首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
2.
AIMS: The Wilms' tumour gene (WT1) product is expressed during the development of the urogenital system. This study was undertaken to evaluate four anti-WT1 antibodies and use the most specific one to examine the expression of WT1 in formalin fixed, paraffin wax embedded tissues from human embryos, fetuses, and paediatric renal neoplasms. METHODS: The antibodies were assessed on paraffin sections of fetal kidney and by western blotting. Immunohistochemical techniques were optimised and performed on a range of embryonic, fetal, and infant tissues from 35 days post-conception to three months of age, and on a selection of paediatric renal neoplasms. RESULTS: The antibodies tested were found to vary in their specificity. Anomalous expression in smooth muscle was seen with one batch of a commercial polyclonal antibody. WT1 protein was detected in both the metanephros and the mesonephros, the spleen, the gonads, and in the peritoneal mesothelium in fetuses. WT1 was expressed in nuclei and was strongest in the podocytes of fetal kidney. The podocytes of infant glomeruli were also positive. There was focal positive staining in Wilms' tumours, nephrogenic rests, and in a cystic partially differentiated nephroblastoma. Staining of nuclei was seen in one of two rhabdoid tumours of the kidney. No positive staining was seen in other renal tumours. CONCLUSIONS: WT1 is detected readily in formalin fixed material. There were differences in specificity between batches of the polyclonal antibodies used. The distribution of the WT1 gene product in tissues and tumours reflected previous findings with in situ hybridisation studies of WT1 mRNA.  相似文献   

3.
4.
5.
6.
Sex-specific roles of beta-catenin in mouse gonadal development   总被引:1,自引:0,他引:1  
  相似文献   

7.
8.
In immature rat Sertoli cells, leucine-rich primary response gene 1 (LRPR1) represents a follicle stimulating hormone (FSH)-responsive gene; the function of the encoded protein is not yet known. LRPR1 mRNA expression is up-regulated very rapidly and specifically by FSH, both in cultured Sertoli cells and in vivo in regulation in more detail, in testis and ovary of fetal, immature, and adult rats. In addition, we have studied the expression of FSH receptor (FSHR) mRNA in relation to LRPR1 mRNA expression. In rat testis, LRPR1 mRNA and FSHR mRNA followed a similar expression pattern, during postnatal development and also at different stages of the spermatogenic cycle in the adult rat. Furthermore, after short-term challenge of the FSH signal transduction pathway in intact immature rats by injection with a relatively high dose of FSH, an inverse relationship between LRPR1 mRNA (up-regulation) and FSHR mRNA expression (down-regulation) was observed. Similar studies in the ovary provided completely different results. LRPR1 mRNA in the postnatal ovary is present well before expression of FSHR mRNA can be first detected. In addition, incubation of ovaries of immature rats with FSH or dibutyryl cyclic AMP (dbcAMP) did not result in up- regulation of LRPR1 mRNA expression. During fetal development, the LRPR1 mRNA expression pattern involved many more tissues, in contrast to the relatively tissue-specific expression of LRPR1 mRNA in gonads of 21 day old and adult rats. Moreover, LRPR1 mRNA expression could be detected as early as 12.5 days post-coitum, whereas FSHR mRNA is absent at this stage of fetal development. We concluded that the pronounced regulation of LRPR1 by FSH observed in the immature rat testis does not occur in the ovary. Furthermore, in the ovary LRPR1 mRNA expression does not appear to be dependent on FSH action. Finally, the LRPR1 gene product may play a general role during fetal development.   相似文献   

9.
Rhabdoid tumour of the kidney (RTK) is considered to be one of the most aggressive neoplasms of early life. The histogenesis of RTK still remains a matter of controversy. Immunohistochemistry usually shows diffuse reactivity for vimentin, focal reactivity to the epithelial marker, variable expression of mesenchymal and neuroectodermal markers, and loss of INI1 protein staining. Expression of the Wilms' tumour protein (WT1) was described in the RTK cases. We would like to present a case of rhabdoid tumour of the kidney in Latvia, which caused diagnostic difficulties of a 27-month-old girl, and a short review of literature.  相似文献   

10.
In an effort to understand the mechanisms that underpin gonadal differentiation at the time of sex determination, we identified a cDNA encoding a putative novel testis expressed scavenger receptor, Tesr. Based on its domain structure, we hypothesize that the function of Tesr is similar to that of other scavenger receptors that play roles in phagocytosis of apoptotic cells, cell-cell adhesion, and defense. Tesr mRNA was detected in fetal mouse gonads of both sexes at 11.5 days post coitum (dpc). From 12.0 dpc, Tesr expression rapidly decreased in the female and was maintained in the male. Expression was seen in embryonic mouse sites other than the testis, such as in brain, eye, head, heart, neural arch, and cartilage primordium. Tesr expression in the newborn testis was faint to undetectable, but it increased from 2 days postpartum (dpp) until 15 dpp and was found in a subset of interstitial cells and in germ and Sertoli cells. Tesr mRNA in the adult mouse testis was observed in Sertoli cells, spermatogonia, spermatocytes, round spermatids, and in a subset of interstitial cells. We conclude that Tesr is differentially expressed in the male vs. female embryonic gonad and is expressed in both the ovary and the testes postnatally after 2 dpp.  相似文献   

11.
The Wilms' tumor gene WT1 is expressed at high levels in leukemic blast cells in most acute myeloid and lymphoblastic leukemias. In myelodysplastic syndrome, WT1 mRNA expression levels increase along with disease progression; thus, WT1 mRNA is a tumor marker for leukemic blast cells. WT mRNA is also expressed at high levels in various types of solid cancers, including cancers of the lung, breast, colon and pancreas. Patients with WT1-expressing tumors produce antibodies and cytotoxic T-lymphocytes against WT1 protein, indicating that WT1 protein is highly immunogenic and a promising tumor antigen. Major histocompatibility complex class I-restricted cytotoxic T-lymphocyte and class II-restricted helper epitopes of WT1 protein were identified, and clinical studies of cancer immunotherapy using these cytotoxic T-lymphocyte epitope peptides were performed without significant adverse effect and with clinical results promising enough to encourage further clinical trials. The clinical efficacy of cancer immunotherapy targeting the WT1 protein should be clarified by a large-scale clinical study.  相似文献   

12.
13.
14.
We have analyzed the chromosome 6q21 breakpoint of a non-constitutional t(6;15)(q21;q21) rearrangement in sporadic Wilms' tumor. This identified a novel gene encoding a protein with six N-terminal ankyrin repeats linked to a C-terminal HECT ubiquitin-protein ligase domain. We therefore designated this gene HACE1 (HECT domain and Ankyrin repeat Containing E3 ubiquitin-protein ligase 1). HACE1 is widely expressed in human tissues, including mature and fetal kidney. We show that Hace1 protein possesses intrinsic ubiquitin ligase activity, utilizes UbcH7 as a candidate partner E2 enzyme and localizes predominantly to the endoplasmic reticulum. Although the HACE1 locus was not directly interrupted by the translocation in the index Wilms' case, its expression was markedly lower in tumor tissue compared with adjacent normal kidney. Moreover, HACE1 expression was virtually undetectable in the SK-NEP-1 Wilms' tumor cell line and in four of five additional primary Wilms' tumor cases compared with patient-matched normal kidney. We found no evidence of HACE1 mutations or deletions, but hypermethylation of two upstream CpG islands correlates with low HACE1 expression in tumor samples. Our findings implicate Hace1 as a novel ubiquitin-protein ligase and demonstrate that its expression is very low in primary Wilms' tumors.  相似文献   

15.
16.
17.
18.
19.
20.
Summary Pleiotrophin (PTN), also known as HBGAM, belongs to an emerging cytokine family unrelated to other growth factors. We report here the first comprehensive study using in situ hybridization on the cellular distribution of this new heparin-binding growth factor mRNA in rat tissues. PTN mRNA was developmentally expressed in many — but not all — neuroectodermal and mesodermal lineages, whilst no PTN mRNA was detected in endoderm, ectoderm and trophoblast. PTN mRNA was found in the nervous system throughout development, with a post-natal peak of expression. In the adult nervous system, significant expression persisted in hippocampal CA1 pyramidal neurons and in cortical neurons, but also in different non-neuronal cells types in various locations (olfactory nerve, cerebellar astrocytes, pituicytes, Schwann cells surrounding the neurons in sensory ganglia). PTN mRNA was also found during development in the mesenchyme of lung, gut, kidney and reproductive tract, in bone and cartilage progenitors, in dental pulp, in myoblasts, and in several other sites. Expression was differently regulated in each location, but usually faded around birth. In the adult, PTN mRNA was still present in the meninges, the iris, the Leydig cells of the testis and in the uterus. PTN mRNA was also strongly expressed in the basal layers of the tongue epithelium, which is the only epithelium and ectodermal derivative to express PTN mRNA, and this only after birth. PTN is known to be a growth factor for perinatal brain neurons and a mitogen for fibroblasts in vitro. Recently, trophic effects on epithelial cells and a role as a tumour growth factor have been reported. The mechanisms of regulation and the functions of PTN are however still uncertain. Its expression pattern during development suggests important roles in growth and differentiation. Moreover, the presence of PTN mRNA in several adult tissues and the up-regulation of PTN mRNA expression in the gravid uterus indicate that PTN also has physiological functions during adulthood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号