhibited only slightly by 10M H-89, a concentration more than sufficient to fully inhibit PKA. Staurosporine (1 M), a potent non-specific kinase inhibitor, also had little if any effect on depolarization-induced responses. At 1–2 M, H-89 significantly slowed the repriming rate in rat skinned fibres, most likely due to it deleteriously affecting the T-system potential. With 100 M H-89, the force response to depolarization by ion substitution was completely abolished. This inhibitory effect was reversed by washout of H-89 and was not due to block of the Ca2+ release channel in the sarcoplasmic reticulum (SR). In intact single fibres of the flexor digitorum longus (FDB) muscle of the mouse, 1–3 M H-89 had no noticeable effect on action-potential-mediated Ca2+ transients. Higher concentrations (4–10 M) caused Ca2+ transient failure in fibres stimulated at 20 Hz in a manner indicative of action-potential failure. At 10–100 M, H-89 also inhibited net Ca2+ uptake by the SR and affected the Ca2+-sensitivity of the contractile apparatus in rat skinned fibres. All such effects were proportionately greater in toad muscle fibres. These results do not support the hypothesis that phosphorylation is essential for the Ca2+ release channel to open in response to voltage-sensor activation in skeletal muscle fibres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号