首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We investigated nerve regeneration following the repair of a segmental nerve defect induced by direct end-to-end neurorrhaphy after simultaneous gradual lengthening of both proximal and distal nerve stumps in rats. A 15-mm-long nerve segment was resected from the sciatic nerve of each rat. The proximal and distal nerve stumps, respectively, were directly lengthened at a rate of 1 mm/day using a custom-made external nerve-lengthening device. After being lengthened for 14 days, both nerve stumps were refreshed, and direct end-to-end neurorrhaphy was performed. For a control, 15-mm nerve grafting was performed immediately after nerve resection. Nerve regeneration was evaluated by motor nerve conduction velocity, muscle contraction force, and histological studies at 6, 8, and 14 weeks after initial nerve resection in both groups. As a result, at 8 and 14 weeks, the motor nerve conduction velocity was significantly higher in the nerve-lengthening group than in the autografting group. In addition, at 14 weeks, the tetanic force and wet weight of the gastrocnemius muscle were significantly higher in the nerve-lengthening group than in the autografting group. Histologically, the mean axonal diameter of myelinated nerve fibers and the total number of myelinated nerve fibers were also significantly higher in the nerve-lengthening group than in the autografting group for each evaluation period. It appears that the simultaneous gradual lengthening of both proximal and distal nerve stumps might have potential application in the repair of peripheral nerve defects.  相似文献   

3.
AimsPeripheral nerve defects are often difficult to recover from, and there is no optimal repair method. Therefore, it is important to explore new methods of repairing peripheral nerve defects. This study explored the efficacy of nerve grafts constructed from chitin biological conduits combined with small autogenous nerves (SANs) and platelet‐rich plasma (PRP) for repairing 10‐mm sciatic nerve defects in rats.MethodsTo prepare 10‐mm sciatic nerve defects, SANs were first harvested and PRP was extracted. The nerve grafts consisted of chitin biological conduits combined with SAN and PRP, and were used to repair rat sciatic nerve defects. These examinations, including measurements of axon growth efficiency, a gait analysis, electrophysiological tests, counts of regenerated myelinated fibers and observations of their morphology, histological evaluation of the gastrocnemius muscle, retrograde tracing with Fluor‐Gold (FG), and motor endplates (MEPs) distribution analysis, were conducted to evaluate the repair status.ResultsTwo weeks after nerve transplantation, the rate and number of regenerated axons in the PRP‐SAN group improved compared with those in the PRP, SAN, and Hollow groups. The PRP‐SAN group exhibited better recovery in terms of the sciatic functional index value, composite action potential intensity, myelinated nerve fiber density, myelin sheath thickness, and gastrectomy tissue at 12 weeks after transplantation, compared with the PRP and SAN groups. The results of FG retrograde tracing and MEPs analyses showed that numbers of FG‐positive sensory neurons and motor neurons as well as MEPs distribution density were higher in the PRP‐SAN group than in the PRP or SAN group.ConclusionsNerve grafts comprising chitin biological conduits combined with SANs and PRP significantly improved the repair of 10‐mm sciatic nerve defects in rats and may have therapeutic potential for repairing peripheral nerve defects in future applications.  相似文献   

4.
Apolipoprotein E is synthesized and secreted by degenerating peripheral nerve, but the role of resident endoneurial cells in this process is not clear. To exclude the involvement of nonresident cells, we examined the cellular source of endoneurial apolipoprotein E in explant cultures of rat sciatic nerve. The cellular outgrowth from these explant cultures released apolipoprotein E into the culture medium. The cellular outgrowth contained fibroblasts, Schwann cells, and a population of cells with many phenotypic characteristics of macrophages, including the production of apolipoprotein E. No other cell type in the cultures appeared to contribute to this production. These data suggest that apolipoprotein E is produced by resident endoneurial cells in explant cultures and that these cells are macrophages.  相似文献   

5.
(+)-Tubocurarine [+)-Tc: 10-100 microM) reduced the duration of the afterhyperpolarization, which was induced by the activation of Ca2+-dependent K+-conductance (GK,Ca) following an action potential in the bullfrog sympathetic ganglion cell, but did not affect the maximum rates of rise and fall of Na+- and Ca2+-dependent action potentials. The amplitudes of slow rhythmic membrane hyperpolarizations produced by rhythmic rises in the GK,Ca were also decreased by (+)-Tc without a change in their intervals. Thus, (+)-Tc appears to block the Ca2+-dependent K+-channel of the bullfrog sympathetic ganglion cell.  相似文献   

6.
Depletion of myelin and neurobehavioural deficits are indications that vanadium crosses the blood‐brain barrier and such neurotoxic effects of vanadium on the brain of Wistar rats have been elucidated. The effect however on the peripheral nerves, is yet to be reported. Thus, this work was designed to evaluate the axonal and myelin integrity of sciatic nerves in Wistar rats following exposure to vanadium. Ten male Wistar rats were exposed to 3 mg/kg body weight of sodium metavanadate for 7 days, subjected to rearing and forelimb grip behavioural tests, and sciatic nerves processed for histology (haematoxylin and eosin, cresyl violet, and luxol fast blue). Dystrophic axons with vesiculated myelin, thinned myelin sheath, and demyelinated axons were observed in the vanadium exposed rats, suggestive of axonopathy, classified as fourth‐degree nerve injury. Lower behavioural scores were recorded for vanadium‐dosed rats; thus, corroborating histological pictures observed of the sciatic nerves. Authors posit that vanadium crossed the “blood‐nerve” barrier and caused the observed axonal pathologies and myelin depletion in the sciatic nerves of these rodents with resultant motor deficits. The present paper discusses possible motor deficits and the likely public health importance in regions with crude oil pollution and gas flaring rich in vanadium products.  相似文献   

7.
Complete transection of peripheral mixed nerves immediately produces loss of sensory perception,muscle contractions and voluntary behavior mediated by the severed distal axons.In contrast to natural regeneration(~1 mm/d)of proximal axons that may eventually reinnervate denervated targets,re-innervation is restored within minutes by PEG-fusion that consists of neurorrhaphy and a sequence of well specified hypo-and isotonic calcium-free or calcium-containing solutions,the anti-oxidant methylene blue(MB)and the membrane fusogen polyethylene glycol(PEG).In this study,we examined the relative efficacy of PEG-fusion with no MB(0%),0.5%MB,or 1%MB on the recovery of voluntary behaviors by female Sprague-Dawley rats with a complete mid-thigh severance of their sciatic nerve bathed in extracellular fluid or calcium-containing isotonic saline.The recovery of voluntary behaviors is the most relevant measure of success of any technique to repair peripheral nerve injuries.We assessed recovery by the sciatic functional index,a commonly used measure of voluntary hindlimb behaviors following complete sciatic transections.We reported that both 1%MB and 0.5%MB in sterile distilled water in our PEG-fusion protocol with neurorrhaphy significantly increased the rate and extent of behavioral recovery compared to PEG plus neurorrhaphy alone.Furthermore,0.5%MB was as effective as 1%MB in voluntary behavioral recovery as assessed by the sciatic functional index.Since sterile 1%MB is no longer clinically available,we therefore recommend that 0.5%MB be included in upcoming human clinical trials to evaluate the safety and efficacy of PEG-fusion.All animal procedures were approved by the University of Texas Institutional Animal Care and Use Committee(AUP-2019-00225)on September 9,2020.  相似文献   

8.
9.
In this study, we constructed tissue-engineered nerves with acellular nerve allografts in Sprague-Dawley rats, which were prepared using chemical detergents-enzymatic digestion and mechanical methods, in combination with bone marrow mesenchymal stem cells of Wistar rats cultured in vitro, to repair 15 mm sciatic bone defects in Wistar rats. At postoperative 12 weeks, electrophysiological detection results showed that the conduction velocity of regenerated nerve after repair with tissue-engineered nerves was similar to that after autologous nerve grafting, and was higher than that after repair with acellular nerve allografts. Immunohistochemical staining revealed that motor endplates with acetylcholinesterase-positive nerve fibers were orderly arranged in the middle and superior parts of the gastrocnemius muscle; regenerated nerve tracts and sprouted branches were connected with motor endplates, as shown by acetylcholinesterase histochemistry combined with silver staining. The wet weight ratio of the tibialis anterior muscle at the affected contralateral hind limb was similar to the sciatic nerve after repair with autologous nerve grafts, and higher than that after repair with acellular nerve allografts. The hind limb motor function at the affected side was significantly improved, indicating that acellular nerve allografts combined with bone marrow mesenchymal stem cell bridging could promote functional recovery of rats with sciatic nerve defects.  相似文献   

10.
11.
Introduction: High‐resolution ultrasonography (HRU) is a novel method that provides morphological information about peripheral nerves. We aimed to determine reference values for nerve cross‐sectional area (CSA) on HRU. Methods: One hundred healthy volunteers had HRU of median, radial, ulnar, fibular, tibial, sural, and superficial fibular nerves at defined sites. The CSA was measured and the effects of age, gender, and body mass index (BMI) were evaluated. Results: CSA values in healthy subjects are described. CSA is larger in lower limb motor nerves than in sensory nerves at similar sites, and the CSA tends to be symmetrical. The strongest effect on CSA was for age, although gender and BMI had some effects. Conclusions: This study provides normative values for HRU, and it suggests that further research with age‐ and gender‐specific distributions must be a key priority in the development of HRU for use as a diagnostic test for peripheral nerve diseases. Muscle Nerve 53 : 538–544, 2016  相似文献   

12.
Previous studies have shown that exogenous gangliosides promote nervous system regeneration and synapse formation.In this study,10 mm sciatic nerve segments from New Zealand rabbits were thawed from cryopreservation and were used for the repair of left sciatic nerve defects through allograft bridging.Three days later,1 m L ganglioside solution(1 g/L) was subcutaneously injected into the right hind leg of rabbits.Compared with non-injected rats,muscle wet weight ratio was increased at 2–12 weeks after modeling.The quantity of myelinated fibers in regenerated sciatic nerve,myelin thickness and fiber diameter were elevated at 4–12 weeks after modeling.Sciatic nerve potential amplitude and conduction velocity were raised at 8 and 12 weeks,while conduction latencies were decreased at 12 weeks.Experimental findings indicate that ganglioside can promote the regeneration of sciatic nerve defects after repair with cryopreserved peripheral nerve allografts.  相似文献   

13.
Damage to peripheral nerve tissue may cause loss of function in both the nerve and the targeted muscles it innervates. This study compared the repair capability of engineered nerve conduit (ENC), engineered fibroblast conduit (EFC), and autograft in a 10-mm tibial nerve gap. ENCs were fabricated utilizing primary fibroblasts and the nerve cells of rats on embryonic day 15 (E15). EFCs were fabricated utilizing primary fi-broblasts only. Following a 12-week recovery, nerve repair was assessed by measuring contractile properties in the medial gastrocnemius muscle, distal motor nerve conduction velocity in the lateral gastrocnemius, and histology of muscle and nerve. The autografts, ENCs and EFCs reestablished 96%, 87% and 84% of native distal motor nerve conduction velocity in the lateral gastrocnemius, 100%, 44% and 44% of native specific force of medical gastrocnemius, and 63%, 61% and 67% of native medial gastrocnemius mass, re-spectively. Histology of the repaired nerve revealed large axons in the autograft, larger but fewer axons in the ENC repair, and many smaller axons in the EFC repair. Muscle histology revealed similar muscle fiber cross-sectional areas among autograft, ENC and EFC repairs. In conclusion, both ENCs and EFCs promot-ed nerve regeneration in a 10-mm tibial nerve gap repair, suggesting that the E15 rat nerve cells may not be necessary for nerve regeneration, and EFC alone can suffice for peripheral nerve injury repair.  相似文献   

14.
Complete crush or cut severance of sciatic nerve axons in rats and other mammals produces immediate loss of axonal continuity. Loss of locomotor functions subserved by those axons is restored only after months, if ever, by outgrowths regenerating at ~1 mm/day from the proximal stumps of severed axonal segments. The distal stump of a severed axon typically begins to degenerate in 1–3 days. We recently developed a polyethylene glycol (PEG) fusion technology, consisting of sequential exposure of severed axonal ends to hypotonic Ca2+‐free saline, methylene blue, PEG in distilled water, and finally Ca2+‐containing isotonic saline. This study examines factors that affect the PEG fusion restoration of axonal continuity within minutes, as measured by conduction of action potentials and diffusion of an intracellular fluorescent dye across the lesion site of rat sciatic nerves completely cut or crush severed in the midthigh. Also examined are factors that affect the longer‐term PEG fusion restoration of lost behavioral functions within days to weeks, as measured by the sciatic functional index. We report that exposure of cut‐severed axonal ends to Ca2+‐containing saline prior to PEG fusion and stretch/tension of proximal or distal axonal segments of cut‐severed axons decrease PEG fusion success. Conversely, trimming cut‐severed ends in Ca2+‐free saline just prior to PEG fusion increases PEG fusion success. PEG fusion prevents or retards the Wallerian degeneration of cut‐severed axons, as assessed by measures of axon diameter and G ratio. PEG fusion may produce a paradigm shift in the treatment of peripheral nerve injuries. © 2016 Wiley Periodicals, Inc.  相似文献   

15.
Traumatic, infectious, metabolic, and chemical noxa to the nervous system are the etiology of a crippling disease generally termed neuropathy. Motor disorders, altered sensibility, and pain are the pathognomonic traits. Cellular alterations induced by this chronic pathology include mitochondrial dysfunctions that lead to the activation of the apoptotic cascade. Energy imbalance can compromise the maintenance of mitochondrial membrane potential, furthering the release of cytochrome C and the subsequent cleavage and activation of caspases. Chronic constriction injury (CCI) of the rat sciatic nerve is a neuropathy model able to induce a strong mitochondrial impairment with a consequent apoptotic induction. In this model, the acetylcholinesterase inhibitor physostigmine is administered at 0.125 mg/kg i.p. (twice per day) starting from the operation and for 15 days after. The cholinergic activation reduces cytosolic levels of cytochrome C, suggesting an improved stability of the mitochondrial membrane, and the expression level of the active caspase 3 fragments (19, 16 kDa) is reduced significantly with respect to saline treatment. Accordingly, physostigmine impairs caspase 3 protease activity. In fact, the target of the activated caspase 3, the 89‐kDa PARP fragment, is significantly less expressed in the ligated nerve of physostigmine‐treated rats, reaching levels that are comparable to those in the contralateral unligated nerve. Finally, this natural acetylcholinesterase inhibitor reduces DNA fragmentation both in the proximal and in the distal parts of the nerve. This protection correlates with the induction of XIAP. Therefore, apoptosis, central to tissue degeneration, is prevented by repeated physostigmine treatment of CCI animals. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
Optic nerve injury leads to retinal ganglion cell apoptosis, thus preventing fiber regeneration. Peripheral nerve grafts are known to promote survival and regeneration in injured adult mammalian central nervous system, including optic nerve, but the mechanisms of their activity remain unclear. It is likely that they attenuate the apoptotic cascade triggered by axotomy in retinal ganglion cells. The aim of this work was to examine the role of the antiapoptotic gene bcl-2 in the optic nerve regeneration induced by such grafts. Experiments were carried out on bcl-2-deficient and wild-type mice. We have reported previously that predegeneration markedly enhances neurotrophic activity of peripheral nerve grafts, so we applied both predegenerated and non-predegenerated implants to the transected optic nerves. We studied the neurotrophic effects of bcl-2-deficient grafts on wild-type and bcl-2 knock-out optic nerves, as well as wild-type grafts on both strains of mouse optic nerves. After application of fluorescent dye to the end of the graft, we counted the stained retinal ganglion cells. Predegenerated wild-type grafts promoted survival and outgrowth of retinal ganglion cells axons in both types of mice. By contrast, non-predegenerated and predegenerated bcl-2-deficient grafts induced little or no regeneration in the optic nerves. These results indicate that the lack of bcl-2 gene does not deprive retinal ganglion cells of their regenerative potential. At the same time, we found that bcl-2 knock-out dispossesses peripheral nerves of their neurotrophic activity.  相似文献   

17.
The present study aims to investigate the potential of brief electrical stimulation (ES; 3 V, 20 Hz, 20 min) in improving functional recovery in delayed nerve injury repair (DNIR). The sciatic nerve of Sprague Dawley rats was transected, and the repair of nerve injury was delayed for different time durations (2, 4, 12 and 24 weeks). Brief depolarizing ES was applied to the proximal nerve stump when the transected nerve stumps were bridged with a hollow nerve conduit (5 mm in length) after delayed periods. We found that the diameter and number of regenerated axons, the thickness of myelin sheath, as well as the number of Fluoro‐Gold retrograde‐labeled motoneurons and sensory neurons were significantly increased by ES, suggesting that brief ES to proximal nerve stumps is capable of promoting nerve regeneration in DNIR with different delayed durations, with the longest duration of 24 weeks. In addition, the amplitude of compound muscle action potential (gastrocnemius muscle) and nerve conduction velocity were also enhanced, and gastrocnemius muscle atrophy was partially reversed by brief ES, indicating that brief ES to proximal nerve stump was able to improve functional recovery in DNIR. Furthermore, brief ES was capable of increasing brain‐derived neurotrophic factor (BDNF) expression in the spinal cord in DNIR, suggesting that BDNF‐mediated neurotrophin signaling might be one of the contributing factors to the beneficial effect of brief ES on DNIR. In conclusion, the present findings indicate the potential of using brief ES as a useful method to improve functional recovery for delayed repair of peripheral nerve lesions.  相似文献   

18.
Preparations yielding a high percentage of undamaged axons from fresh peripheral nerve or nerve root were made using an enzymatic dissociation regimen. The nerve was placed in a temperature-controlled chamber mounted over an inverted phase-contrast microscope. An oxygenated solution (Brimijoins) or modified Hank's solution was pumped through the chamber, first in a calcium-free form and then containing enzymes. The enzymes for dissociation were collagenase and trypsin, alternated. Enzymatic dissociation of the epineurium, perineurium and extracellular matrix was achieved. We supplemented the gentle agitation of a 10-roller peristaltic pump by periodically raising and lowering the fluid level in the chamber to provide a controlled mechanical agitation that promoted dissociation. A large percentage of the axons can be dissociated from the nerve, varying from approximately one-quarter to occasional complete dissociation. Action potentials were still conducted through dissociated axons, and axon transport was also still present, as documented by direct visualization using an AVEC-DIC type of microscope system. The axons had a better morphological appearance and displayed better transport than comparison preparations prepared by the usual mechanical teasing method, in our hands. The enzymatic method allows study of axons in an adult or developing mammal with regard to their electrical conduction and axon transport mechanisms. It should help to avoid a selection process for more hardy axons which may be imposed by traditional mechanical teasing methods. Mechanical stress was observed to cause widened Schmidt-Lanterman clefts, widened nodes, myelin bubbles, and other abnormal morphology as evidence of damage.  相似文献   

19.
Spinal cord injury (SCI) induces retrograde cell death in descending pathways, which can be prevented by long-term intrathecal infusion of neurotrophins (Novikova et al. [2000] Eur J Neurosci 12:776-780). The present study investigates whether the same treatment also leads to improved regeneration of the injured tracts. After cervical SCI in adult rats, a peripheral nerve graft was attached to the rostral wall of the lesion cavity. The animals were treated by local application into the cavity of Gelfoam soaked in (1) phosphate buffered saline (untreated controls) or (2) a mixture of the neurotrophins brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) (local treatment), or by intrathecal infusion of BDNF + NT-3 for (3) 2 weeks (short-term treatment) or (4) 5-8 weeks (long-term treatment). Despite a very strong survival effect, long-term treatment failed to stimulate ingrowth of descending tracts into the nerve graft. In comparison with untreated controls, the latter treatment also caused 35% reduction in axonal sprouting of descending pathways rostral to the lesion site and 72% reduction in the number of spinal cord neurons extending axons into the nerve graft. Local and short-term treatments neither prevented retrograde cell death nor enhanced regeneration of descending tracts, but induced robust regeneration of spinal cord neurons into the nerve graft. These results indicate that the signal pathways promoting neuronal survival and axonal regeneration, respectively, in descending tracts after SCI respond differently to neurotrophic stimuli and that efficient rescue of axotomized tract neurons is not a sufficient prerequisite for regeneration.  相似文献   

20.
《中国神经再生研究》2016,(9):1517-1526
Various studies have reported that galanin can promote axonal regeneration of dorsal root ganglion neuronsin vitro and inhibit neuropathic pain. However, little is known about its effects on diabetic peripheral neuropathy, andin vivo experimental data are lacking. We hypothesized that repeated applications of exogenous galanin over an extended time frame may also repair nerve damage in diabetic peripheral neuropathy, and relieve pain in vivo. We found that neuropathic pain occurred in streptozotocin-induced diabetic rats and was more severe after sciatic nerve pinch injury at 14 and 28 days than in diabetic sham-operated rats. Treatment with exogenous galanin alleviated the neuropathic pain and promoted sciatic nerve regeneration more effectively in diabetic rats than in non-diabetic rats after sciatic nerve pinch injury. This was accompanied by changes in the levels of endogenous galanin, and its receptors galanin receptor 1 and galanin receptor 2 in the dorsal root ganglia and the spinal dorsal horn when compared with nerve pinch normal rats. Our results show that application of exogenous galanin daily for 28 days can promote the regeneration of injured sciatic nerves, and alleviate neuropathic pain in diabetic rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号