首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Hypersensitivity of the flexor reflex pathways to input from force-sensitive muscle afferents may contribute to the prevalence and severity of muscle spasms in patients with spinal cord injury (SCI). In this study, we triggered flexor reflexes with constant velocity knee movements in 15 subjects with SCI. Ramp and hold knee extension perturbations were imposed on one leg while the hip and ankle were held in an isometric position using an instrumented leg brace. Knee, ankle and hip torque responses and electromyograms from six muscles of the leg were recorded following controlled knee extension at four different velocities. Tests were conducted with the hip in both flexed and extended positions. During the movement into knee extension, a velocity-dependent stretch reflex, represented by a progressively increasing knee flexion torque, was observed. In addition, another type of reflex that resembled a flexor reflex (flexion of the hip and ankle) was also triggered by the imposed knee extension. The magnitude of the ankle dorsiflexion torque responses was significantly correlated to the stretch reflex torque at the knee in 9 of the 15 subjects. We concluded that stretch reflexes initiate a muscle contraction that then can contribute to a flexor reflex response, possibly through muscle group III/IV afferent pathways. These results suggest that spasticity in SCI consists of a myriad of complex reflex responses that extend beyond stretch reflexes.  相似文献   

3.
The rapid decrease in firing of load-sensitive group Ib muscle afferents during unloading may be particularly important in triggering the swing phase of gait. However, it still remains unclear whether load-sensitive muscle afferents modulate reflex activity in human spinal cord injury (SCI), as suggested by studies in the cat. The right hip of 12 individuals with chronic SCI was subjected to ramp (60 degrees /s) and hold (10 s) movements over a range from 40 degrees flexion to 0-10 degrees extension using a custom servomotor system. An ankle dorsiflexion load was imposed and released after the hip reached a targeted position using a custom-designed pneumatic motor system. Isometric joint torques of the hip and knee, reaction torque of the ankle, and surface electromyograms (EMGs) from eight muscles of the leg were recorded following the imposed hip movement and ankle load release. Reflexes, characterized by hip flexion torque, knee extension, and coactivation of ankle flexors and extensors, were triggered by ankle load release when the hip was in an extended position. The ankle load release was observed to enhance the reflexes triggered by hip extension itself, suggesting that ankle load afferents play an important role in spastic reflexes in human SCI and that the reflex pathways associated with ankle load afferents have important implications in the spinal reflex regulation of human movement. Such muscle behaviors emphasize the role of ankle load afferents and hip proprioceptors on locomotion. This knowledge may be especially helpful in the treatment of spasms and in identifying rehabilitation strategies for producing functional movements in human SCI.  相似文献   

4.
After spinal cord injury (SCI), alterations in intrinsic motoneuron properties have been shown to be partly responsible for spastic reflex behaviors in human SCI. In particular, a dysregulation of voltage-dependent depolarizing persistent inward currents (PICs) may permit sustained muscle contraction after the removal of a brief excitatory stimulus. Windup, in which the motor response increases with repeated activation, is an indicator of PICs. Although windup of homonymous stretch reflexes has been shown, multijoint muscle activity is often observed following imposed limb movements and may exhibit a similar windup phenomenon. The purpose of this study was to identify and quantify windup of multijoint reflex responses to repeated imposed hip oscillations. Ten chronic SCI subjects participated in this study. A custom-built servomotor apparatus was used to oscillate the legs about the hip joint bilaterally and unilaterally from 10° of extension to 40° flexion for 10 consecutive cycles. Surface electromyograms (EMGs) and joint torques were recorded from both legs. Consistent with a windup response, hip and knee flexion/extension and ankle plantarflexion torque and EMG responses varied according to movement cycle number. The temporal patterns of windup depended on the muscle groups that were activated, which may suggest a difference in the response of neurons in different spinal pathways. Furthermore, because windup was seen in muscles that were not being stretched, these results imply that changes in interneuronal properties are also likely to be associated with windup of spastic reflexes in human SCI.  相似文献   

5.
Individuals with chronic spinal cord injury (SCI) often demonstrate multijoint reflex activity that is clinically classified as an extensor spasm. These responses are commonly observed in conjunction with an imposed extension movement of the hips, such as movement from a sit to a supine position. Coincidentally, afferent feedback from hip proprioceptors has also been implicated in the control of locomotion in the spinalized cat. Because of this concurrence, we postulated that extensor spasms that are triggered by hip extension might involve activation of organized interneuronal circuits that also have a role in locomotion. If true, imposed oscillations of the hip would be expected to produce activity of the leg musculature in a locomotor pattern. Furthermore, this muscle activity would be entrained to the hip movement. The right hip joints of 10 individuals with chronic SCI, consisting of both complete [American Spinal Injury Association (ASIA) A] and incomplete (ASIA B,C) injuries, were subjected to ramp and hold (10 s) movements at 60 degrees /s and sinusoidal oscillations at 1.2, 1.88, and 2.2 rad/s over ranges from 40 to -15 degrees (+/-5 degrees ) using a custom servomotor system. Surface EMG from seven lower extremity muscles and sagittal-plane joint torques were recorded to characterize the response. Ramp and hold perturbations produced coactivation at the hip, knee, and ankle joints, with a long duration (5-10 s). Sinusoidal perturbations yielded consistent muscle timing patterns that resulted in alternating flexor and extensor joint torques. EMG and joint torques were commonly entrained to the frequency of movement, with rectus femoris, vastus medialis, and soleus activity coinciding with hip extension and medial hamstrings activity occurring during hip flexion. Individual muscle timing patterns were consistent with hip position during normal gait, except for the vastus medialis. These results suggest that reflexes associated with extensor spasms may occur through organized interneuronal pathways, such as spinal centers for locomotion.  相似文献   

6.
The purpose of this study was to examine the reflex effects of electrical stimulation applied to the thigh using skin electrodes, targeting the sensory fibers of the rectus femoris and sartorius, in people with spinal cord injury (SCI). Thirteen individuals with SCI were recruited to participate in experiments using prolonged electrical stimuli on the right medial thigh over the regions of the sartorius and rectus femoris muscles. Three stimuli, spaced 20 s apart, were applied at 30 Hz for 1 s at four different intensities (15–60 mA) while subjects rested in a seated position. Isometric joint torques of the hip, knee and ankle, and electromyograms (EMGs) from six muscles of the leg were recorded during the stimulation. Early in the stimulation, a flexion response was observed at the hip and ankle, analogous to a flexor reflex; however, this response was usually followed by a “rebound” response consisting of hip extension, knee flexion and ankle plantarflexion, occurring in 10/13 subjects. Stimuli applied in a more lateral (mid thigh) electrode position (i.e. over the rectus femoris) were less effective in producing the response than medial placement, despite vigorous quadriceps activation. This complex reflex response is consistent with activation of a coordinating spinal circuit that could play a role in motor function. The reversal of the reflex pattern emphasizes the potential connection between skin/muscle afferents of the thigh, possibly including sartorius muscle afferents and locomotor reflex centers. This knowledge may be helpful in identifying rehabilitation strategies for enhancing gait training in human SCI.  相似文献   

7.
The physiological basis of flexion spasms in individuals after spinal cord injury (SCI) may involve alterations in the properties of spinal neurons in the flexion reflex pathways. We hypothesize that these changes would be manifested as progressive increases in reflex response with repetitive stimulus application (i.e., "windup") of the flexion reflexes. We investigated the windup of flexion reflex responses in 12 individuals with complete chronic SCI. Flexion reflexes were triggered using trains of electrical stimulation of plantar skin at variable intensities and inter-stimulus intervals. For threshold and suprathreshold stimulation, windup of both peak ankle and hip flexion torques and of integrated tibialis anterior electromyographic activity was observed consistently in all patients at inter-stimulus intervals < or =3 s. For subthreshold stimuli, facilitation of reflexes occurred only at intervals < or =1 s. Similarly, the latency of flexion reflexes decreased significantly at intervals < or =1 s. Patients that were receiving anti-spasticity medications (e.g., baclofen) had surprisingly larger windup of reflex responses than those who did not take such medications, although this difference may be related to differences of spasm frequency between the groups of subjects. The results indicate that the increase in spinal neuronal excitability following a train of electrical stimuli lasts for < or =3 s, similar to previous studies of nociceptive processing. Such long-lasting increases in flexion reflex responses suggest that cellular mechanisms such as plateau potentials in spinal motoneurons, interneurons, or both, may partially mediate spinal cord hyperexcitability in the absence of descending modulatory input.  相似文献   

8.
The contribution of force-sensitive muscular afferents to prolonged flexion withdrawal reflexes, or flexor spasms, after human spinal cord injury (SCI) was investigated. In three separate experimental conditions, flexion reflexes were triggered in subjects with SCI using trains of electrocutaneous stimuli delivered at the foot and lower leg and compared with reflexes elicited via intramuscular (i.m.) electrical stimuli. In the first experiment, flexion reflexes were elicited using i.m. stimuli to the tibialis anterior (TA) in the majority of subjects tested. The ratio of peak isometric ankle to hip torques during i.m.-triggered reflexes were proportionally similar to those evoked by electrocutaneous foot or shank stimulation, although the latency to onset and peak flexion torques were significantly longer with i.m. stimulation. In the second experiments, the amplitude and frequency of i.m. TA stimulation were varied to alter the stimulus-induced muscle torque. Peak ankle and hip torques generated during the flexion reflex responses were correlated to a greater extent with stimulus-induced muscle torques as compared with the modulated stimulus parameters. In the third experimental series, i.m. stimuli delivered to the gastrocnemius (GS) elicited flexion reflexes in approximately half of the subjects tested. The combined data indicate a potentially prominent role of the stimulus-induced muscle contraction to the magnitude and latency of flexor reflex behaviors after i.m. TA stimulation. Results after i.m. GS stimulation indicate multi-joint flexion reflexes can also be elicited, although to a lesser extent than i.m. TA stimulation.  相似文献   

9.
We have reported earlier that externally imposed ankle movements trigger ankle and hip flexion reflexes in individuals with spinal cord injury (SCI). In order to examine the afferent mechanisms underlying these movement-triggered reflexes, controlled ankle movements were imposed in 17 SCI subjects. In 13 of these subjects, reflex torques were recorded at the hip, knee and ankle in response to 5 ankle movement ranges, and 4 movement speeds. Subjects were tested using both ankle plantarflexion and dorsiflexion movements. The principal outcome measure, peak hip flexion torque of the induced reflexes, was used for comparing the effects of movement range and speed on the reflex response. We found that movement-triggered reflexes were sensitive to the angular range of ankle deflection, but insensitive to the velocity of the movement. Movement amplitudes sufficient to trigger hip and ankle flexion were routinely associated with increases in ankle passive force, suggesting that force-sensitive receptors participated in the reflex response. However, increases in angular range also corresponded to increases in muscle length, making it difficult to distinguish whether the response was triggered by a load-sensitive receptor (e.g., Golgi tendon organ or muscle free nerve ending) or a position-sensitive receptor responsive to absolute ankle angle (e.g., muscle spindle secondary afferent). The absence of velocity dependence of the reflex suggested that spindle Ia afferents were not major contributors. These results suggest movement-triggered reflexes originate in muscle receptors that are sensitive to either absolute muscle length, to muscle force or to both. Although receptors that are sensitive to absolute muscle length cannot be excluded with certainty, the finding that reflex responses require that ankle movements elicit an increase in passive force argues for a prominent role of nonspindle mechanoreceptors, such as group III/IV muscle afferents. These afferents are activated preferentially as muscles are stretched to near maximum length, and they appear to have potent reflex effects in spinal cord injury.  相似文献   

10.
Local sign withdrawal, a reflex to direct the limb away from noxious cutaneous stimuli, is thought to be indicative of a modular organization of the spinal cord. To assess the integrity of such an organization of the spinal cord in chronic human spinal cord injury (SCI), we tested the electromyogram (EMG) and joint torque responses to cutaneous stimuli applied to 6 locations of the leg in 10 SCI volunteers and 3 spinal-intact controls. The 6 locations included the medial arch of the foot, the second metatarsal, the dorsum, the region over the sural nerve at the lateral malleolus, and the anterior and posterior aspects of the lower leg. Although spinal-intact subjects demonstrated local sign withdrawal, the data from SCI subjects indicated that an invariant flexion response pattern was produced regardless of stimulus location. Ankle dorsiflexion and hip flexion were produced in all subjects at all locations and no difference in the ratio of hip:ankle torques could be detected for the 6 test locations. A windup-crossover test, employing a sequence of 6 stimuli at 1-s intervals was used to assess whether common neuronal pathways were responsible for the loss of modular organization. An additional 10 SCI volunteers were tested using stimuli in which the stimulus location was switched between the 2nd and 3rd stimulus of the test sequence. The response to the crossover stimulus more closely resembled the response to the 3rd stimulus of a windup sequence than a response without conditioning stimuli. These results indicate that increased excitability produced by windup at one stimulus site is maintained at the 2nd site. This observation suggests that deep dorsal horn neurons, typically associated with musculotopic mapping, may be reorganized in chronic spinal cord injury.  相似文献   

11.
Extensor spasms, which are a significant component of spasticity in spinal cord injury (SCI), are still incompletely understood. In this study, contributions of knee proprioceptors to the origination of extensor spasms were examined in fifteen subjects with SCI. Ramp and hold knee extension perturbations were imposed to one leg while the hip and ankle were held in an isometric position using an instrumented leg brace. Isometric joint torques of knee, ankle and hip, and electromyograms (EMGs) from six muscles of the leg were recorded following controlled knee extension at four different velocities. Tests were conducted with the hip in both flexed and extended positions. A stereotypical torque response consisting of hip flexion, knee extension, and ankle plantar flexion was observed following knee perturbations, although not all components were demonstrated in every subject. During the hold periods with the knee extended, EMG activity recorded from the vastus medialis, medial gastrocnemius and rectus femoris demonstrated patterns consistent with clinical observations of extensor spasms. Furthermore, larger responses were observed with the hip in the extended vs. flexed position (p<0.05). Such behaviors emphasize the role of knee and hip proprioceptors in the initiation of extensor spasms in human SCI. This knowledge may be especially helpful in identifying rehabilitation strategies for producing functional movements in human SCI.  相似文献   

12.
The simultaneous control of the hindlimb paw-shake response and hindlimb walking at slow treadmill speeds (0.2-0.4 m/s) was examined in adult cats spinalized at the T12 level, 3-6 mo earlier. Paw shaking was elicited by either 1) application of adhesive tape or 2) water to the right hindpaw. To assess intralimb and interlimb coordination of the combined behaviors, activity from selected flexor and extensor muscles at the hip, knee, and ankle was recorded, and the kinematics of these joints were determined from high-speed cinefilm. When paw shaking was combined with hindlimb walking, the response in the stimulated limb was initiated during swing (F phase) of the step cycle. The onset of knee extensor activity provided the transition from the flexor synergy of swing to the mixed synergy of paw shake. At the end of the paw shake, an extensor synergy initiated the E-1 phase of swing, and the resultant joint motion was in-phase extension at the hip, knee, and ankle to lower the paw for contact with the treadmill belt. During the rapid (81 ms) paw-shake cycles, knee extensor and ankle flexor muscles exhibited single, coactive bursts that were reciprocal with coactive hip and ankle extensor bursts. This mixed synergy was reflected in the limb coordination, as knee flexion coincided with ankle extension and knee flexion coincided with ankle extension. Phasing of hip motions was variable, reflecting the role of the proximal in stabilization during paw shake (16). Although the number of paw-shake cycles combined during swing varied greatly from 2 to 14, average cycle periods, burst durations, and intralimb synergies were similar to those previously reported for spinal cats tested under conditions in which the trunk was suspended and hindlimbs were pendent (23, 27). For step cycles during which a long paw-shake response of 8-14 cycles occurred, swing duration of the shaking limb increased by 1 s, and during this prolonged interval, the contralateral hindlimb completed two support steps. Stance duration of the support steps was also prolonged. This adjustment maximized the duration of paw-contact and minimized any period of nonsupport by the contralateral hindlimb during paw shake. Completion of the paw-shake response was followed by either an alternating, or a nonalternating, gait pattern on the recovery steps. One spinal cat combined locomotion with short two-cycle paw-shake responses, and because the shortened response was limited primarily to the time ordinarily devoted to swing, interlimb adjustments were slight.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
The purpose of this study was to investigate the effects of hip proprioceptors on soleus stretch reflex excitability in standing humans. A custom-made device to stretch the ankle extensors was mounted on the lower leg portion of a gait orthosis and was used to elicit stretch reflex responses while standing. Six subjects with motor complete spinal cord injury (SCI) and six spinal intact subjects were placed in the orthosis, and stretch reflex responses were elicited when static and/or dynamic hip joint angle changes were imposed. We found that static hip extension significantly enhanced the stretch reflex responses as compared to the neutral position and the hip flexion position only in the SCI group. The EMG magnitude induced by hip extension was 142 ± 16.6% greater than that induced by the neutral position. When the leg was dynamically swung, the reflex responses also changed with the phase of the hip angle in the SCI group; in particular, the reflex amplitude was enhanced with hip extension and in the transition phase from flexion to extension. Although the magnitude of the changes was less than that in the SCI group, a similar type of modulation was found in the normal group. Given the fact that the persons with SCI had lost the neural connection between higher nervous center and the paralyzed lower limb muscles, the mechanism underlying the present results can be attributed to the peripheral afferent input due to the hip angle changes. We concluded that hip mediated afferent input has a significant influence on the excitability modulation of the soleus stretch reflex pathway. Such neural modulation may play a role in the mechanism responsible for the phase-dependent modulation of the stretch reflex while walking.  相似文献   

14.
In human spinal cord injury (SCI), imposed unilateral hip movements trigger multijoint, coordinated reflexes that might incorporate interneuronal circuitry involved in normal motor control, such as neural pathways associated with the reflex control of locomotion. To further investigate the complexity of these hip-triggered reflexes, we measured the effects of kinematics of the contralateral hip on this type of spastic reflex activity in 11 chronic SCI subjects. A novel servomotor drive system was constructed to impose bilateral hip oscillations while the knees and ankles were held stationary in instrumented leg braces. Surface electromyograms (EMGs) and joint torques were recorded during the imposed hip oscillations. Tests were conducted at two different frequencies to test for velocity dependence of the reflexes and the following four paradigms were used to examine the effects of contralateral hip afferents on hip-triggered spastic reflexes: 1) bilateral alternating, 2) bilateral synchronous, 3) unilateral leg oscillation with the contralateral leg held stationary in hip extension, and 4) unilateral leg oscillation with the contralateral leg held stationary in hip flexion. The response to bilateral alternating movements resulted in a significantly larger reflex magnitude compared with the bilateral synchronous movements (P < 0.001). Unilateral leg perturbations yielded reflex patterns that were consistent with the reflex patterns observed during alternating and synchronous hip oscillations. These observations suggest that spastic reflex excitability is modulated through afferent input from the contralateral hip in a manner that is generally consistent with locomotion.  相似文献   

15.
Imposed static hip stretches substantially modulate the soleus H-reflex in people with an intact or injured spinal cord while stretch of the hip flexors affect the walking pattern in lower vertebrates and humans. The aim of this study was to assess the effects of dynamic hip stretches on the soleus H-reflex in supine spinal cord injured (SCI) subjects. Sinusoidal movements were imposed on the right hip joint at 0.2 Hz by a Biodex system. H-reflexes from the soleus muscle were recorded as the leg moved in flexion or extension. Stimuli were sent only once in every hip movement cycle that each lasted 5 s. Torque responses were recorded at the hip, knee, and ankle joints. A hip phase-dependent soleus H-reflex modulation was present in all subjects. The reflex was facilitated during hip extension and suppressed during hip flexion. There were no significant differences in pre- or post-stimulus soleus background activity between the two conditions. Oscillatory responses were present as the hip was maximally flexed. Sinusoidal hip stretches modulated the soleus H-reflex in a manner similar to that previously observed following static hip stretches. The amount of reflex facilitation depended on the angle of hip extension. Further research is needed on the afferent control of spinal reflex pathways in health and disease in order to better understand the neural control of movement in humans. This will aid in the development of rehabilitation strategies to restore motor function in these patients.  相似文献   

16.
The flexion reflex can be elicited via stimulation of skin, muscle, and high-threshold afferents inducing a generalized flexion of the limb. In spinalized animal models this reflex is quite prominent and is strongly modulated by actions of hip proprioceptors. However, analogous actions on the flexion reflex in spinal cord injured (SCI) humans have not yet been examined. In this study, we investigated the effects of imposed static hip angle changes on the flexion reflex in ten motor incomplete SCI subjects when input from plantar cutaneous mechanoreceptors was also present. Flexion reflexes were elicited by low-intensity stimulation of the sural nerve at the lateral malleolus, and were recorded from the ipsilateral tibialis anterior (TA) muscle. Plantar skin stimulation was delivered through two surface electrodes placed on the metatarsals, and was initiated at different delays ranging from 3 to 90 ms. We found that non-noxious sural nerve stimulation induced two types of flexion reflexes in the TA muscle, an early, and a late response. The first was observed only in three subjects and even in these subjects, it appeared irregularly. In contrast, the second (late) flexion reflex was present uniformly in all ten subjects and was significantly modulated during hip angle changes. Flexion reflexes recorded with hip positioned at different angles were compared to the associated control reflexes recorded with hip flexed at 10°. Hip flexion (30°, 40°) depressed the late flexion reflex, while no significant effects were observed with the hip set in neutral angle (0°). Strong facilitatory effects on the late flexion reflex were observed with the hip extended to 10°. Moreover, the effects of plantar skin stimulation on the flexion reflex were also found to depend on the hip angle. The results suggest that hip proprioceptors and plantar cutaneous mechanoreceptors strongly modulate flexion reflex pathways in chronic human SCI, verifying that this type of sensory afferent feedback interact with spinal interneuronal circuits that have been considered as forerunners of stepping and locomotion. The sensory consequences of this afferent input should be considered in rehabilitation programs aimed to restore movement and sensorimotor function in these patients.  相似文献   

17.
Summary To determine speed-related changes in hindlimb motion that might account for the mutability of bifunctional (hip extensor/knee flexor) muscle activity during the E1 phase of swing, we studied hip and knee joint kinematics and kinetics during swing over a ten-fold increase in locomotor speed (0.35 to 3.5 m/s). Three cats were filmed (100 frames/s) while locomoting on a motorized treadmill; kinematics were analyzed for the entire step cycle and kinetics for the swing phase. During swing, angular excursions at the hip and knee joints were similar for walking and trotting, but hip flexion and extension were significantly less after the transition from trot to gallop, while knee-angle range of motion increased during gallop phases E1, E2, and E3. During swing, knee-extension velocity peaked early in E1 and increased linearly with speed, while hip-flexion velocity peaked late in the flexion (F) phase and also increased linearly, but decreased precipitously at the trotgallop transition and remained constant as speed of galloping increased. Muscle torque directions during E1, flexor at the knee and extensor at the hip, were consistent with the proposed role of bifunctional posterior thigh muscles to decelerate thigh and leg segments for paw contact. At the knee joint, muscle torque during E1 counteracted a large interactive torque due to leg angular acceleration; the magnitudes of both torques were speed related with maximal values at the fastest speed tested (3.5 m/s). At the hip joint, muscle torque during E1 also counteracted a large interactive torque due to leg angular acceleration; the magnitudes of these two torques were speed related during the walk and trot, and like hip flexion velocity, decreased at the trot-gallop transition. Our data on speed-related changes in hindlimb dynamics suggest that the E1 burst amplitude (and perhaps duration) of posterior thigh muscles will be speed related during the walk and trot. After the trot-gallop transition at about 2.5 m/s, the recruitment of these bifunctional muscles may decline due to the changes in hindlimb dynamics. Because activity of these muscles counteracts interactive torques primarily related to leg angular acceleration, we suggest that motion-related feedback decoding this action may be important for regulating recruitment during E1.  相似文献   

18.
An unexpected property of unskilled overarm throws is that wrist flexion velocity at ball release does not increase in throws of increasing speed. We investigated the nature of the interaction torques and wrist mechanical properties that have been proposed to produce this property. Twelve recreational throwers made seated 2-D throws, which were used as a model for unskilled throwing. Joint motions were computed from recordings made with search coils; joint torques were calculated from inverse dynamics. Wrist flexion velocity at ball release was actually smaller in fast throws than in slow throws. This was associated in fast throws with the decrease in a large wrist flexor muscle torque (i.e., a calculated residual torque) in the last 40 ms before ball release, and its reversal to an extensor torque. Consequently, wrist flexor muscle torque was unable to oppose a small maintained wrist extensor interaction torque that arose from continuing elbow extension acceleration. The decrease in wrist flexor muscle torque was not associated with a decrease in wrist flexor EMG activity, nor with an increase in wrist extensor EMG activity. These findings support the hypothesis that the smaller wrist flexion velocity at ball release in fast 2-D throws results from a wrist extensor interaction torque and from a large wrist extensor viscoelastic torque. We propose that in fast 3-D throws skilled subjects decelerate elbow extension before ball release to help overcome these wrist extensor torques.  相似文献   

19.
Reflex responses to unexpected stretches are well documented for selected muscles in both animal and human. Moreover, investigations of their possible functional significance have revealed that stretch reflexes can contribute substantially to the overall stiffness of a joint. In the lower extremity only the muscles spanning the human ankle joint have been investigated in the past. This study implemented a unique hydraulic actuator to study the contributions of the knee extensor stretch reflex to the overall knee joint torque. The quadriceps muscles were stretched at various background torques, produced either voluntarily or by electrical stimulation, and thus the purely reflex mediated torque could be calculated. The stretch had a velocity of 67°/s and an amplitude of 20°. A reflex response as measured by electromyography (EMG) was observed in all knee extensors at latencies of 26 – 36 ms. Both phasic and tonic EMG stretch responses increased with increasing background torques. Lines of best fit produced correlation coefficients of 0.59 – 0.78. This study is the first to examine the reflex contribution of the knee extensors to the total torque at background torques of 0 – 90% MVC. The contribution of the reflex mediated torque is initially low and peaked at background torques of 20 – 40% MVC. In terms of the total torque the reflex contributed 16 – 52% across all levels of background torque. It is concluded that during medium background torque levels such as those obtained during walking, the stretch reflex of the quadriceps muscle group contributes substantially to the total torque around the knee joint.  相似文献   

20.
The soleus H-reflex modulation pattern was investigated in ten spinal cord intact subjects during treadmill walking at varying levels of body weight support (BWS), and nine spinal cord injured (SCI) subjects at a BWS level that promoted the best stepping pattern. The soleus H-reflex was elicited by tibial nerve stimulation with a single 1-ms pulse at an intensity that the M-waves ranged from 4 to 8% of the maximal M-wave (Mmax). During treadmill walking, the H-reflex was elicited every four steps, and stimuli were randomly dispersed across the gait cycle which was divided into 16 equal bins. EMGs were recorded with surface electrodes from major left and right hip, knee, and ankle muscles. M-waves and H-reflexes at each bin were normalized to the Mmax elicited at 60–100 ms after the test reflex stimulus. For every subject, the integrated EMG area of each muscle was established and plotted as a function of the step cycle phase. The H-reflex gain was determined as the slope of the relationship between H-reflex and soleus EMG amplitudes at 60 ms before H-reflex elicitation for each bin. In spinal cord intact subjects, the phase-dependent H-reflex modulation, reflex gain, and EMG modulation pattern were constant across all BWS (0, 25, and 50) levels, while tibialis anterior muscle activity increased with less body loading. In three out of nine SCI subjects, a phase-dependent H-reflex modulation pattern was evident during treadmill walking at BWS that ranged from 35 to 60%. In the remaining SCI subjects, the most striking difference was an absent H-reflex depression during the swing phase. The reflex gain was similar for both subject groups, but the y-intercept was increased in SCI subjects. We conclude that the mechanisms underlying cyclic H-reflex modulation during walking are preserved in some individuals after SCI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号