首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The continuing quest for cost-effective and complex shaped aluminum castings with fewer defects for applications in the automotive industries has aroused the interest in rheological high pressure die casting (R-HPDC). A new machine, forced convection mixing (FCM) device, based on the mechanical stirring and convection mixing theory for the preparation of semisolid slurry in convenience and functionality was proposed to produce the automotive shock absorber part by R-HPDC process. The effect of barrel temperature and rotational speed of the device on the grain size and morphology of semi-solid slurry were extensively studied. In addition, flow behavior and temperature field of the melt in the FCM process was investigated combining computational fluid dynamics simulation. The results indicate that the microstructure and pore defects at different locations of R-HPDC casting have been greatly improved. The vigorous fluid convection in FCM process has changed the temperature field and composition distribution of conventional solidification. Appropriately increasing the rotational speed can lead to a uniform temperature filed sooner. The lower barrel temperature leads to a larger uniform degree of supercooling of the melt that benefits the promotion of nucleation rate. Both of them contribute to the decrease of the grain size and the roundness of grain morphology.  相似文献   

2.
High-strength aluminum alloy (mainly refers to the 7xxx series) is the optimum material for lightweight military equipment. However, this type of aluminum alloy is a wrought aluminum alloy. If it is directly formed by traditional casting methods, there will inevitably be problems such as coarseness, unevenness, looseness, and hot cracking in the structure, which will greatly affect the final performance of the part. Based on the internal cooling with annular electromagnetic stirring (IC-AEMS) method, a new technology of rheological die forging is developed in this paper, and the scale-reduced parts of a brake hub of Al-6.54Zn-2.40Cu-2.35Mg-0.10Zr aluminum alloy were prepared. The influence of IC-AEMS and the addition of rare element Sc on the structure and mechanical properties of the parts was studied. An optical microscope and scanning electron microscope (SEM) were used to observe the microstructure evolution, energy dispersive spectroscopy (EDS) was used to analyze the phase distribution and composition, and the mechanical properties of the parts were tested by uniaxial tensile tests. The results show that the addition of Sc element can effectively refine the grains and improve the strength and elongation of the material; the application of IC-AEMS improves the cooling rate of the melt, increases the effective nucleation rate, and the grains are further refined. Through process optimization, scale-reduced parts of a brake hub with good formability and mechanical properties can be obtained, the ultimate tensile strength is 597.2 ± 3.1 MPa, the yield strength is 517.8 ± 4.3 MPa, and the elongation is 13.7 ± 1.3%.  相似文献   

3.
The formation mechanism of spherical grains during the strain-induced melt activation is investigated by in situ observation of the cold rotary swaged materials during heat treatment. The microstructure of the cold rotary swaged material changed from original dendritic structure to spherical grains after heating semi-solid state, whereas the as-received alloy without deformation exhibited non-spherical grains. These results show that static recrystallization, preferential melting of grain boundaries, and small grains cause the deformed grains to form the initial spherical grain structure during the temperature rising to semi-solid state; besides, the Zener pinning effect of second-phase particle and the heterogeneous nucleation of solidification also play negative roles in spherical grain growth up freely during the cooling process.  相似文献   

4.
The melt temperature of aluminum alloys plays a significant role in determining the microstructure characteristic during continuous rheo-extrusion. However, it is difficult to measure the actual melt temperature in the roll-shoe gap. In this work, based on the basic theory of heat transfer, a calculation model for heat transfer coefficient of cooling water/roll interface and melt/roll interface is established. In addition, the relationship between the temperature at the melt/roll interface and the velocity of cooling water is investigated. Combined with the CALPHAD calculation, the melt temperature during solidification in the continuous rheo-extrusion process is calculated. Using this model, the cooling rate of an Al–6Mg (wt.%) alloy melt prepared by continuous rheo-extrusion is estimated to be 10.3 K/s. This model used to determine the melt parameters during solidification provides a reference for optimizing the production process of continuous rheo-extrusion technology.  相似文献   

5.
This article deals with the theoretical issues of the formation of a melt pool during the process of direct laser deposition. The shape and size of the pool depends on many parameters, such as the speed and power of the process, the optical and physical properties of the material, and the powder consumption. On the other hand, the influence of the physical processes occurring in the material on one another is significant: for instance, the heating of the powder and the substrate by laser radiation, or the formation of the free surface of the melt, taking into account the Marangoni effect. This paper proposes a model for determining the size of the melt bath, developed in a one-dimensional approximation of the boundary layer flow. The dimensions and profile of the surface and bottom of the melt pool are obtained by solving the problem of convective heat transfer. The influence of the residual temperature from the previous track, as well as the heat from the heated powder of the gas–powder jet, taking into account its spatial distribution, is considered. The simulation of the size and shape of the melt pool, as well as its free surface profile for different alloys, is performed with 316 L steel, Inconel 718 nickel alloy, and VT6 titanium alloy  相似文献   

6.
Ultrasonic treatment was applied to an A356 aluminum melt with different modifiers, and the effects of ultrasonic treatment on the structure and properties of the A356 alloy were studied. The results showed that α-Al was effectively refined with different ultrasonic modification treatments. In particular, ultrasonic treatment showed the most obvious refinement with macroscopic grains of unmodified alloy and optimized the refinement of secondary dendrite arm spacings in the Sr/Ce synergistic alloys. The eutectic Si of the unmodified A356 alloy had no obvious change after the ultrasonic treatment, but the branch diameter of the eutectic Si reduced in the Sr and Sr/Ce modification alloys after the ultrasonic treatment. The ultrasonic treatment significantly improved the ultimate tensile strength and elongation of the as-cast A356 alloy with the unmodified material, which was due to refinement of the α-Al grains by the ultrasonic treatment. After the T6 heat treatment, the ultimate tensile strength values of the alloys showed no obvious change due to the ultrasonic treatment, but the plasticity of the alloy was significantly improved. Mg2Si precipitation was the dominant strengthening mechanism during the T6 heat treatment, while the plasticity was determined by the size and distribution of the eutectic Si. Acoustic cavitation caused by the ultrasound-activated impurities and the induced heterogeneous nucleation and supercooled nucleation in the groove melt was the main cause of the α-Al refinement, the eutectic Si modification and the improvement in the mechanical properties.  相似文献   

7.
Aluminum alloys have been widely used in various engineering applications due to their excellent physical properties such as low density, high strength and good cutting capacity. In this paper, the semi-solid thixotropic extrusion forming process is proposed to produce aluminum alloy 6063 shells for mobile phones. The effects of the operating parameters on the equivalent stress distribution, velocity field, temperature field, and the load of the top mould were investigated through numerical simulations. Optimal parameters were identified from the simulation results. The experiment was then conducted at these optimal parameters. The macromorphology and microstructure results of the mobile phone shells produced from the experiment are presented and discussed. It was found that the optimal process parameters for preparing aluminum alloy 6063 shell by the semi-solid thixotropic extrusion process were a billet temperature of 630 °C, mould temperature of 400 °C, and top mould speed of 10 mm/s. It was found that the mobile phone shells fabricated under the optimal operating conditions were fully filled with a clear outline and a smooth surface. The solid grains in the microstructure were small, uniform and nearly spherical. The average grain size of the microstructure for the product was obtained as 76.92 μm and the average shape factor was found as 0.76.  相似文献   

8.
Electromagnetic stirring (EMS) has become one of the most important branches of the electromagnetic processing of materials. However, a deep understanding of the influence of the EMS on the thermo-fluid flow of the aluminium alloy melt, and consequently the refinement of the microstructure is still not available. This paper investigated the influence of the operating parameters of EMS on the magnetohydrodynamics, temperature field, flow field, and the vortex-shaped structure of the melt as well as the microstructure of the aluminium alloy 2A50 billet by numerical simulation and experiments. The operating parameters were categorised into three groups representing high, medium, and low levels of Lorentz forces generated by EMS. The numerical simulation matched well with the experimental result. It was found that a high level of EMS can improve the uniformity of the temperature and flow fields. The maximum speed was observed at the radius of around 25 mm under all EMS levels. Both the depth and diameter of the vortex-shaped structure generated increased with the enhancement in the EMS level. The average grain size of the edge sample of the billet was reduced by 48.3% while the average shape factor was increased by 51.0% under the medium-level EMS.  相似文献   

9.
Deformation and heat treatment are important means to strengthen aluminum alloys. However, the influence mechanism of pre-strain on aging precipitation kinetics and its effect on mechanical properties are still not clear. In this work, uniaxial isothermal tensile tests with different strains and artificial aging treatments for Al-Zn-Mg-Cu alloys have been carried out. Then, a model describing the precipitates kinetic behavior has been developed to investigate the effect of thermal pre-strain on subsequent aging precipitation kinetics and peak aging microhardness based on the microstructure characterization by TEM, SAXS and XRD tests. In addition, the role of dislocations on the aging precipitation kinetics is also explored. The experimental results show that the peak aging microhardness of the Al-Zn-Mg-Cu alloy reveals a tendency to decrease and increase and then the peak aging time firstly decreases and then keeps almost constant with the increase in the strain. The calculations demonstrate that the precipitate average size almost remains unchanged, while the precipitate volume fraction decreases and then increases with the increase in strain, which is consistent with the change in peak aging microhardness. It also indicates that dislocations can promote precipitate nucleation and growth, while the actual effect depends on the dislocation density, which is closely dependent on the pre-deformation condition, especially for the precipitate nucleation. In particular, when the dislocation density after thermal pre-deformation is not enough, it will slightly inhibit precipitate nucleation but promote precipitate growth, which could shorten the peak aging time, with the peak aging strength being guaranteed.  相似文献   

10.
The mechanical properties of selective laser melting (SLM) components are fundamentally dependent on their microstructure. Accordingly, the present study proposes an integrated simulation framework consisting of a three-dimensional (3D) finite element model and a cellular automaton model for predicting the epitaxial grain growth mode in the single-track SLM processing of IN718. The laser beam scattering effect, melt surface evolution, powder volume shrinkage, bulk heterogeneous nucleation, epitaxial growth, and initial microstructure of the substrate are considered. The simulation results show that during single-track SLM processing, coarse epitaxial grains are formed at the melt–substrate interface, while fine grains grow at the melt–powder interface with a density determined by the intensity of the heat input. During the solidification stage, the epitaxial grains and bulk nucleated grains grow toward the top surface of the melt pool along the temperature gradient vectors. The rate of the epitaxial grain growth varies as a function of the orientation and size of the partially melted grains at the melt–substrate boundary, the melt pool size, and the temperature gradient. This is observed that by increasing heat input from 250 J/m to 500 J/m, the average grain size increases by ~20%. In addition, the average grain size reduces by 17% when the initial substrate grain size decreases by 50%. In general, the results show that the microstructure of the processed IN718 alloy can be controlled by adjusting the heat input, preheating conditions, and initial substrate grain size.  相似文献   

11.
In this review, we present an overview of significant developments in the field of in situ and operando (ISO) X-ray imaging of solidification processes. The objective of this review is to emphasize the key challenges in developing and performing in situ X-ray imaging of solidification processes, as well as to highlight important contributions that have significantly advanced the understanding of various mechanisms pertaining to microstructural evolution, defects, and semi-solid deformation of metallic alloy systems. Likewise, some of the process modifications such as electromagnetic and ultra-sound melt treatments have also been described. Finally, a discussion on the recent breakthroughs in the emerging technology of additive manufacturing, and the challenges thereof, are presented.  相似文献   

12.
In the selective laser melting process, metal powder melted by the laser heat source generates large instantaneous energy, resulting in transient high temperature and complex stress distribution. Different temperature gradients and anisotropy finally determine the microstructure after melting and affect the build quality and mechanical properties as a result. It is important to monitor and investigate the temperature and stress distribution evolution. Due to the difficulties in online monitoring, finite element methods (FEM) are used to simulate and predict the building process in real time. In this paper, a thermo-mechanical coupled FEM model is developed to predict the thermal behaviors of the melt pool by using Gaussian moving heat source. The model could simulate the shapes of the melt pool, distributions of temperature and stress under different process parameters through FEM. The influences of scanning speed, laser power, and spot diameter on the distribution of the melt pool temperature and stress are investigated in the SLM process of Al6063, which is widely applied in aerospace, transportation, construction and other fields due to its good corrosion resistance, sufficient strength and excellent process performance. Based on transient analysis, the relationships are identified among these process parameters and the melt pool morphology, distribution of temperature and thermal stress. It is shown that the maximum temperature at the center point of the scanning tracks will gradually increase with the increment of laser power under the effect of thermal accumulation and heat conduction, as the preceded scanning will preheat the subsequent scanning tracks. It is recommended that the parameters with optimized laser power (P = 175–200 W), scanning speed (v = 200–300 mm/s) and spot diameter (D = 0.1–0.15 mm) of aluminum alloy powder can produce a high building quality of the SLM parts under the pre-set conditions.  相似文献   

13.
In this study, large-sized Al–Zn–Mg–Cu alloy billets were prepared by direct chill casting imposed with annular electromagnetic stirring and intercooling; a process named uniform direct chill casting. The effects of uniform direct chill casting on grain size and the alloying element distribution of the billets were investigated and compared with those of the normal direct chill casting method. The results show that the microstructures were refined and the homogeneity of the alloying elements distribution was greatly improved by imposing the annular electromagnetic stirring and intercooling. In uniform direct chill casting, explosive nucleation can be triggered, originating from the mold wall and dendrite fragments for grain refinement. The effects of electromagnetic stirring on macrosegregation are discussed with consideration of the centrifugal force that drives the movement of melt from the central part towards the upper-periphery part, which could suppress the macrosegregation of alloying elements. The refined grain can reduce the permeability of the melt in the mushy zone that can restrain macrosegregation.  相似文献   

14.
Internal electromagnetic stirring is an advanced melt treatment method, which can be used in direct chill casting to prepare large-scale Al alloy billets. Intercooling intensity is a primary parameter of internal electromagnetic stirring; its effects on temperature fields and microstructures have been investigated via numerical simulations and industrial experiments, respectively. The simulated results show an increase in the intercooling affected area and a decrease in sump depth with an increase in the intercooling heat transfer coefficient. The heat transfer coefficient should not exceed 500 W/(m2 °C) because the solid fraction of the intercooling end bottom may exceed 50%. The experiment’s results demonstrate that the average grain sizes in the edge, 1/2 radius, and center are 151 ± 13 μm, 159 ± 14 μm, and 149 ± 16 μm, respectively, under a liquid nitrogen flow rate of 160 L/min, which is much finer than that of 80 L/min and more homogeneous than that of 240 L/min. Furthermore, an experimental liquid nitrogen flow rate of 80 L/min, 160 L/min, and 240 L/min approximately correspond to the simulated heat transfer coefficient of 200 W/(m2 °C), 300 W/(m2 °C), and 400 W/(m2 °C), respectively.  相似文献   

15.
A novel bypass coupling variable polarity plasma arc was proposed to achieve the accurate adjusting of heat and mass transfer in the welding and additive manufacturing of aluminum alloy. However, the physical characteristics and decoupled transfer behavior remain unclear, restricting its application and development. A three-dimensional model of the bypass coupling variable polarity plasma arc was built based on Kirchhoff’s law, the main arc and the bypass arc are coupled by an electromagnetic field. The model of current attachment on the tungsten electrode surface is included for simulating different heating processes of the EP and EN phases in the coupling arc. The distribution of temperature field, flow field, and current density of the bypass coupling variable polarity plasma arc was studied by the three-dimensional numerical model. The heat input on the base metal under different current conditions is quantified. To verify the model, the arc voltages are compared and the results in simulation and experiment agree with each other well. The results show that the radius of the bypass coupling arc with or without bypass current action on the base metal is different, and the flow vector of the bypass coupling arc plasma with bypass current is larger than the arc without bypass current. By comparing the heat transfer on the electrodes’ boundary under different current conditions, it is found that increasing the bypass current results in the rise in heat input on the base metal. Therefore, it is concluded that using bypass current is unable to completely decouple the wire melting and the heat input of the base metal. The decoupled degree of heat transfer is one of the important factors for accurate control in the manufacturing process with this coupling arc.  相似文献   

16.
Wire arc additive manufacturing (WAAM) of aluminum-magnesium (Al–Mg) ER5356 alloy deposits is accomplished by cold metal transfer (CMT). During the process, the temperature change of the alloy deposits has a great influence on molding quality, and the microstructure and properties of alloy deposits are also affected by the complex thermal history of the additive manufacturing process. Here, we used an inter-layer cooling process and controlled the heat input process to attempt to reduce the influence of thermal history on alloy deposits during the additive process. The results showed that inter-layer cooling can optimize the molding quality of alloy deposits, but with the disadvantages of a long test time and slow deposition rate. A simple and uniform reduction of heat input makes the molding quality worse, but controlling the heat input by regions can optimize the molding quality of the alloy deposits. The thermophysical properties of Al-Mg alloy deposits were measured, and we found that the specific heat capacity and thermal diffusivity of alloy deposits were not obviously affected by the temperature. The microstructure and morphology of the deposited specimens were observed and analyzed by microscope and electron back-scatter diffraction (EBSD). The process of controlled heat input results in a higher deposition rate, less side-wall roughness, minimum average grain size, and less coarse recrystallization. In addition, different thermal histories lead to different texture types in the inter-layer cooling process. Finally, a controlled heat input process yields the highest average microhardness of the deposited specimen, and the fluctuation range is small. We expect that the process of controlling heat input by model height region will be widely used in the WAAM field.  相似文献   

17.
To determine the Gurson-Tvergaard-Needleman (GTN)damage model parameters of 6061 aluminum alloy after secondary heat treatment, the uniaxial tensile test was carried out on the aluminum alloy circular arc specimen, and the mechanical properties parameters and the load-displacement curve of aluminum alloy tube were obtained. With the help of the finite element reverse method, scanning electron microscope and a orthogonal test method, the GTN damage model parameters (f0, fN, fC, and fF) were calibrated, and their values were 0.004535, 0.04, 0.1, and 0.2135, respectively. Then the shear specimen and notch specimen were designed to verify the damage model, the results show that the obtained GTN damage model parameters can effectively predict the fracture failure of 6061 aluminum alloy after secondary heat treatment during the tensile process.  相似文献   

18.
The internal coupled electromagnetic melt treatment (ICEMT) method is firstly proposed to produce high-quality and large-sized aluminum alloy billets. A three-dimensional model was established to describe the ICEMT process of direct chill casting (DC casting). The effect of ICEMT on the fluid flow patterns and temperature field in the DC casting of ϕ880 mm AA2219 billets is numerically analyzed. Moreover, the mechanisms of the ICEMT process on grain refinement and macrosegregation were discussed. The calculated results indicate that the electromagnetic field appears to be coupled circinate at the cross section of the melt, the fluid flow becomes unstable accompanied by the bias flow, and the temperature profiles are significantly more uniform. An experimental verification was conducted and the results prove that compared with traditional direct chill casting, the microstructures of the AA2219 large-scale billet under the ICEMT process are uniform and fine.  相似文献   

19.
The non-heat-treated, die-cast aluminum alloy samples were prepared meticulously via die-casting technology. The crystal structure, microstructure, and phase composition of the samples were comprehensively studied through electron backscatter diffraction (EBSD), metallographic microscopy, spectrometer, and transmission electron microscopy (TEM). The microhardness and tensile properties of the samples were tested. The die-cast samples were found to have desirable properties by studying the structure and performance of the samples. There were no defects, such as pores, cold partitions, or surface cracks, found. The metallographic structure of the samples was mainly α-Al, and various phases were distributed at the grain boundaries. Before heat treating, α-Al grains were mainly equiaxed with a great number of second phase particles at the grain boundaries. After heat treating, the α-Al grains were massive and coarsened, and the second phase grains were refined and uniformly distributed, compared with those before the heat treating. The EBSD results showed that the grain boundary Si particles were solid solution decomposed after heat treatment. The particles became smaller, and their distribution was more uniform. Transmission electron microscopy found that there were nano-scale Al-Mn, Al-Cu, and Cu phases dispersed in the samples. The average microhardness of the samples before heat treating was 114 HV0.1, while, after the heat treating, the microhardness reached 121 HV0.1. The mechanical features of the samples were tremendous, and the obtained die-cast aluminum alloy had non-heat-treatment performance, which was greater than the ordinary die-cast aluminum alloys with a similar composition. The tensile strength of the aluminum alloys reached up to 310 MPa before heat treatment.  相似文献   

20.
High-strength 7075 aluminum alloy is widely used in the aerospace industry. The forming performance of 7075 aluminum alloy is poor at room temperature. Therefore, hot forming is mainly adopted. Electromagnetic forming is a high-speed forming technology that can significantly improve the forming limit of difficult-to-deform materials. However, there are few studies on electromagnetic hot forming of 7075-T6 aluminum alloy. In this study, the deformation behavior of 7075-T6 aluminum alloy in the temperature range of 25 °C to 400 °C was investigated. As the temperature increased, the sheet forming height first decreased, then increased. When the forming temperature is between 200 °C and 300 °C, η phase coarsening leads to a decrease in stress and hardness of the material. When the forming temperature is between 300 °C and 400 °C, continuous dynamic recrystallization of 7075 aluminum alloy occurs, resulting in grain refinement and an increase in stress and hardness. The results of numerical simulations and experiments all show that the forming height and deformation uniformity of the sheet metal are optimal at 400 °C, compared to 200 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号