首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In primary sensory neocortical areas of mammals, the distribution of sensory receptors is mapped with topographic precision and amplification in proportion to the peripheral receptor density. The visual, somatosensory and auditory cortical maps are established during a critical period in development. Throughout this window in time, the developing cortical maps are vulnerable to deleterious effects of sense organ damage or sensory deprivation. The rodent barrel cortex offers an invaluable model system with which to investigate the mechanisms underlying the formation of topographic maps and their plasticity during development. Five rows of mystacial vibrissa (whisker) follicles on the snout and an array of sinus hairs are represented by layer IV neural modules ('barrels') and thalamocortical axon terminals in the primary somatosensory cortex. Perinatal damage to the whiskers or the sensory nerve innervating them irreversibly alters the structural organization of the barrels. Earlier studies emphasized the role of the sensory periphery in dictating whisker-specific brain maps and patterns. Recent advances in molecular genetics and analyses of genetically altered mice allow new insights into neural pattern formation in the neocortex and the mechanisms underlying critical period plasticity. Here, we review the development and patterning of the barrel cortex and the critical period plasticity.  相似文献   

3.
4.
5.
Neurons in layer V of the murine posteromedial barrel subfield (PMBSF) project to structures at or caudal to the spinal-medullary junction. During postnatal development a reduction occurs in the density of the neurons which form this projection. In principle, three processes might be expected to contribute to this reduction: cell death, tissue growth, and axon pruning. Three different paradigms in which cells of origin of the projection are labeled retrogradely with True Blue, injected into the spinal-medullary junction, taken together with an estimate of the relative growth of layer V, provide separate estimates of the magnitude and rate of reduction consequent to these different processes during the first 3 postnatal weeks. The density of neurons in an index sector of layer V of the PMBSF which contribute to the projection at varied ages is estimated by injections made at a range of ages from postnatal day 1 (P1) to P16, with a survival of 4 days in each instance. Overall reduction in density is 80%. The component due primarily to axon pruning is estimated to be 50% by injections delivered at graded ages from P1 to P16 with survival to P20 in each instance. The component of the reduction attributable to increase in volume is estimated at 30% by a series of injections delivered at P1 with graded survival times from P5 through P20. A reduction due to cell death is not identified. The reduction in density due to tissue growth is essentially linear through the interval P5-P11. At all ages, neuronal somata of origin of the spinal-medullary projection are located within layer V. Subsequent to P15 they are confined to sublayer Vb; at earlier ages somata in Va and Vc also contribute axons to the projection. Although volume increase due to growth of the neuropil reduces the density of the population contributing to the projection equally in all three sublayers, final elimination of all contributions from Va and Vc depends upon axon pruning.  相似文献   

6.
Barrels of the PMBSF of the mouse somatosensory cortex become apparent in Nissl-stained tangential sections simultaneously, on the fourth postnatal day. At this time they are miniatures of those in the adult and are situated in the deepest sublamina of the trilaminar cortical plate. An early barrel appears as a patch of decreased cell density: the prospective hollow of the barrel. Septa become noticeable during the sixth postnatal day. From that period to adulthood, the relative contribution of the PMBSF to the total cortical surface area increases — an increase that goes against one's expectation: the barrel related periphery matures very early and so does the central, lateral region of the cortex. Barrel growth parallel to the pial surface is greater along the major axes than along the minor axes. By using the barrels to identify prospective layer IV in immature cortex, we could determine that layers V and VI attain their adult height during the sixth postnatal day — an age when prospective layers I-IV are only half their adult height. The onset of barrel formation coincides with the moment after which injury to the pertinent somatosensory periphery (the vibrissal papillae) no longer causes profound alterations in barrel morphology.  相似文献   

7.
Synaptic plasticity of horizontally orientated connections between barrels, in the barrel cortex of adult mice, was studied in slice preparations cut across rows of barrels. Field potentials were evoked in the middle of one barrel column (in layer IV or V) and recorded in the neighbouring barrel (in layer IV and V). In layer IV, long-term depression (LTD) by 26.5 +/- 5% was first induced by a low-frequency stimulation (2 Hz) applied for 10 min. After 30 min, theta-burst stimulation was delivered to previously depressed connections, resulting in long-term potentiation (LTP) by 28.8 +/- 11.8%. When theta-burst stimulation was delivered without an earlier low-frequency stimulation, no LTP was induced. Similar results were obtained in layer V connections (LTD: 40.6 +/- 12.5%; LTP: 26.9 +/- 12.5%). In layer IV, the application of 100 micro m d,l-2-amino-5-phosphonovaleric acid (APV), an antagonist of NMDA receptors, blocked the induction of both LTD and LTP. These experiments show that a potential for synaptic plasticity is retained in granular and infragranular layers of adult mice.  相似文献   

8.
Cytochrome oxidase staining in the rat SmI barrel cortex   总被引:12,自引:0,他引:12  
Patterns of cytochrome oxidase (CO) activity were examined histochemically in the rat SmI cortex. Discrete regions of high enzymatic activity were centered upon the granule cell aggregates (barrels) in layer IV. Those barrels which correspond to the mystacial vibrissae and make up the posteromedial barrel subfield (PMBSF) were especially interesting in that CO staining revealed distinct metabolic subdivisions which do not have an easily demonstrable cytoarchitectonic counterpart. By analogy with the barrels in mouse PMBSF and with the cytoarchitectonically distinct barrels representing the smaller sinus hairs in the rat we propose that regions of high CO activity denote the "hollow" of the rat PMBSF barrels. In accord with previous physiological studies demonstrating a vertical organization in the rodent barrel cortex, we also noted columns of intense CO activity extending from layer VI through sublamina Vb. The centers of these columns coincided with the centers of the barrels in layer IV. In tangential sections through the infragranular laminae the segmentation of CO-positive zones was less distinct than in layer IV and appeared as bands of heightened activity oriented like the five rows of layer IV barrels. Highly reactive somata and dendrites were observed in both the granular and infragranular CO barrels indicating that some of the increased activity of these regions reflects oxidative metabolism of cortical neurons per se. These patterns of metabolic activity underscore the vertical and horizontal organization of the SmI vibrissa cortex and suggest that neurons located within the central core of a column have functional properties distinct from those located in zones where individual columns interface.  相似文献   

9.
10.
11.
Neurons are highly polarized cells with axons that innervate distant targets.The distance of subcellular compartments from the nucleus requires sophisticated tr...  相似文献   

12.
In the neocortex, a population of glutamatergic synapses contains chelatable zinc that is released upon depolarization. The present study compares the effect of chronic tactile deprivation and vibrissectomy performed at different postnatal ages on the synaptic zinc distribution in the mouse barrel cortex. We found that a chronic unilateral tactile deprivation resulted in an increase of synaptic zinc in deprived barrels. Distribution and intensity of zinc staining in non-deprived barrels resembled the control situation. The increase of zinc staining was observed if chronic deprivation started in early postnatal life or in adolescent mice but not in 70-day-old animals. This suggests that a critical period exists for plasticity of zinc containing terminals in the barrel cortex. The alteration of zinc staining was localized to not only the thalamorecipient layers IV but also layer II/III, and upper layer V. Neonatal denervation of selected vibrissal rows resulted in rearrangement of synaptic zinc distribution following cytoarchitectonic alterations in the barrel field. However, no changes in the intensity of zinc staining were observed. Vibrissectomy performed after the critical period for barrel formation did not affect either the distribution or intensity of zinc staining. It appears that the integrity of vibrissa-barrel pathway is necessary to induce activity-dependent alterations in synaptic zinc.  相似文献   

13.
Local intra- and interlaminar connections in mouse barrel cortex   总被引:7,自引:0,他引:7  
Focal injections of horseradish peroxidase (HRP) in dimethylsulfoxide (DMSO) were targeted into mouse somatosensory cortex, in vitro, with a template. Injections were made at different depths and in different locations in the whisker-barrel-defined somatosensory map in order to determine quantitative connectivity patterns within and between barrel-defined cortical columns. Cortices were sectioned in a plane parallel to the pia at 75 microns. Data were collected directly from microscope slides by computer. Data are presented as: 1) Plots of computer-mapped HRP reaction product density in neurons and cell locations for each section in relation to barrel boundaries; 2) histograms of label in cortical layers related to individual barrel-defined columns; 3) polar plots of relative amounts of label within individual barrel columns in sections through each barrel column; 4) vectors which represent HRP reaction product density as a function of direction and distance from the injection site; 5) statistical analysis of the shape of the label distribution pattern in the plane of the cortex as a function of injection site depth; and 6) probability of labeling of any other barrel column given a labeled barrel column. The principal findings are: 1) The pattern of label distribution, after an injection directly above or directly below an individual barrel, is hour-glass shaped with the waist of the hour-glass in layer IV. 2) Connections within barrel cortex are asymmetrical. Barrel-related columns within a row are more strongly interconnected than those in different rows. 3) Connections of the small barrels associated with whiskers on the upper lip are strongest with other small barrels, but strong connections also exist between these small barrels and the larger barrels. 4) The pattern of intracortical connections in SII is not asymmetrical; interlaminar connections in SII are fundamentally different from those in barrel cortex. 5) Quantitative intracortical projection patterns are highly consistent with functional data on intracortical processing of whisker information. As such, the quantitative data clearly indicate the spatial extent and relative magnitude of populations of neurons involved in intracortical processing of sensory information. The spatial arrangements of these intracortical connections, in conjunction with known developmental events, make it highly likely that the distribution of intracortical axons in mouse barrel cortex is sculpted in part by experience.  相似文献   

14.
Driving anxiety can have a significant impact on everyday functioning and usually results in some kind of avoidance behaviour. The Driving and Riding Avoidance Scale (DRAS; Stewart, A. E., & St. Peter, C. C. (2004). Driving and riding avoidance following motor vehicle crashes in a non-clinical sample: psychometric properties of a new measure. Behaviour Research and Therapy, 42, 859–879) shows promise in the self-report assessment of the degree of such avoidance. The present study investigated the psychometric properties of the DRAS in a sample of 301 university students. Internal consistency for the DRAS was 0.89 and temporal stability over two months was 0.71. The factor structure of the DRAS supported the use of the general and traffic avoidance subscales but not the weather and riding avoidance subscales in the present non-clinical sample. However, a significant limitation of the DRAS is that it does not assess the reasons for driving avoidance, and is therefore not a measure of avoidance that is due to driving anxiety. Some items may be rated highly for practical reasons, such as avoidance because of increasing fuel and other costs associated with driving. Modified instructions for the DRAS should ensure that it measures anxiety-related avoidance behaviour.  相似文献   

15.
Several lines of evidence implicate a crucial role for thalamic afferents from the ventroposterior nucleus (VP) in the development of barrels and their characteristic pattern in the primary somatosensory cortex (Sl) of rodents. We sought to determine the stage in development when VP thalamocortical afferents are first distributed in a periphery-related pattern and the sequence of events that culminate in a mature pattern. Using acetylcholinesterase (AChE) histochemistry, an early marker for VP thalamocortical afferents, and the anterograde axon tracer DiI, we show that VP thalamocortical afferents become distributed into a peripheryrelated pattern earlier than was previously reported, including their parcellation into a barrel-related pattern that mirrors the distribution of sensory hairs on the face. The earliest periphery-related patterning observed is transiently present in the deep cortical layers prior to the emergence of layer 4, the layer in which barrels later develop. AChE histochemistry reveals a clear sequence of maturation of the barrel pattern in the distribution of VP afferents: An initially patternless distribution of AChE-reactive afferents is followed by their distribution in a nascent trigeminal representation, from which rows subsequently emerge; barrel-related clusters of afferents then emerge from the rows. This process begins before birth, and the transition from row-related to barrel-related distributions of VP afferents is evident during the first postnatal day (P0). This demonstration of a periphery-related pattern in developing rat S1 precedes by about 2 days that revealed by any other marker reported to delineate barrels. These findings confirm that VP thalamocortical afferents are the first barrel component to have a periphery-related pattern and support the hypothesis that thalamocortical afferents provide to immature S1 the patterning information that initiates the formation of barrels and their characteristic array. Furthermore because these findings show an earlier onset for barrel formation than was previously realized, they necessitate a reevaluation of conclusions drawn from experiments examining, developmental plasticity in barrel patterning. © 1994 Wiley-Liss, Inc.  相似文献   

16.
Functional deficits in sensory systems are commonly noted in neurodevelopmental disorders, such as the Rett syndrome (RTT). Defects in methyl CpG binding protein gene (MECP2) largely accounts for RTT. Manipulations of the Mecp2 gene in mice provide useful models to probe into various aspects of brain development associated with the RTT. In this study, we focused on the somatosensory cortical phenotype in the Bird mouse model of RTT. We used voltage‐sensitive dye imaging to evaluate whisker sensory evoked activity in the barrel cortex of mice. We coupled this functional assay with morphological analyses in postnatal mice and investigated the dendritic differentiation of barrel neurons and individual thalamocortical axon (TCA) arbors that synapse with them. We show that in Mecp2‐deficient male mice, whisker‐evoked activity is roughly topographic but weak in the barrel cortex. At the morphological level, we find that TCA arbors fail to develop into discrete, concentrated patches in barrel hollows, and the complexity of the dendritic branches in layer IV spiny stellate neurons is reduced. Collectively, our results indicate significant structural and functional impairments in the barrel cortex of the Bird mouse line, a popular animal model for the RTT. Such structural and functional anomalies in the primary somatosensory cortex may underlie orofacial tactile sensitivity issues and sensorimotor stereotypies characteristic of RTT.  相似文献   

17.
Previous experiments from our laboratory have shown a wide variety of time-dependent lateralized changes in behavior and nigrostriatal function following unilateral manipulation of the mystacial vibrissae of rats. The present experiment investigated the effects of unilateral radiofrequency lesion of the cortical vibrissae representation (the barrel fields) in light of these results. We measured lateralized changes in behavior as well as tissue monoamines in neostriatum and substantia nigra, between 1 and 16 days post-lesion. Short-term asymmetries in exploratory behavior (thigmotactic scanning) and neostriatal serotonin metabolism that lasted up to day 6 were seen. In substantia nigra, time-related asymmetries in dopamine concentrations were found with higher ipsilateral values on day 3 and higher contralateral values on day 6. After day 6, the animals had recovered from these acute effects and thereafter, neostriatal dopamine metabolism became asymmetrical. Also during this time, they showed a directional bias in spontaneous and apomorphine-induced turning. Finally, neostriatal serotonin was bilaterally elevated on day 16. These results parallel some of the effects previously seen following unilateral removal of the vibrissae, indicating that the barrel cortex is a critical link in the functional interaction between the vibrissae and basal ganglia.  相似文献   

18.
Histochemical localization of synaptic zinc was examined in the somatosensory (SI) barrel cortex of mouse. The laminar distribution and distribution within the barrel field were described. At postnatal day 3 (P3) and 5 (P5), very faint and uniform zinc staining was present in the lower part of the subplate. At P6, subtle laminar variations emerged. At P8, these variations were clearly observed. Intense zinc staining was found in layers I, II, III, and V. Layers IV and VI showed a weaker staining. From this postnatal age to adult, uneven patchy distribution of synaptic zinc in layer IV could be distinguished in coronal sections. In tangential sections through layer IV, zinc staining showed a barrel-like pattern due to a higher zinc concentration in septa and the surrounding cortex. Barrel sides revealed a lower zinc concentration compared with the barrel hollow. With brain maturation, the zinc staining increased more intensely outside the barrel field, thus producing a progressively higher contrast between the barrel field and adjacent cortical regions. The differences in zinc staining between the barrel side and barrel hollow diminished with age but were still visible at P70. The changes in synaptic zinc distribution probably reflect the process of synaptic maturation of glutamatergic terminals projecting to the SI cortex. The time course of postnatal changes in terminal zinc distribution suggests that synaptic zinc is not involved in the mechanisms of barrel formation. J. Comp. Neurol. 386:652–660, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

19.
In rat barrel cortex, layer 4 has a transiently high density of zinc-positive terminations from postnatal day (P)9 to P12 [P.W. Land & L. Shamalla-Hannah (2002)J. Comp. Neurol., 447, 43-56]. These terminations have been proposed to originate from cortico-cortical connections, but their exact origin is unknown. To determine their sources, we injected sodium selenite into the barrel cortex of two adult rats and 32 pups, from P5 to P28. As predicted, abundant zinc-positive cortically projecting neurons were visible around the injection sites and in distant cortical areas. From P9 to P13, however, neurons retrogradely labeled by zinc selenite occurred in the thalamus, in topographically appropriate regions of the ventroposterior medial (VPM) and posterior nuclei (Po). Because there are no previous reports of zinc-positive sensory thalamocortical connections, we sought corroboration of this unexpected finding by electron microscopy. This revealed a subset of boutons in layers 4 and 1, positive for both zinc and vesicular glutamate transporter 2, a protein used by thalamocortical terminations. Finally, in an additional nine rats, we carried out in situ hybridization for zinc transporter 3 mRNA. Moderate signal was detected in VPM and Po at P10, but this disappeared by P28. In contrast, a strong signal was apparent in the anterodorsal nucleus, which projects to limbic areas, and this persisted at P28. The timing of the transient zinc-positive terminations in the sensory thalamus roughly coincides with the onset of exploratory and whisking behavior in the middle of the second postnatal week; and this suggests zinc is important for activity-related refinement of circuitry.  相似文献   

20.
We describe the postnatal development of calretinin expression in the mouse barrel cortex by immunohistochemistry. A densely staining neuropil and numerous cell bodies appeared throughout layer V, but only within barrel septa of layer IV, at postnatal day 4. This staining pattern became most robust at postnatal day 8. Thereafter, calretinin expression became reduced until the third postnatal week when it attained its mature levels, and the barrel-specific staining was no longer apparent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号