首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have investigated the reported ability of aspartate to enhance greatly the cardioprotective properties of the St. Thomas' Hospital cardioplegic solution after prolonged hypothermic storage. Rat hearts (n = 8 per group) were excised and subjected to immediate arrest with St. Thomas' Hospital cardioplegic solution (2 minutes at 4 degrees C) with or without addition of monosodium aspartate (20 mmol/L). The hearts were then immersed in the same solution for 8 hours (4 degrees C) before heterotopic transplantation into the abdomen of homozygous rats and reperfusion in vivo for 24 hours. The hearts were then excised and perfused in the Langendorff mode (20 minutes). Addition of aspartate to St. Thomas' Hospital cardioplegic solution gave a small but significant improvement in left ventricular developed pressure, which recovered to 82 +/- 3 mm Hg compared with 70 +/- 2 mm Hg in control hearts (p less than 0.05). However, coronary flow and high-energy phosphate content were similar in both groups. In subsequent experiments hearts (n = 8 per group) were excised, arrested (2 minutes at 4 degrees C) with St. Thomas' Hospital cardioplegic solution containing a 0, 5, 10, 20, 30, 40, or 50 mmol/L concentration of aspartate, stored for 8 hours at 4 degrees C, and then reperfused for 35 minutes. A bell-shaped dose-response curve was obtained, with maximum recovery in the 20 mmol/L aspartate group (cardiac output, 48 +/- 5 ml/min versus 32 +/- 5 ml/min in the aspartate-free control group; p less than 0.05). However, additional experiments showed that a comparable improvement could be achieved simply by increasing the sodium concentration of St. Thomas' Hospital cardioplegic solution by 20 mmol/L. Similarly, if sodium aspartate (20 mmol/L) was added and the sodium content of the St. Thomas' Hospital cardioplegic solution reduced by 20 mmol/L, no significant protection was observed when recovery was compared with that of unmodified St. Thomas' Hospital cardioplegic solution alone. In still further studies, hearts (n = 8 per group) were perfused in the working mode at either high (greater than 80 ml/min) or low (less than 50 ml/min) left atrial filling rates. Under these conditions, if functional recovery was expressed as a percentage of preischemic function, artifactually high recoveries could be obtained in the low-filling-rate group. In conclusion, assessment of the protective properties of organic additives to cardioplegic solutions requires careful consideration of (1) the consequences of coincident changes in ionic composition and (2) the characteristics of the model used for assessment.  相似文献   

2.
OBJECTIVE: Depolarizing potassium cardioplegia has been increasingly linked to left ventricular dysfunction, arrhythmia, and microvascular damage. We tested a new polarizing normokalemic cardioplegic solution employing adenosine and lidocaine as the arresting, protecting, and preserving cardioprotective combination. Adenosine hyperpolarizes the myocyte by A1 receptor activation, and lidocaine blocks the sodium fast channels. METHODS: Isolated perfused rat hearts were switched from the working mode to the Langendorff (nonworking) mode and arrested for 30 minutes, 2 hours, or 4 hours with 200 micromol/L adenosine and 500 micromol/L lidocaine in Krebs-Henseleit buffer (10 mmol/L glucose, pH 7.7, at 37 degrees C) or modified St Thomas' Hospital solution no. 2, both delivered at 70 mm Hg and 37 degrees C (arrest temperature 22 degrees C to 35 degrees C). RESULTS: Adenosine and lidocaine hearts achieved faster mechanical arrest in (25 +/- 2 seconds, n = 23) compared with St Thomas' Hospital solution hearts (70 +/- 5 seconds, n = 24; P=.001). After 30 minutes of arrest, both groups developed comparable aortic flow at approximately 5 minutes of reperfusion. After 2 and 4 hours of arrest (cardioplegic solution delivered every 20 minutes for 2 minutes at 37 degrees C), only 50% (4 of 8) and 14% (1 of 7) of St Thomas' Hospital solution hearts recovered aortic flow, respectively. All adenosine and lidocaine hearts arrested for 2 hours (n = 7) and 4 hours (n = 9) recovered 70% to 80% of their prearrest aortic flows. Similarly, heart rate, systolic pressures, and rate-pressure products recovered to 85% to 100% and coronary flows recovered to 70% to 80% of prearrest values. Coronary vascular resistance during delivery of cardioplegic solution was significantly lower (P <.05) after 2 and 4 hours in hearts arrested with adenosine and lidocaine cardioplegic solution compared with hearts arrested with St Thomas' Hospital solution. CONCLUSIONS: We conclude that adenosine and lidocaine polarizing cardioplegic solution confers superior cardiac protection during arrest and recovery compared with hyperkalemic depolarizing St Thomas' Hospital cardioplegic solution.  相似文献   

3.
This study was undertaken to assess the effect of a calcium antagonist, nicardipine (N), added in a cardioplegic solution on the ischemic myocardium. Isolated rat hearts were perfused with oxygenated Krebs Ringer Bicarbonate (KRB) solution by Langendorff's perfusion method and were subjected to 2 hours of ischemic arrest at 30 degrees C with multidose cardioplegia (every 30 min, for 5 min) and a subsequent 60 min of reperfusion. HR, LVP, coronary flow and oxygen tension of coronary effluent were monitored. Oxygen saturation of intracellular myoglobin and redox state of mitochondrial cytochrome aa3 in the myocardial cell were continuously measured throughout studies by a spectrophotometer. Oxygenated crystalloid cardioplegic solution (KRB) containing 25 mM of potassium was used. 40 rats were divided into 4 groups (10 rats each) according to the concentration of N (none, 0.5, 1 and 2 mg/L) in fully oxygenated potassium cardioplegic solution (PO2: 601 +/- 31 mmHg). The percent recovery of pressure-rate product after reperfusion was compared in each group and the optimal concentration of N was found to be 1 mg per liter of cardioplegic solution. No significant difference was found between Group Ia (N = 0 mg/L) and Group Ib (N = 1 mg/L) in metabolic or hemodynamic recovery after reperfusion. In other experiments, 40 rats in Group IIa (N = 0 mg/L, n = 20) and Group IIb (N = 1 mg/L, n = 20) received 10 ml of poorly oxygenated cardioplegic solution (PO2: 215 +/- 10 mmHg) on each reinfusion followed by a 25 min interval of ischemic arrest. The index of oxygen utilization, MVO2/pressure-rate product after reperfusion was significantly lower in Group IIb than in Group IIa (p less than 0.05). The results show that the addition of N (1 mg/L) to the cardioplegic solution preserved a more aerobic state (higher intracellular oxygen level) in the myocardium by further suppressing myocardial oxygen demand during the ischemic period which resulted in better myocardial protection. Therefore, it is concluded that the addition of N to the cardioplegic solution enhances myocardial preservation during myocardial ischemia.  相似文献   

4.
Adenosine is a potential cardioplegic agent by virtue of its specific inhibitory properties on nodal tissue. We tested the hypothesis that adenosine could be more effective than potassium in inducing rapid cardiac arrest and enhancing postischemic hemodynamic recovery. Isolated rat hearts were perfused with Krebs-Henseleit buffer or cardioplegic solutions to determine the time to cardiac arrest and the high-energy phosphate levels at the end of cardioplegia. Cardioplegic solutions contained adenosine 10 mmol/L, potassium 20 mmol/L, or adenosine 10 mmol/L + potassium 20 mmol/L and were infused at a rate of 2 ml/min for 3 minutes at 10 degrees C. Both time taken and total number of beats to cardiac arrest during 3 minutes of cardioplegia were reduced by adenosine 10 mmol/L and adenosine 10 mmol/L + potassium 20 mmol/L when compared with potassium 20 mmol/L alone (p less than 0.001). Tissue phosphocreatine was conserved by adenosine 10 mmol/L when compared with potassium 20 mmol/L, being 7.1 +/- 0.2 (mumol/gm wet weight (n = 7) and 6.0 +/- 0.3 mumol/gm wet weight (n = 5), respectively (p less than 0.05). Postischemic hemodynamic recovery was tested in isolated working rat hearts. After initial cardiac arrest, the cardioplegic solution was removed with Krebs-Henseleit buffer at a rate of 2 ml/min for 3 minutes at 10 degrees C, and thereafter total ischemia was maintained for 30 or 90 minutes at 10 degrees C before reperfusion. Adenosine 10 mmol/L enhanced recovery of aortic output when compared with potassium 20 mmol/L or adenosine 10 mmol/L + potassium 20 mmol/L, the percentage recovery after 30 minutes of ischemia being 103.0% +/- 4.4% (n = 6), 89.0% +/- 5.8% (n = 6), and 86.6% +/- 4.3% (n = 6), respectively (p less than 0.05 for comparison between adenosine 10 mmol/L and potassium 20 mmol/L). Thus adenosine cardioplegia caused rapid cardiac arrest and improved postischemic recovery when compared with potassium cardioplegia and with a combination of these two agents.  相似文献   

5.
The reduced thiol pool of myocardial tissue represents an important defense mechanism against oxygen toxicity. Since the ischemia-induced depletion of this pool might favor the cytotoxicity of oxygen-derived free radicals produced during reperfusion, we assessed the effects of the thiol group donor N-acetylcysteine in an isolated buffer-perfused rat heart model of ischemia/reperfusion. Fifty hearts were studied. A first series of experiments that consisted of two groups (n = 10) was designed to simulate the conditions of standard cardioplegic arrest. Hearts were subjected to 180 minutes of cold (15 degrees to 18 degrees C) global ischemia and 1 hour of reperfusion. The control group received crystalloid hyperkalemic cardioplegic solution given every 30 minutes during arrest, and the treated group received the same solution supplemented with N-acetylcysteine (0.04 mol/L). On the basis of comparisons of postreperfusion left ventricular developed pressure, maximal dP/dt, and diastolic pressure, N-acetylcysteine-containing cardioplegic solution afforded significantly better protection. A second series of experiments was then undertaken to assess the effects of N-acetylcysteine in hearts subjected to the sequence of ischemic events that is inherent in transplantation procedures. Hearts were cardioplegically arrested, stored for 5 hours at 2 degrees C, subjected to 1 additional hour of ischemic arrest at 15 degrees to 18 degrees C, and reperfused for 60 minutes. Three groups (n = 10) were studied that differed by the modalities of cardioplegic preservation used during the poststorage ischemic interval. One group received multidose unmodified cardioplegic solution. A second group received multidose cardioplegic solution supplemented with N-acetylcysteine (0.04 mol/L), and the third group was given only a single dose of N-acetylcysteine-enriched (0.07 mol/L) cardioplegic reperfusate at the end of arrest. Multidose N-acetylcysteine-containing cardioplegic solution resulted in a significantly better hemodynamic recovery than unmodified cardioplegic solution. The protection afforded by N-acetylcysteine was lost when the drug was given only at the time of reperfusion. We conclude that supplementation of cardioplegic solution with N-acetylcysteine markedly improves postarrest recovery of function, presumably through an enhancement of the reduced thiol pool, which increases the capacity of reperfused myocardium to handle the postischemic burst of free radical production. The clinical relevance of these findings stems from the fact that thiol-containing drugs are available for human use.  相似文献   

6.
Adenosine is known to induce rapid cardioplegic arrest and to improve postischemic recovery in the isolated rat heart. Long exposures to high doses of adenosine impair postischemic recovery, however. In this paper we tested the combination of low-dose adenosine (1 mmol/L) with potassium (26 mmol/L), with the aim of achieving rapid arrest (as with high-dose adenosine) but eliminating the need for postarrest washout of adenosine. Cardioplegic solutions studied were (1) Krebs-Henseleit potassium (26 mmol/L) (K); (2) K plus adenosine (1 mmol/L) (KA); (3) K plus an adenosine deaminase inhibitor [erythro-9-(2-hydroxy-3-nonyl)adenine] (0.1 mmol/L) (KE); and as control (4) Krebs-Henseleit potassium (6 mmol/L) (C). We induced cardiac arrest in Langendorff-perfused rat hearts by infusing the cardioplegic solution for 3 minutes at 3 ml/min. Total ischemia lasted 20 minutes at 37 degrees C, followed by reperfusion for 30 minutes. High potassium decreased the arrest time from 260 +/- 16 seconds (group C, mean values +/- standard error of the mean) to 22 +/- 4 seconds (group K). A further decrease to 10 +/- 2 seconds was observed with KA (p = 0.016 versus K). KE, which increased endogenous adenosine, gave intermediate effects. All hearts recovered during reperfusion; the product of developed tension and heart rate (grams per minute) was superior in KA hearts (6250 +/- 740 versus K hearts 4380 +/- 390; p = 0.050). KE gave an intermediate result (5290 +/- 900), while C showed the worst recovery (3180 +/- 830). Our electrophysiologic studies with sinus node and atrial tissue suggest that adenosine induced hyperpolarization and an increase in potassium permeability, thereby arresting the sinus node before depolarization of the membrane by potassium (26 mmol/L). We conclude that low-dose adenosine as an adjunct to potassium shortens the arrest time in this model and improves postischemic recovery.  相似文献   

7.
In two groups of animals (6 and 9 dogs), the aorta was cross-clamped 60 and 90 minutes, respectively, during hypothermic cardiopulmonary bypass. Immediately after cross-clamping, pharmacological cardiac arrest was induced by injecting 100 ml of a cold cardioplegic solution into the aortic root. Topical cardiac hypothermia was added. In hearts undergoing 90 minutes of ischemia, a repeat injection of the cardioplegic solution was done at 45 minutes. In 14 dogs (control group), only topical cardiac hypothermia was instituted for myocardial protection during 60 minutes of ischemia. Seven weeks after operation the surviving animals (6 in each group) were killed.Study of myocardial performance failed to demonstrate significant differences among the groups. Microscopic examination of transmural samples taken from anatomically defined sides of both ventricles, disclosed isolated, punctuate subendocardial scars in only 2 hearts of the control group. All the hearts having 90 minutes of pharmacological cardiac arrest and topical cardiac hypothermia exhibited diffuse fibrosis replacing 10 to 20% of the left ventricular myocardium. Extent and incidence of fibrosis were significantly higher in these hearts in comparison to those of the other groups.We conclude that pharmacological cardiac arrest plus topical cardiac hypothermia makes a safe and efficient method of myocardial protection during aortic cross-clamping only if the ischemic interval is limited to 60 minutes. It cannot prevent permanent myocardial injury if the ischemic arrest is extended to 90 minutes.  相似文献   

8.
OBJECTIVE: Adenosine supplementation of cardioplegic solutions in cardiac operations improves postarrest myocardial recovery after cardioplegic arrest and reperfusion; however, the mechanism of the action of adenosine remains unknown. We tested the hypotheses that adenosine-supplemented cardioplegic solution improves myofibrillar protein cooperative interaction and increases myocardial anaerobic glycolysis. METHODS: The hearts of male Sprague-Dawley rats were randomized to undergo 120 minutes of cardioplegic arrest with 1 of 3 cardioplegic solutions: (1) St Thomas' Hospital No. 2 cardioplegic solution (St Thomas group), (2) St Thomas' Hospital No. 2 cardioplegic solution plus adenosine (100 micromol/L) (adenosine group), and (3) St Thomas' Hospital No. 2 cardioplegic solution plus adenosine (100 micromol/L) plus the nonspecific adenosine receptor antagonist 8-p -sulfophenyltheophylline (50 micromol/L) (sulfophenyltheophylline group). A fourth group of hearts underwent no cardioplegic arrest. RESULTS: Systolic and diastolic functional recovery was improved in the adenosine group compared with that in the other two groups, independent of coronary flow. Adenosine supplementation of cardioplegic solution prevented the decrease in myofibrillar protein cooperative interaction seen after cardioplegic arrest and reperfusion (St Thomas and sulfophenyltheophylline groups). Adenosine-supplemented cardioplegic solution also caused significantly increased anaerobic glycolysis during cardioplegic arrest. These responses were blocked in the sulfophenyltheophylline group. CONCLUSIONS: The changes in myocardial glycolytic activity and myofilament cooperativity coincided with functional recovery in the three cardioplegia groups and may represent mechanisms underlying protection with adenosine-supplemented cardioplegic solution.  相似文献   

9.
This report describes an initial experience applying warm glutamate/aspartate substrate-enriched blood cardioplegic solution to resuscitate hearts in 14 patients with witnessed perioperative arrest. Ten patients were in stable hemodynamic condition in the catheterization laboratory (n = 3) or intensive care unit when sudden irreversible fibrillation developed. It progressed to electromechanical arrest in six patients. In patients with preoperative or postoperative arrest, conventional cardiopulmonary resuscitation and defibrillation were unsuccessful and extracorporeal circulation was started 22 to 150 minutes after arrest. The left ventricle was vented, the aorta clamped, and warm (37 degrees C) aspartate/glutamate blood cardioplegic solution was given at a rate of 150 ml/min for 20 minutes. All bypass grafts were open with good flows in patients who had had coronary bypass, and coronary bypass was done in the three patients who had preoperative arrest. Eleven of 14 hearts resumed normal sinus rhythm after aortic unclamping, only two electrocardiographically proved infarctions occurred, and 13 patients had complete hemodynamic recovery with improved ejection fraction. Three patients died: one of progressive cardiogenic shock, another of mediastinitis, and the third of irreversible neurologic damage. Eleven patients were discharged from the hospital and are well after a follow-up period between 3 and 9 months. We conclude that witnessed perioperative arrest with intractable ventricular fibrillation should be treated aggressively by administering cardiopulmonary resuscitation during prompt transfer to the operating room for total vented bypass and delivery of warm substrate-enriched blood cardioplegic solution. This treatment may salvage hearts thought to be damaged irreversibly and may be a feasible approach to intractable witnessed cardiac arrest, provided cardiopulmonary resuscitation maintains satisfactory cerebral perfusion pressure.  相似文献   

10.
The myocardial protection afforded by GIK solution, widely used as cardioplegic solution in this country, was compared with that provided by St. Thomas solution or oxygenated St. Thomas solution. Eighteen isolated heart-lung preparations of dogs were made and their hearts were subjected to 3 hours cold (4 degrees C) cardioplegic arrest. GIK group hearts (n = 6) received 20 ml/kg of GIK solution at the time of aortic cross-clamp perfused through the aortic root and were subsequently given 10 ml/kg of GIK solution every 30 minutes. St. Thomas group hearts (n = 6) and oxygenated St. Thomas group hearts (n = 6) were treated identically except that cardioplegic solution were St. Thomas solution or fully oxygenated one. Four hearts of GIK group showed ventricular fibrillation immediately after reperfusion that required DC countershock. Temporary A-V block was recognized in two hearts. In the other two groups, however, neither ventricular fibrillation nor A-V block was found. Heart rate, coronary flow, aortic flow and LVSW were measured before arrest and after 60 minutes of reperfusion (mean aortic pressure 70 mmHg, left atrial pressure 4 mmHg). Post reperfusion % recovery rates (post-reperfusion/before arrest) of heart rate, coronary flow, aortic flow and LVSW (mean value +/- standard deviation) were 93.4 +/- 10.32%, 104.6 +/- 24.91%, 18.8 +/- 8.54%, 32.6 +/- 6.12% respectively for GIK group, 81.4 +/- 6.50%, 125.9 +/- 15.23%, 35.4 +/- 9.91%, 56.3 +/- 12.90% for St. Thomas group and 83.1 +/- 8.40%, 121.6 +/- 16.92%, 47.0 +/- 7.89%, 69.1 +/- 9.71% for oxygenated St. Thomas group. St. Thomas and oxygenated St. Thomas groups revealed significantly (p less than 0.05, p less than 0.01 respectively) more excellent functional preservation than GIK group. Intramyocardial pH was also measured by use of glass needle pH electrode punctured into the anterior interventricular septum. Preischemic intramyocardial pH (at 37 degrees C) was 7.49 +/- 0.106 in GIK group, 7.48 +/- 0.113 in St. Thomas group and 7.43 +/- 0.114 in oxygenated St. Thomas group. During 3 hours of cardioplegic arrest, intramyocardial pH (at 4 degrees C) decreased to 6.84 +/- 0.101 in GIK group, 7.03 +/- 0.088 in St. Thomas group and 7.23 +/- 0.239 in oxygenated St. Thomas group, which was significantly higher than GIK group (p less than 0.01). Therefore oxygenated St. Thomas solution was found to maintain more favorable energy supply to ischemic myocardium. These results clearly evidenced that St. Thomas and oxygenated St. Thomas solutions would provide more effective myocardial protection during ischemic arrest than GIK solution.  相似文献   

11.
An isolated working rat heart model designed for function studies after elective cardiac arrest is described. Before and after a cold ischemic period (induced with St. Thomas' cardioplegic solution) of 30 min, hemodynamic and metabolic variables were assessed in a group of 13 hearts perfused with a modified Krebs-Henseleit solution and in a group of 13 hearts perfused with reconstituted blood. Functional recovery was about 90% in the nonblood-perfusate group and 98% in the blood-perfused group. Functional deterioration in time due to edema formation and limited oxygenation in electrolyte-perfused hearts was found to be of the same magnitude as the function loss ascribed to deleterious effects of cardioplegic arrest. The blood-perfused hearts showed hemodynamic stability during a 75 min continuous working period, and complete recovery of function after 30 min arrest.  相似文献   

12.
Current methods of myocardial preservation for transplantation are suboptimal. A newly developed intracellular cardioplegic and storage solution (modified University of Wisconsin solution, group 1) was compared in a randomized, blinded fashion with our present clinical protocol, Stanford cardioplegic solution and saline storage (group 2) in an isolated neonatal pig model. After arrest and storage for 12 hours at 4 degrees C, biopsy specimens were taken from six group 1 hearts and five group 2 hearts for examination under an electron microscope and assessment of high-energy phosphate levels and water content. The remainder (group 1, n = 7; group 2, n = 6) were reperfused with blood for 50 minutes, after which function curves were obtained at left ventricular end-diastolic pressures of 3 to 12 mm Hg and biopsy tissue was taken. Eight control hearts (group 3) were cannulated in situ and perfused on the circuit without arrest or intervening ischemia. Stroke and minute work index curves were approximately threefold and fivefold higher for group 1 (modified University of Wisconsin solution) than for group 2 (Stanford), respectively (p less than 0.01). The hearts preserved with University of Wisconsin solution did not differ in function from unpreserved control hearts (group 3). High-energy phosphate levels were better maintained in group 1 than group 2 (p less than 0.05), and water content was lower (p less than 0.01). Semiquantitative grading of electron micrographs paralleled the functional and biochemical results. Conclusion: Modified University of Wisconsin intracellular solution provides markedly better heart preservation than conventionally used cardioplegic and storage solutions.  相似文献   

13.
In this study we tried to define the possible benefits of the oxygen-derived free radical scavengers after 3 hours of cold myocardial global ischemia, as required in the setting of cardiac transplantation. Twenty-one pig hearts were harvested after preservation with a cold cardioplegic solution (St. Thomas' Hospital solution) and topical cooling. Normothermic reperfusion with blood was achieved with a special heart-lung machine preparation, which allows the heart to beat in a working or nonworking mode. Twelve hearts served as control hearts (group I), and nine (group II) were subjected to superoxide dismutase and catalase. Superoxide dismutase was applied at a dose of 40 U/ml of cardioplegic solution and 1500 U/kg body weight with the start of reperfusion. Catalase was added to the cardioplegic solution in a dose of 100 U/kg and 3500 U/kg body weight with the start of reperfusion. After 15 minutes of retrograde reperfusion, both left ventricular developed pressure and its first derivative were significantly higher in group II (137 +/- 7.6 mm Hg, 2467 +/- 162 mm Hg/sec) than in group I (105 +/- 6 mm Hg, 1676 +/- 231 mm Hg/sec, p less than 0.05 for each). In addition, a considerably higher coronary blood flow was observed in group II throughout the 180-minute period of reperfusion (p = 0.047). We therefore conclude that the combined administration of superoxide dismutase and catalase during the initial period of cardioplegic arrest and during early reperfusion of donor hearts submitted to 3 hours of cold ischemia has a beneficial effect on myocardial performance.  相似文献   

14.
The effects of Ryanodine, an inhibitor of salcoplasmic reticulum function, was investigated in isolated hearts of the Wistar rat strain. The cytosolic calcium was measured with the intracellular Ca2+ fluorescent indicator Fura-2. After 3 minutes perfusion of various cardioplegic solution which were added potassium (the concentration; 20 mmol/L) and four Ryanodine groups (1, 4, 10, and 20 nmol/L), these were obtained cardiac arrest. The arrested hearts were kept at 37°C (normothermia) measuring hemodynamic studies. Hemodynamic parameters were heart rate, LVDP, LV dp/dt, coronary flow, and the intracellular calcium fluorescents which were calculated intracellular Ca2+. The significant difference was not noted in LVDP, but comparable improvement was achieved with Ryanodine groups (p<0.05; 20 nM vs 0 nM). Other cardiac functions were likely same as above. The cytosolic calcium concentration of Ryanodine groups was depressed during cardiac arrest, it was 97.4 ± 17.2% at the end of cardiac arrest, and it was slowly increased to 161.9 ± 46.9% after 40 minutes reperfusion. On the other hand, that of the control group was higher than Ryanodine groups at every measuring points about two times. There was significant difference between both groups (p<0.01). Concequently these phenomena caused that Ca2+ handling in the salcoplasmic reticulum were supressed by Ryanodine and the, contractile function was recovered for that reason.  相似文献   

15.
Augmenting intracellular adenosine improves myocardial recovery   总被引:1,自引:0,他引:1  
The objective of this study was to determine if augmentation of myocardial adenosine levels during global ischemia improves functional recovery after reperfusion. Isolated adult rabbit hearts were subjected to 120 minutes of mildly hypothermic ischemia (34 degrees C) with modified St. Thomas' Hospital cardioplegic solution used to provide myocardial protection. Myocardial adenosine levels were augmented during ischemia by providing exogenous adenosine in the cardioplegic solution or by inhibiting adenosine degradation with 2-deoxycoformycin, a noncompetitive inhibitor of adenosine deaminase. Four groups of hearts were studied: (1) control (n = 23)--cardioplegia alone; (2) adenosine group (n = 10)--adenosine 200 mumol/L added to the cardioplegic solution; (3) 2-deoxycoformycin group (n = 8)--2-deoxycoformycin 1 mumol/L added to the cardioplegic solution; and (4) a combined adenosine/deoxycoformycin group (n = 10). Recovery of developed pressure 45 minutes after reperfusion in the control group averaged only 38% +/- 4% of baseline values. Significantly better recovery was evident in the adenosine (66% +/- 7%), deoxycoformycin (59% +/- 2%), and adenosine/deoxycoformycin (75% +/- 2%) groups. The slope of the relationship between end-diastolic pressure and volume was used as an index of diastolic stiffness. The slope averaged 85 +/- 2 mm Hg/ml in the control group 45 minutes after reperfusion, significantly higher than that in the adenosine (31 +/- 6), deoxycoformycin (75 +/- 5), and adenosine/deoxycoformycin (58 +/- 5) groups; this suggests better diastolic function in the adenosine-augmented groups. During ischemia, adenosine levels were significantly elevated in the adenosine-augmented groups, whereas adenosine triphosphate decreased equally in all four groups, which indicates that augmenting myocardial adenosine had no effect on depletion of adenosine triphosphate during ischemia. After reperfusion, adenosine triphosphate levels were depressed in the control group but increased in the other groups above baseline values, which suggests that improvement in functional recovery was due to accelerated repletion of adenine nucleotide stores in the adenosine-augmented groups.  相似文献   

16.
Cardiac function was assessed in a working in vivo canine heart preparation. Minute work and myocardial oxygen consumption (MVo2) were measured after a two-hour period of hypothermic hyperkalemic crystalloid cardioplegic arrest in one group of dogs (Group 1, N = 6) and in another group of dogs on cardiopulmonary bypass (CPB) alone (Group 2, N = 6). Results indicate that at an afterload of 50 cm H2O, minute work was the same in all hearts but MVo2 was significantly higher in Group 1 hearts at all levels of preload. At higher afterloads, both minute work and MVo2 were significantly greater in Group 1 hearts over the range of preloads tested. Ventricular compliance was decreased in Group 1 over the range of preloads studied. These results suggest that hearts undergoing cardioplegic arrest had better left ventricular contractility than hearts undergoing CPB alone.  相似文献   

17.
OBJECTIVE: This study tested the hypothesis that cardioplegic solution supplemented with a nitric oxide donor agent attenuates postischemic cardiomyocytic apoptosis by reduction of mitochondrial complex I up-regulation during global cardiac arrest under cardiopulmonary bypass. METHODS: Twenty-four anesthetized dogs supported by total vented bypass were divided evenly into 4 groups (n = 6) and subjected to 60 minutes of hypothermic ischemia followed by 4 degrees C multidose crystalloid cardioplegic solution infusion. Hearts received either standard crystalloid cardioplegic solution (control), crystalloid cardioplegic solution supplemented with 2 mmol/L L-arginine (L-Arg group), crystalloid cardioplegic solution supplemented with 400 micromol/L N(G)-monomethyl-L-arginine (L-NMMA group), or crystalloid cardioplegic solution supplemented with 100 micromol/L of NO donor compound (3-morpholinosydnonimine; SIN-1 group). After 60 minutes of cardioplegic arrest, the heart was reperfused for a total of 240 minutes after discontinuation of bypass. The occurrence of cardiomyocytic apoptosis was assessed by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling and Western blot analysis of caspase-3. RESULTS: The occurrence of cardiomyocytic apoptosis was significantly reduced in SIN-1 and L-Arg groups compared with the control group. Mitochondrial complex I mRNA was up-regulated in the control group, and its expression was significantly higher in the L-NMMA group but significantly reduced in the SIN-1 and L-Arg groups. Western blot analysis of Bcl-2 and cytochrome c, an index of mitochondrial damage in postischemic myocardium, revealed a similar pattern. CONCLUSION: Nitric oxide-supplemented crystalloid cardioplegic solution diminished postischemic cardiomyocytic apoptosis after global cardiac arrest under cardiopulmonary bypass, possibly via prevention of mitochondrial complex I up-regulation.  相似文献   

18.
BACKGROUND AND AIMS: This study assessed the cardioprotective effects of inhibitors of adenosine metabolism in an isolated perfused rat heart model. Specifically, we studied the adenosine deaminase inhibitor erythro-9-(2-hydroxy-3-nonyl)-adenine and the selective nucleoside transport inhibitor S-(p-nitrobenzyl)-6-thioinosine, in terms of their potential to enhance protection when added to Bretschneider's cardioplegic solution. METHODS: Rat hearts were infused for 5 min with Krebs-Henseleit buffer solution (group 1), Bretschneider's cardioplegic solution (group 2), Bretschneider's cardioplegic solution with the addition of 25 microM erythro-9-(2-hydroxy-3-nonyl)-adenine and 5 microM S-(p-nitrobenzyl)-6-thioinosine (group 3), and Bretschneider's cardioplegic solution with the addtion of 25 microM erythro-9-(2-hydroxy-3-nonyl)-adenine only (group 4). After cardioplegic arrest and 45 min of ischemic storage at 25 degrees C, the functional recovery of the hearts was tested during 15 min of Langendorff reperfusion and then 45 min of working heart reperfusion. RESULTS: In relation to the cardioprotective effects of Bretschneider's cardioplegic solution alone, we observed an improved recovery of hemodynamic function of the hearts with the addition of both erythro-9-(2-hydroxy-3-nonyl)-adenine and S-(p-nitrobenzyl)-6-thioinosine. However, the myocardial adenosine triphosphate (ATP) concentration remained unchanged. Bradycardia observed under the addition of erythro-9-(2-hydroxy-3-nonyl)-adenine alone was prevented by the addition of S-(p-nitrobenzyl)-6-thioinosine. CONCLUSION: A combination of both substances may be tested further for cardiac preservation, as it might improve the recovery from ischemia at moderate temperatures.  相似文献   

19.
BACKGROUND: Zofenopril has beneficial effects in acute myocardial infarction, and improves the functional recovery after ischemia and reperfusion. Aim of the study: The aim of this study was to investigate the cardioprotective effects of zofenopril, when added to a standard cardioplegic solution or when orally administered as pretreatment. METHODS: A Langendorff model for isolated rat hearts was employed: three groups of eight hearts each were used, respectively, with plain St. Thomas cardioplegia as control (group A and C), and the same solution added with 12.5 mg of zofenopril (group B). The third group (C) was pretreated for 7days with oral administration of zofenopril (6.5 mg/day). The hearts had a baseline perfusion for 30 minutes with Krebs-Henseleit solution at 37 degrees C, cardioplegia administration for 3 minutes, then 30 minutes of ischemia without any perfusion, and finally 30 minutes of reperfusion with Krebs-Henseleit solution at 37 degrees C. RESULTS: Left ventricle developed pressure was significantly higher in the reperfusion period only in the pretreated group (group C) with respect to groups A and B (p = 0.016). Similar results were obtained regarding dP/dt curves (p = 0.020). No differences were demonstrated between groups for cellular viability expressed as creatine phospho-kinase (p = ns) and lactate dehydrogenase release (p = ns). CONCLUSIONS: Zofenopril as oral pretreatment showed protective effects in an isolated model of cardioplegic arrest, although improvements in myocardial viability (enzymatic release) could not be demonstrated. Further experimental and clinical evaluations are necessary to assess the direct cardioprotective effect of zofenopril, modifying the length of treatment and the dosage of the drug.  相似文献   

20.
To determine whether continuous infusion of cardioplegia retrograde through the coronary sinus could improve the salvage of infarcting myocardium, 54 pigs were utilized in a region at risk model. All hearts underwent 30 minutes of reversible coronary artery occlusion, and were divided into six groups. Group 1 served as controls and underwent two hours of coronary reflow without global ischemic arrest. The remaining five groups were subjected to 45 minutes of cardioplegia-induced hypothermic arrest followed by two hours of normothermic reflow. Group 2 had a single infusion of crystalloid cardioplegia, and Group 3 received an oxygenated perfluorocarbon cardioplegic solution initially and again after 20 minutes of ischemia. After initial cardiac arrest with crystalloid cardioplegia, all hearts in Groups 4, 5, and 6 underwent a continuous infusion of a cardioplegic solution retrograde through the coronary sinus. Group 4 received a nonoxygenated crystalloid cardioplegic solution, Group 5 received an oxygenated crystalloid cardioplegic solution, and Group 6 received an oxygenated perfluorocarbon cardioplegic solution. With results expressed as the percent of infarcted myocardium within the region at risk, Group 2 hearts, which received only antegrade cardioplegia, had a mean infarct size of 44.8 +/- 6.3%, a 2.2-fold increase over controls (p less than 0.05). While antegrade delivery of oxygenated perfluorocarbon cardioplegia (Group 3) and coronary sinus perfusion with nonoxygenated crystalloid cardioplegia (Group 4) limited infarct size to 33.6 +/- 4.7% and 35.3 +/- 5.4%, respectively, only oxygenated cardioplegia delivered retrograde through the coronary sinus (Groups 5 and 6) completely prevented infarct extension during global ischemic arrest.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号