首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the relationships between regional brain activity and anxiety in bipolar depressed patients receiving adjunctive treatment with levothyroxine. Regional brain activity was assessed with positron emission tomography and [18F]fluorodeoxyglucose in 10 euthyroid, depressed bipolar women before and after 7 weeks of adjunctive therapy with levothyroxine. The primary biological measures were relative (to global) regional radioactivity as a surrogate index of glucose metabolism in pre-selected brain regions. Relationships were assessed between regional brain activity and anxiety symptoms while controlling for depression severity. At baseline, Trait Anxiety Inventory measures covaried positively with relative brain activity bilaterally in the dorsal anterior cingulate, superior temporal gyri, parahippocampal gyri, amygdala, hippocampus, ventral striatum, and right insula; state anxiety showed a similar pattern. After treatment anxiety was improved significantly. Change in trait anxiety covaried positively with changes in relative activity in right amygdala and hippocampus. Change in state anxiety covaried positively with changes in relative activity in the hippocampus bilaterally and left thalamus, and negatively with changes in left middle frontal gyrus and right dorsal anterior cingulate. Results indicate that comorbid anxiety symptoms have specific regional cerebral metabolic correlates in bipolar depression and cannot only be explained exclusively by the depressive state of the patients.  相似文献   

2.
BACKGROUND: Methamphetamine (MA) abusers have cognitive deficits, abnormal metabolic activity and structural deficits in limbic and paralimbic cortices, and reduced hippocampal volume. The links between cognitive impairment and these cerebral abnormalities are not established. METHODS: We assessed cerebral glucose metabolism with [F-18]fluorodeoxyglucose positron emission tomography in 17 abstinent (4 to 7 days) methamphetamine users and 16 control subjects performing an auditory vigilance task and obtained structural magnetic resonance brain scans. Regional brain radioactivity served as a marker for relative glucose metabolism. Error rates on the task were related to regional radioactivity and hippocampal morphology. RESULTS: Methamphetamine users had higher error rates than control subjects on the vigilance task. The groups showed different relationships between error rates and relative activity in the anterior and middle cingulate gyrus and the insula. Whereas the MA user group showed negative correlations involving these regions, the control group showed positive correlations involving the cingulate cortex. Across groups, hippocampal metabolic and structural measures were negatively correlated with error rates. CONCLUSIONS: Dysfunction in the cingulate and insular cortices of recently abstinent MA abusers contribute to impaired vigilance and other cognitive functions requiring sustained attention. Hippocampal integrity predicts task performance in methamphetamine users as well as control subjects.  相似文献   

3.
BACKGROUND: Functional neuroimaging studies of bipolar disorder (BD) performed in conjunction with antidepressant treatment trials generally require that patients remain on mood stabilizers to reduce the risk of inducing mania; yet, it is unknown whether the metabolic abnormalities evident in unmedicated BD depressives remain detectable in patients receiving mood stabilizers. This study investigated whether cerebral metabolic abnormalities previously reported in unmedicated BD subjects are evident in depressed bipolar disorder type II (BD II) subjects receiving lithium or divalproex. METHODS: Using [18F]-fluorodeoxyglucose-positron-emission tomography, cerebral glucose metabolism was compared between 13 depressed BD II subjects on therapeutic doses of lithium or divalproex and 18 healthy control subjects. Regional metabolism was compared between groups in predefined regions of interest. RESULTS: Metabolism was increased in the bilateral amygdala, accumbens area, and anteroventral putamen, left orbitofrontal cortex and right pregenual anterior cingulate cortex in depressives versus control subjects. Post hoc exploratory analysis additionally revealed increased metabolism in left parahippocampal, posterior cingulate, and right anterior insular cortices in depressives versus control subjects. Correlational analyses showed multiple limbic-cortical-striatal interactions in the BD sample not evident in the control sample, permitting sensitive and specific classification of subjects by discriminant analysis. CONCLUSIONS: These results confirm previous reports that bipolar depression is associated with abnormally increased metabolism in the amygdala, ventral striatum, orbitofrontal cortex, anterior cingulate, and anterior insula, and extend these results to bipolar disorder type II depressives on lithium or divalproex. They also implicate an extended functional anatomical network known to modulate visceromotor function in the pathophysiology of BD II depression.  相似文献   

4.
Brain metabolic changes during cigarette craving   总被引:18,自引:0,他引:18  
BACKGROUND: In functional brain imaging studies, exposure to cues related to cocaine, opiates, and alcohol in dependent individuals is associated with activation of the anterior cingulate gyrus, amygdala, orbitofrontal cortex, and dorsolateral prefrontal cortex. Craving for these substances positively correlates with activity in the orbitofrontal cortex, dorsolateral prefrontal cortex, and anterior insula. The objective of this study was to determine changes in regional cerebral glucose metabolism and correlations between craving and regional metabolism in heavy cigarette smokers exposed to cigarette-related cues. METHODS: Twenty heavy smokers (who smoked > or =20 cigarettes per day) and 20 nonsmoking control subjects underwent 2 fluorine 18-fluorodeoxyglucose positron emission tomography scans 10 days apart in randomized order: one while watching a videotape that presented cigarette-related cues and handling a cigarette, and the other while watching an educational (nature) videotape and handling a neutral object (pen). RESULTS: From the neutral to the cigarette cue scan, heavy smokers had greater increases than nonsmoking controls in relative glucose metabolism in the perigenual anterior cingulate gyrus spanning the midline. Significant positive correlations were found between intensity of craving and metabolism in the orbitofrontal cortex, dorsolateral prefrontal cortex, and anterior insula bilaterally. An unexpected positive association was found between craving and metabolism in the right sensorimotor cortex. CONCLUSIONS: Brain regions associated with arousal, compulsive repetitive behaviors, sensory integration, and episodic memory are activated during exposure to cigarette-related cues and cigarette craving. These regional brain activations and associations with craving are similar to findings with other addictive substances.  相似文献   

5.
This overview attempts to synthesise current understandings of the neuroendocrine basis of parenting. The parent-infant bond is central to the human condition, contributes to risks for mood and anxiety disorders, and provides the potential for resiliency and protection against the development of psychopathology. Animal models of parenting provide compelling evidence that biological mechanisms may be studied in humans. This has led to brain imaging and endocrine system studies of human parents using baby stimuli and concerted psychological and behavioural measures. Certain brain circuits and related hormonal systems, including subcortical regions for motivation (striatum, amygdala, hypothalamus and hippocampus) and cortical regions for social cognition (anterior cingulate, insula, medial frontal and orbitofrontal cortices), appear to be involved. These brain circuits work with a range of endocrine systems to manage stress and motivate appropriate parental caring behaviour with a flexibility appropriate to the environment. Work in this field promises to link evolving models of parental brain performance with resilience, risk and treatment toward mother-infant mental health.  相似文献   

6.
Huntington's disease (HD) is an inherited neurodegenerative disorder associated with motor, cognitive and psychiatric deficits. This study, using a multimodal imaging approach, aims to assess in vivo the functional and structural integrity of regions and regional networks linked with motor, cognitive and psychiatric function. Predicting disease onset in at risk individuals is problematic and thus we sought to investigate this by computing the 5-year probability of HD onset (p5 HD) and relating it to imaging parameters. Using MRI, (11)C-PK11195 and (11)C-raclopride PET, we have investigated volumes, levels of microglial activation and D2/D3 receptor binding in CAG repeat-matched groups of premanifest and symptomatic HD gene carriers. Findings were correlated with disease-burden and UHDRS scores. Atrophy was detected in sensorimotor striatum (SMST), substantia nigra, orbitofrontal and anterior prefrontal cortex in the premanifest HD. D2/D3 receptor binding was reduced and microglial activation increased in SMST and associative striatum (AST), bed nucleus of the stria terminalis, the amygdala and the hypothalamus. In symptomatic HD cases this extended to involve atrophy in globus pallidus, limbic striatum, the red nuclei, anterior cingulate cortex, and insula. D2/D3 receptor binding was additionally reduced in substantia nigra, globus pallidus, limbic striatum, anterior cingulate cortex and insula, and microglial activation increased in globus pallidus, limbic striatum and anterior prefrontal cortex. In premanifest HD, increased levels of microglial activation in the AST and in the regional network associated with cognitive function correlated with p5 HD onset. These data suggest that pathologically activated microglia in AST and other areas related to cognitive function, maybe better predictors of clinical onset and stresses the importance of early cognitive assessment in HD.  相似文献   

7.
Stress and alcohol context cues are each associated with alcohol-related behaviors, yet neural responses underlying these processes remain unclear. This study investigated the neural correlates of stress and alcohol context cue experiences and examined sex differences in these responses. Using functional magnetic resonance imaging, brain responses were examined while 43 right-handed, socially drinking, healthy individuals (23 females) engaged in brief guided imagery of personalized stress, alcohol-cue, and neutral-relaxing scenarios. Stress and alcohol-cue exposure increased activity in the cortico-limbic-striatal circuit (P < 0.01, corrected), encompassing the medial prefrontal cortex (mPFC), orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), left anterior insula, striatum, and visuomotor regions (parietal and occipital lobe, and cerebellum). Activity in the left dorsal striatum increased during stress, while bilateral ventral striatum activity was evident during alcohol-cue exposure. Men displayed greater stress-related activations in the mPFC, rostral ACC, posterior insula, amygdala, and hippocampus than women, whereas women showed greater alcohol-cue-related activity in the superior and middle frontal gyrus (SFG/MFG) than men. Stress-induced anxiety was positively associated with activity in emotion-modulation regions, including the medial OFC, ventromedial PFC, left superior-mPFC, and rostral ACC in men, but in women with activation in the SFG/MFG, regions involved in cognitive processing. Alcohol craving was significantly associated with the striatum (encompassing dorsal, and ventral) in men, supporting its involvement in alcohol "urge" in healthy men. These results indicate sex differences in neural processing of stress and alcohol-cue experiences and have implications for sex-specific vulnerabilities to stress- and alcohol-related psychiatric disorders.  相似文献   

8.
The functional neuroanatomy of the placebo effect   总被引:17,自引:0,他引:17  
OBJECTIVE: Administration of placebo can result in a clinical response indistinguishable from that seen with active antidepressant treatment. Functional brain correlates of this phenomenon have not been fully characterized. METHOD: Changes in brain glucose metabolism were measured by using positron emission tomography in hospitalized men with unipolar depression who were administered placebo as part of an inpatient imaging study of fluoxetine. Common and unique response effects to administration of placebo or fluoxetine were assessed after a 6-week, double-blind trial. RESULTS: Placebo response was associated with regional metabolic increases involving the prefrontal, anterior cingulate, premotor, parietal, posterior insula, and posterior cingulate and metabolic decreases involving the subgenual cingulate, parahippocampus, and thalamus. Regions of change overlapped those seen in responders administered active fluoxetine. Fluoxetine response, however, was associated with additional subcortical and limbic changes in the brainstem, striatum, anterior insula, and hippocampus, sources of efferent input to the response-specific regions identified with both agents. CONCLUSIONS: The common pattern of cortical glucose metabolism increases and limbic-paralimbic metabolism decreases in placebo and fluoxetine responders suggests that facilitation of these changes may be necessary for depression remission, regardless of treatment modality. Clinical improvement in the group receiving placebo as part of an inpatient study is consistent with the well-recognized effect that altering the therapeutic environment may significantly contribute to reducing clinical symptoms. The additional subcortical and limbic metabolism decreases seen uniquely in fluoxetine responders may convey additional advantage in maintaining long-term clinical response and in relapse prevention.  相似文献   

9.
BACKGROUND: We studied the relationship between regional cerebral metabolism and the severity of anxiety in mood disorder patients, controlling for depression severity. METHODS: Fifty-two medication-free patients with unipolar or bipolar illness underwent positron emission tomography with [(18)F]-fluorodeoxyglucose. Hamilton Depression Rating Scale and Spielberger Anxiety-State Scale scores were obtained for the week of the scan. Analyses were performed on globally normalized images and were corrected for multiple comparisons. RESULTS: After covarying for depression scores, age, and gender, Spielberger Anxiety-State Scale scores correlated directly with regional cerebral metabolism in the right parahippocampal and left anterior cingulate regions, and inversely with metabolism in the cerebellum, left fusiform, left superior temporal, left angular gyrus, and left insula. In contrast, covarying for anxiety scores, age, and gender, Hamilton Depression Rating Scale scores correlated directly with regional cerebral metabolism in the bilateral medial frontal, right anterior cingulate, and right dorsolateral prefrontal cortices. CONCLUSIONS: Comorbid anxiety symptoms are associated with specific cerebral metabolic correlates that partially overlap with those in the primary anxiety disorders and differ from those associated with depression severity.  相似文献   

10.
Factor-analytic approaches to human personality have consistently identified several core personality traits, such as Extraversion/Introversion, Neuroticism, Agreeableness, Consciousness, and Openness. There is an increasing recognition that certain personality traits may render individuals vulnerable to psychiatric disorders, including anxiety disorders and depression. Our purpose in this study was to explore correlates between the personality dimensions neuroticism and extraversion as assessed by the NEO Five-Factor Inventory (NEO-FFI) and resting regional cerebral glucose metabolism (rCMRglu) in healthy control subjects. Based on the anxiety and depression literatures, we predicted correlations with a network of brain structures, including ventral and medial prefrontal cortex (encompassing anterior cingulate cortex and orbitofrontal cortex), insular cortex, anterior temporal pole, ventral striatum, and the amygdala. Twenty healthy women completed an (18F)FDG (18F-fluorodeoxyglucose) positron emission tomography (PET) scan at rest and the NEO-FFI inventory. We investigated correlations between scores on NEO-FFI Neuroticism and Extraversion and rCMRglu using statistical parametric mapping (SPM99). Within a priori search territories, we found significant negative correlations between Neuroticism and rCMRglu in the insular cortex and positive correlations between Extraversion and rCMRglu in the orbitofrontal cortex. No significant correlations were found involving anterior cingulate, amygdala, or ventral striatum. Neuroticism and Extraversion are associated with activity in insular cortex and orbitofrontal cortex, respectively.  相似文献   

11.
The authors review existing structural and functional neuroimaging studies of patients with bipolar disorder and discuss how these investigations enhance our understanding of the neurophysiology of this illness. Findings from structural magnetic resonance imaging (MRI) studies suggest that some abnormalities, such as those in prefrontal cortical areas (SGPFC), striatum and amygdala exist early in the course of illness and, therefore, potentially, predate illness onset. In contrast, other abnormalities, such as those found in the cerebellar vermis, lateral ventricles and other prefrontal regions (eg, left inferior), appear to develop with repeated affective episodes, and may represent the effects of illness progression and associated factors. Magnetic resonance spectroscopy investigations have revealed abnormalities of membrane and second messenger metabolism, as well as bioenergetics, in striatum and prefrontal cortex. Functional imaging studies report activation differences between bipolar and healthy controls in these same anterior limibic regions. Together, these studies support a model of bipolar disorder that involves dysfunction within subcortical (striatal-thalamic)-prefrontal networks and the associated limbic modulating regions (amygdala, midline cerebellum). These studies suggest that, in bipolar disorder, there may be diminished prefrontal modulation of subcortical and medial temporal structures within the anterior limbic network (eg, amygdala, anterior striatum and thalamus) that results in dysregulation of mood. Future prospective and longitudinal studies focusing on these specific relationships are necessary to clarify the functional neuroanatomy of bipolar disorder.  相似文献   

12.
BACKGROUND: Patients with unipolar depression are most often reported to have decreased regional cerebral glucose metabolism (rCMRglu) in dorsal prefrontal and anterior cingulate cortices compared with healthy control subjects, often correlating inversely with severity of depression. METHODS: We measured rCMRglu with fluorine-18 deoxyglucose positron emission tomography (PET) in 38 medication-free patients with unipolar depression and 37 healthy control subjects performing an auditory continuous performance task to further investigate potential prefrontal and anterior paralimbic rCMRglu abnormalities in patients attending to this task. RESULTS: Compared with control subjects, the subgroup of patients with Hamilton depression scores of 22 or greater demonstrated decreased absolute rCMRglu in right prefrontal cortex and paralimbic/amygdala regions as well as bilaterally in the insula and temporoparietal cortex (right > left); they also exhibited increased normalized metabolic activity bilaterally in the cerebellum, lingula/cuneus, and brain stem. Severity of depression negatively correlated with absolute rCMRglu in almost the entire extent of the right cingulate cortex as well as bilaterally in prefrontal cortex, insula, basal ganglia, and temporoparietal cortex (right > left). CONCLUSIONS: Areas of frontal, cingulate, insula, and temporal cortex appear hypometabolic in association with different components of the severity and course of illness in treatment-resistant unipolar depression.  相似文献   

13.
Previous studies examining neural responses to emotional stimuli in individuals with major depressive disorder (MDD) have indicated increased responses within the left amygdala to sad faces, and increased activity within the visual cortex and striatum to expressions of happiness. Using functional magnetic resonance imaging (fMRI), the current study measured neural responses to neutral, positive and negative pictures of the International Affective Picture System in 15 healthy individuals and 15 patients with MDD. Depressed individuals demonstrated lower activity in the right hippocampus and the right insula to negative affective pictures, whereas they showed lower activity in the right anterior cingulate cortex and the left insula to positive pictures. However, within the MDD group, the severity of depression correlated with the activity of the left amygdala, bilateral inferior orbitofrontal areas, and the left insula to negative pictures, whereas there were no clear indications of association between specific cerebral regions and positive pictures. Our findings indicate that preferential decreases in the left amygdala in response to negative pictures might be involved in the processing of emotional stimuli in depressed individuals. Also, these findings suggest that the bilateral inferior orbitofrontal cortices and left amygdala may be preferentially recruited in MDD patients, but not in healthy individuals.  相似文献   

14.
Apathy, depression, and anxiety are among the most important non-motor signs of Parkinson’s disease (PD). This may be encountered at early stages of illness and represent a major source of burden. Understanding their pathophysiology is a major prerequisite for efficient therapeutic strategies. Anatomical and metabolic imaging studies have enabled a breakthrough by demonstrating that widespread abnormalities within the limbic circuits notably the orbitofrontal and anterior cingulate cortices, amygdala, thalamus, and ventral striatum are involved in the pathophysiology of depression, anxiety, and apathy in PD. Functional imaging has further shown that mesolimbic dopaminergic but also serotonergic lesions play a major role in the mechanisms of these three neuropsychiatric manifestations, which has direct therapeutic implications.  相似文献   

15.
Supplementation of standard treatment with high-dose levothyroxine (L-T(4)) is a novel approach for treatment-refractory bipolar disorders. This study tested for effects on brain function associated with mood alterations in bipolar depressed patients receiving high-dose L-T(4) treatment adjunctive to ongoing medication (antidepressants and mood stabilizers). Regional activity and whole-brain analyses were assessed with positron emission tomography and [(18)F]fluorodeoxyglucose in 10 euthyroid depressed women with bipolar disorder, before and after 7 weeks of open-label adjunctive treatment with supraphysiological doses of L-T(4) (mean dose 320 microg/day). Corresponding measurements were acquired in an age-matched comparison group of 10 healthy women without L-T(4) treatment. The primary biological measures were relative regional activity (with relative brain radioactivity taken as a surrogate index of glucose metabolism) in preselected brain regions and neuroendocrine markers of thyroid function. Treatment-associated changes in regional activity (relative to global activity) were tested against clinical response. Before L-T(4) treatment, the patients exhibited significantly higher activity in the right subgenual cingulate cortex, left thalamus, medial temporal lobe (right amygdala, right hippocampus), right ventral striatum, and cerebellar vermis; and had lower relative activity in the middle frontal gyri bilaterally. Significant behavioral and cerebral metabolic effects accompanied changes in thyroid hormone status. L-T(4) improved mood (remission in seven patients; partial response in three); and decreased relative activity in the right subgenual cingulate cortex, left thalamus, right amygdala, right hippocampus, right dorsal and ventral striatum, and cerebellar vermis. The decrease in relative activity of the left thalamus, left amygdala, left hippocampus, and left ventral striatum was significantly correlated with reduction in depression scores. Results of the whole-brain analyses were generally consistent with the volume of interest results. We conclude that bipolar depressed patients have abnormal function in prefrontal and limbic brain areas. L-T(4) may improve mood by affecting circuits involving these areas, which have been previously implicated in affective disorders.  相似文献   

16.
BACKGROUND: Dual frontolimbic brain pathology has been suggested as a possible correlate of impulsivity and aggressive behavior. One previous study reported volume loss of the hippocampus and the amygdala in patients with borderline personality disorder. We measured limbic and prefrontal brain volumes to test the hypothesis that frontolimbic brain pathology might be associated with borderline personality disorder. METHODS: Eight unmedicated female patients with borderline personality disorder and eight matched healthy controls were studied. The volumes of the hippocampus, amygdala, and orbitofrontal, dorsolateral prefrontal, and anterior cingulate cortex were measured in the patients using magnetic resonance imaging volumetry and compared to those obtained in the controls. RESULTS: We found a significant reduction of hippocampal and amygdala volumes in borderline personality disorder. There was a significant 24% reduction of the left orbitofrontal and a 26% reduction of the right anterior cingulate cortex in borderline personality disorder. Only left orbitofrontal volumes correlated significantly with amygdala volumes. CONCLUSIONS: While volume loss of a single brain structure like the hippocampus is quite an unspecific finding in neuropsychiatry, the patterns of volume loss of the amygdala, hippocampus, and left orbitofrontal and right anterior cingulate cortex might differentiate borderline personality disorder from other neuropsychiatric conditions.  相似文献   

17.
BackgroundIn Parkinson's disease (PD), impulsive-compulsive behaviors (ICBs) may develop as side-effect of dopaminergic medications. Abnormal incentive-driven decision-making, which is supported by the cognitive control and motivation interaction, may represent an ICBs signature. This systematic review explored whether structural and/or functional brain differences between PD patients with vs without ICBs encompass incentive-driven decision-making networks.MethodsStructural and functional neuroimaging studies comparing PD patients with and without ICBs, either de novo or medicated, were included.ResultsThirty articles were identified. No consistent evidence of structural alteration both in de novo and medicated PD patients were found. Differences in connectivity within the default mode, the salience and the central executive networks predate ICBs development and remain stable once ICBs are fully developed. Medicated PD patients with ICBs show increased metabolism and cerebral blood flow in orbitofrontal and cingulate cortices, ventral striatum, amygdala, insula, temporal and supramarginal gyri. Abnormal ventral striatum connectivity with anterior cingulate cortex and limbic structures was reported in PD patients with ICBs.DiscussionFunctional brain signatures of ICBs in PD encompass areas involved in cognitive control and motivational encoding networks of the incentive-driven decision-making. Functional alterations predating ICBs may be related to abnormal synaptic plasticity in these networks.  相似文献   

18.
OBJECTIVE: Separation from loved ones commonly leads to grief reactions. In some individuals, grief can evolve into a major depressive episode. The brain regions involved in grief have not been specifically studied. The authors studied brain activity in women actively grieving a recent romantic relationship breakup. It was hypothesized that while remembering their ex-partner, subjects would have altered brain activity in regions identified in sadness imaging studies: the cerebellum, anterior temporal cortex, insula, anterior cingulate, and prefrontal cortex. METHOD: Nine right-handed women whose romantic relationship ended within the preceding 4 months were studied. Subjects were scanned using blood-oxygen-level-dependent functional magnetic resonance imaging while they alternated between recalling a sad, ruminative thought about their loved one (grief state) and a neutral thought about a different person they knew an equally long time. RESULTS: Acute grief (grief minus neutral state) was associated with increased group activity in posterior brain regions, including the cerebellum, posterior brainstem, and posterior temporoparietal and occipital brain regions. Decreased activity was more prominent anteriorly and on the left and included the anterior brainstem, thalamus, striatum, temporal cortex, insula, and dorsal and ventral anterior cingulate/prefrontal cortex. When a more lenient statistical threshold for regions of interest was used, additional increases were found in the lateral temporal cortex, supragenual anterior cingulate/medial prefrontal cortex, and right inferomedial dorsolateral prefrontal cortex, all of which were adjacent to spatially more prominent decreases. In nearly all brain regions showing brain activity decreases with acute grief, activity decreases were greater in women reporting higher grief levels over the past 2 weeks. CONCLUSIONS: During acute grief, subjects showed brain activity changes in the cerebellum, anterior temporal cortex, insula, anterior cingulate, and prefrontal cortex, consistent with the hypothesis. Subjects with greater baseline grief showed greater decreases in all these regions except for the cerebellum. Further imaging studies are needed to understand the relationship between normal sadness, grief, and depression.  相似文献   

19.
Benedetti F, Absinta M, Rocca MA, Radaelli D, Poletti S, Bernasconi A, Dallaspezia S, Pagani E, Falini A, Copetti M, Colombo C, Comi G, Smeraldi E, Filippi M. Tract‐specific white matter structural disruption in patients with bipolar disorder. Bipolar Disord 2011: 13: 414–424. © 2011 The Authors. Journal compilation © 2011 John Wiley & Sons A/S. Objectives: A growing body of evidence suggests that, independent of localized brain lesions, mood disorders can be associated with dysfunction of brain networks involved in the modulation of emotional and cognitive behavior. We used diffusion tensor (DT) tractography to quantify the presence and extent of structural injury to the connections between the amygdala and other brain regions, which included the subgenual, the supragenual and posterior cingulate, the parahippocampal, the orbitofrontal and dorsolateral prefrontal cortices, as well as the insula. Methods: Using a 3.0 Tesla scanner, conventional and DT magnetic resonance imaging sequences of the brain were acquired from 15 adult patients with major depressive disorder (MDD), 15 with bipolar disorder (BD), and 21 age‐matched healthy controls. Using FSL software, diffusivity changes of the white matter (WM) fiber bundles belonging to the emotional network were measured. Results: Compared to controls and MDD patients, BD patients had significantly decreased average fractional anisotropy, increased average mean diffusivity, and increased average axial and radial diffusivity values in the majority of the WM fiber bundles connecting structures of the anterior limbic network (p‐values ranging from 0.002 to 0.040). Medication load did not influence the results with the exception of lithium, which was associated with normal diffusivity values in tracts connecting the amygdala with the subgenual cingulate cortex. Conclusions: We detected specific WM abnormalities, suggestive of disrupted integrity of fiber bundles in the brains of patients with BD. These abnormalities might contribute to understanding both mood dysregulation and cognitive disturbances in BD, and might provide an objective marker to monitor treatment efficacy in this condition.  相似文献   

20.
Risky decision making is a hallmark behavioral phenotype of drug abuse; thus, an understanding of its biological bases may inform efforts to develop therapies for addictive disorders. A neurocognitive task that measures this function (Rogers Decision-Making Task; RDMT) was paired with measures of regional cerebral perfusion to identify brain regions that may underlie deficits in risky decision making in drug abusers. Subjects were abstinent drug abusers (> or =3 months) and healthy controls who underwent positron emission tomography scans with H(2)(15)O. Drug abusers showed greater risk taking and heightened sensitivity to rewards than control subjects. Both drug abusers and controls exhibited significant activations in a widespread network of brain regions, primarily in the frontal cortex, previously implicated in decision-making tasks. The only significant group difference in brain activation, however, was found in the left pregenual anterior cingulate cortex, with drug abusers exhibiting less task-related activation than control subjects. There were no significant correlations between neural activity and task performance within the control group. In the drug abuse group, on the other hand, increased risky choices on the RDMT negatively correlated with activation in the right hippocampus, left anterior cingulate gyrus, left medial orbitofrontal cortex, and left parietal lobule, and positively correlated with activation in the right insula. Drug abuse severity was related positively to right medial orbitofrontal activity. Attenuated activation of the pregenual ACC in the drug abusers relative to the controls during performance on the RDMT may underlie the abusers' tendency to choose risky outcomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号