首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously shown that the spectra of speech sounds can be represented in the temporal patterns of discharge of populations of auditory-nerve fibers. These results were obtained using perfectly periodic stimuli, for which a temporal representation is straightforward. In order to see if our results could be generalized to nonperiodic stimuli, we have studied responses to a whispered vowel with formant frequencies typical of /ε/. The whispered vowel was generated by exciting a vocal tract model with noise; this signal was therefore aperiodic. Temporal patterns of responses to the vowel in populations of auditory-nerve fibers were analyzed using interval histograms. Fourier transforms of these histograms show large components at frequencies near the formant frequencies of the vowel. With these Fourier transform components as a measure of the temporal response, a temporal-place representation of the response of populations of fibers preserves the spectral features of the aperiodic vowel stimulus. Profiles of average rate versus characteristic frequency for fibers with spontaneous rates greater than 1s show little if any formant-related structure. On the other hand, such profiles for fibers with spontaneous rates less than 1s may show peaks in the region of the formants.  相似文献   

2.
This study investigated the neural representation of naturally produced and noise vocoded speech signals in the auditory nerve of the chinchilla. The syllables [see text] produced by male speakers were used to synthesize noise vocoded speech stimuli containing one, two, three and four bands of envelope modulated noise. The ensemble response of the auditory nerve, computed by pooling the PST histograms across many auditory nerve fibers, revealed temporal patterns in the responses to the natural tokens that uniquely identified the stop consonants. The responses to the 3- and 4-band noise vocoded tokens contained temporal patterns that were nearly identical to those observed for the natural tokens, while the responses to the 1- and 2-band tokens were significantly different (p<0.0001). The ALSR, ALIR and autocorrelation of the pooled PST histograms represented the detail of the frequency spectrum for a naturally produced vowel, while the driven rate was unreliable. Each of these spectral analyses failed to reveal significant information about the noise vocoded vowels. These results suggest that temporal patterns in the responses of the auditory nerve can provide the cues necessary for the recognition of noise vocoded stop consonants.  相似文献   

3.
Temporal pitch in electric hearing   总被引:7,自引:0,他引:7  
Zeng FG 《Hearing research》2002,174(1-2):101-106
Both place and temporal codes in the peripheral auditory system contain pitch information, however, their actual use by the brain is unclear. Here pitch data are reported from users of the cochlear implant, which provides the ability to change the temporal code independently from the place code. With fixed electrode stimulation, both frequency discrimination and pitch estimate data show that the cochlear implant users can only discern differences in pitch for frequencies up to about 300 Hz. An integration model can predict pitch estimation from frequency discrimination, reinforcing Fechner's hypothesis relating sensation magnitude to stimulus discriminability. The present results suggest that 300 Hz is the upper boundary of the temporal code and that the absolute place information should be included in the present pitch models. They further suggest that future cochlear implants need to increase the number of independent electrodes to restore normal pitch range and resolution.  相似文献   

4.
The characteristics of time-locked auditory nerve fiber responses to 50 Hz acoustic sinusoids were studied in gerbils and guinea pigs. Whereas the time-locked responses of all guinea pig fibers produced single-peaked period histograms, those of the gerbil produced distorted, multiple-peaked response histograms, especially fibers with characteristic frequencies (CFs) between 2 and 10 kHz. Although the shapes of the period histograms vary with stimulus intensity, the phases of the fundamental components are essentially invariant over the range of stimulus intensities used. In contrast to the phase of the cochlear microphonic produced by the 50 Hz stimulus, which was constant along the length of the cochlea in both species, the phase of the neural responses depends on the fiber CF in each of the two species. In guinea pigs, the phase of the neural responses relative to the acoustic stimulus decreases with the fiber CF from a phase lead of 90 degrees for fibers with CFs below 300 Hz to a phase lag of nearly 60 degrees for fibers with CFs greater than 3 kHz. In gerbils, the response phase also decreases with increasing CF below 2 kHz and above 10 kHz but undergoes an abrupt 160 degrees phase increase between those frequencies.  相似文献   

5.
Recio A  Rhode WS 《Hearing research》2000,146(1-2):167-184
Responses of neurons in the ventral cochlear nucleus (VCN) of anesthetized chinchillas to six synthetic vowel sounds (/a/, /e/, /epsilon/, /i/, /o/ and /u/) were recorded at several intensity levels. Stimuli were synthesized with a fundamental frequency of 100 Hz or 181.6 Hz and had formant values at integer multiples of 100 Hz. Responses came from most neuron types in the VCN (with the exception of onset cells with an I-shaped pattern). Population studies, performed only on primary-like (PL) and chopper neurons, showed that PL neurons provide a better temporal representation than do chopper neurons. At the lowest level of stimulation, all neuron types provide an accurate rate-place representation of vowel spectra. With an increase in stimulus level, the rate-place representation of PL neurons becomes inferior to that of chopper neurons, either sustained choppers or transient choppers.  相似文献   

6.
Responses of auditory nerve fibers were obtained to harmonic complex tones in which single components could be mistuned. Human listeners hear the harmonic tones as single sounds, but the same tones with one component mistuned are heard as two separate sounds. Fourier analysis of the temporal discharge patterns indicated that auditory nerve fibers typically responded to one or two stimulus components near the fibers' characteristic frequencies. At low stimulus levels, the discharge patterns could also exhibit low-frequency modulation that was produced by beating of two higher-frequency components. The same components were observed in the response spectra, whether those components were part of the original harmonic series or had been mistuned. The discharge patterns and response spectra were consistent with expectations based on previous studies of auditory nerve fibers with harmonic tones and other complex sounds. However, the discharge patterns differed dramatically from the discharge patterns elicited from inferior colliculus neurons by comparable stimuli.  相似文献   

7.
The latency of the N100m component of the auditory evoked field (AEF) is sensitive to the period and spectrum of a sound. However, little attention was paid so far to the wave shape at stimulus onset, which might have biased previous results. This problem was fixed in the present study by aligning the first major peaks in the acoustic waveforms. The stimuli were harmonic tones (spectral range: 800-5000 Hz) with periods corresponding to 100, 200, 400, and 800 Hz. The frequency components were in sine, alternating or random phase. Simulations with a computational model suggest that the auditory-nerve activity is strongly affected by both the period and the relative phase of the stimulus, whereas the output of the more central pitch processor only depends on the period. Our AEF data, recorded from the right hemisphere of seven subjects, are consistent with the latter prediction: The latency of the N100m depends on the period, but not on the relative phase of the stimulus components. This suggests that the N100m reflects temporal pitch extraction, not necessarily implying that the underlying generators are directly involved in this analysis.  相似文献   

8.
The temporal pattern of the responses of neurons in the inferior colliculus of the anesthetized rat were studied using continuous tone or noise carrier signals, amplitude modulated by pseudorandom noise. Period histograms of the responses, cross-correlated with the pseudorandom noise, gave an estimate of the unit's impulse responses to modulation. The amplitude-modulation rate transfer function (MTF) was obtained by Fourier transforming the correlograms. At sound levels within approximately 15 dB of the unit threshold, the MTFs were near lowpass functions between 6 and 200 Hz but became more bandpass-like as the intensity was increased. There was a steep decline in the response to modulation at modulation frequencies above 200 Hz for all stimulus intensities. For the bandpass-type MTFs the greatest modulation of the discharge pattern occurred at modulation frequencies between 10 and 200 Hz with a maximum in the distribution of MTF peak values between 100 and 120 Hz. There was no consistent relationship with characteristic frequency of either the position of the MTF peak or the high-frequency cutoff of the MTF. The cross-correlograms obtained at high stimulus intensities (30-60 dB above threshold) often showed a negative peak, representing a decrease in the probability of firing in response to intensity increments in the stimulus, and denoting a nonmonotonic rate-intensity function. The MTFs for units responding to amplitude-modulated broadband noise were often flatter in the low frequency region than those generated with tone carriers at corresponding intensities. For some units addition of a broadband noise background to the modulated tone changed the response characteristic of the MTF from bandpass to lowpass and shifted the MTF peak to a lower modulation frequency. The results demonstrate that although neurons in the inferior colliculus are selectively sensitive to the modulation frequency of dynamic stimuli, the response characteristics are not invariant, but instead are closely dependent on the conditions under which the modulation is presented.  相似文献   

9.
The temporal fine structure (TFS) of sound contributes significantly to the perception of music and speech in noise. The evaluation of new strategies to improve TFS delivery in cochlear implants (CIs) relies upon the assessment of fine structure encoding. Most modern CI sound processing schemes do not encode within-channel TFS per se, but some TFS information is delivered through temporal envelope cues across multiple channels. Positive and negative Schroeder-phase harmonic complexes differ primarily in acoustic TFS and provide a potential test of TFS discrimination ability in CI users for current and future processing strategies. The ability to discriminate Schroeder-phase stimuli was evaluated in 24 CI users and 7 normal-hearing listeners at four fundamental frequencies: 50, 100, 200, and 400 Hz. The dependent variables were percent correct at each fundamental frequency, average score across all fundamental frequencies, and a maximum-likelihood-predicted threshold fundamental frequency for 75% correct. CI listeners scored better than chance for all fundamental frequencies tested. The 50-Hz, average, and predicted threshold scores correlated significantly with consonant–nucleus–consonant word scores. The 200-Hz score correlated with a measure of speech perception in speech-shaped noise. Pitch-direction sensitivity is predicted jointly by the 400-Hz Schroeder score and a spectral ripple discrimination task. The results demonstrate that the Schroeder test is a potentially useful measure of clinically relevant temporal processing abilities in CI users.  相似文献   

10.
Amplitude modulation is a prominent acoustic feature of biologically relevant sounds, such as speech and animal vocalizations. Enhanced temporal coding of amplitude modulation signals is found in certain dorsal and posteroventral cochlear nucleus neurons when they are compared to auditory nerve. Although mechanisms underlying this improved temporal selectivity are not known, involvement of inhibition has been suggested. gamma-Aminobutyric acid- and glycine-mediated inhibition have been shown to shape the dorsal cochlear nucleus and posteroventral cochlear nucleus response properties to other acoustic stimuli. In the present study, responses to amplitude modulation tones were obtained from chinchilla dorsal cochlear nucleus and posteroventral cochlear nucleus neurons. The amplitude modulation carrier was set to the neuron's characteristic frequency and the modulating frequency varied from 10 Hz. Rate and temporal modulation transfer functions were compared across neurons. Bandpass temporal modulation transfer functions were observed in 74% of the neurons studied. Most cochlear nucleus neurons (90%) displayed flat or lowpass rate modulation transfer functions to amplitude modulation signals presented at 2540 dB (re: characteristic frequency threshold). The role of inhibition in shaping responses to amplitude modulation stimuli was examined using iontophoretic application of glycine or gamma-aminobutyric acidA receptor agonists and antagonists. Blockade of gamma-aminobutyric acidA or glycine receptors increased stimulus-evoked discharge rates for a majority of neurons tested. Synchronization to the envelope was reduced, particularly at low and middle modulating frequencies, with temporal modulation transfer functions becoming flattened and less bandpass in appearance. Application of glycine, gamma-aminobutyric acid or muscimol increased the modulation gain over the low- and mid-modulation frequencies and reduced the discharge rate across envelope frequencies for most neurons tested. These findings support the hypothesis that glycinergic and gamma-aminobutyric acidergic inputs onto certain dorsal cochlear nucleus and posteroventral cochlear nucleus neurons play a role in shaping responses to amplitude modulation stimuli and may be responsible for the reported preservation of amplitude modulation temporal coding in dorsal cochlear nucleus and posteroventral cochlear nucleus neurons at high stimulus intensities or in background noise.  相似文献   

11.
Input/output functions of the simultaneously recorded acoustic distortion product otoacoustic emissions (DPOAE) and neural frequency following-response distortion products (FFR-DP) at 2f1-f2 were evaluated to determine if these two representations of cochlear nonlinearity exhibit similar response behavior, which would suggest shared cochlear generators. Responses were recorded from normal-hearing adults for a tone burst stimulus pair (F1: 500 Hz; F2: 612 Hz) at 40–70 dB nHL. DPOAE responses were recorded from the ear canal, and FFR responses were recorded differentially from scalp electrodes, representing a vertical configuration. The input/output function for FFR-DP revealed a compressive saturating nonlinearity, whereas the DPOAE input/output function exhibited a linear growth at higher intensities following a compressive behavior at moderate levels. Results appear to suggest that cochlear generators may be contributing differentially to the acoustic and the neural distortion products. Also, FFR-DP responses appeared more identifiable and less variable, particularly at lower stimulus levels, than the corresponding DPOAE. These findings may point to a potential benefit of applying FFR testing to complement DPOAE in evaluating cochlear function at low frequencies.  相似文献   

12.
Responses of the guinea pig cochlea to amplitude-modulated stimuli were measured with the aid of a gross electrode. The dynamic characteristics of this part of the auditory system was studied by varying several parameters of the applied signal. The signals used as carriers in our experiments were either white noise or pure tones of 1 and 4 kHz. The modulation frequency, dynamic and intensity characteristics were determined by varying the modulating frequency, the modulation depth and the intensity of the applied signal. To get an idea about possible non-linear aspects of the system under investigation, we always computed the Fourier transform of the response data and plotted the amplitude of the various harmonics and the phase of the fundamental separately as functions of the signal parameter in question. The greatest response was always found at a modulation frequency of about 200 Hz, with a relatively gradual rise up to this frequency and a sharper drop above 200 Hz. The phase of the fundamental changes very rapidly at frequencies above 200 Hz. The distortion is mainly second-harmonic and has a maximum about 1 octave lower than the fundamental. The carrier frequency and the intensity of the stimulus were not found to have a great influence on the frequency characteristic. For small modulation depths, the system is nearly linear; at higher intensities and modulation depths saturation occurs, coinciding with a relative increase in the intensity of the second harmonic with respect to the fundamental.  相似文献   

13.
C W Parkins 《Hearing research》1989,41(2-3):137-168
Electroneural response patterns of single auditory-nerve neurons were studied in aminoglycoside-deafened squirrel monkeys. The electrical stimuli were delivered through bipolar electrodes implanted in the scala tympani. The effects of pulse width, shape, frequency, and intensity on neural adaptation, phase locking, and spectral content were evaluated. Our results did not demonstrate the characteristic adaptation seen in auditory-nerve neurons in response to acoustic stimulation. Phase locking to a broad stimulus pulse (3200 microseconds/phase) was found to a very restricted phase angle of the electrical stimulus which was broader for square wave than for sine wave stimulation. The latency of the phase locked response varied inversely with stimulus intensity with greater variation for square wave stimulation than for sine wave stimulation. Auditory neurons were capable of a very high degree of phase locking to a 200-microseconds/phase pulse presented at 156 pulses per second (PPS) and to the first pulse of a 2500-Hz pulse burst. Phase locking was much poorer for the subsequent 200-microseconds/phase pulses comprising the 2500-Hz pulse burst where the neuron's response was determined by its relative recovery status. These findings can be explained by an interaction between the neuron's relative refractory status and its integration of charge over the stimulatory half cycle of the electrical stimulus. These two factors also appear to determine the interspike interval of the neural response. This interval decreased monotonically with increasing stimulus intensity. The neural spike rate (150-500 Hz) producing this interval increased with intensity and may be a source of periodicity information which the central auditory nervous system could interpret as pitch. This may account for the proportional relationship between pitch and stimulus intensity seen in some cochlear implant patients. Our study demonstrates that auditory-nerve neurons comply with basic neurophysiological principles in their responses to electrical stimulation. These principles should be incorporated into the cochlear prosthesis stimulator if more normal neural response patterns are desired in the cochlear prosthesis patient.  相似文献   

14.
Input/output functions of the simultaneously recorded acoustic distortion product otoacoustic emissions (DPOAE) and neural frequency following-response distortion products (FFR-DP) at 2f1-f2 were evaluated to determine if these two representations of cochlear nonlinearity exhibit similar response behavior, which would suggest shared cochlear generators. Responses were recorded from normal-hearing adults for a tone burst stimulus pair (F1: 500 Hz; F2: 612 Hz) at 40-70 dB nHL. DPOAE responses were recorded from the ear canal, and FFR responses were recorded differentially from scalp electrodes, representing a vertical configuration. The input/output function for FFR-DP revealed a compressive saturating nonlinearity, whereas the DPOAE input/output function exhibited a linear growth at higher intensities following a compressive behavior at moderate levels. Results appear to suggest that cochlear generators may be contributing differentially to the acoustic and the neural distortion products. Also, FFR-DP responses appeared more identifiable and less variable, particularly at lower stimulus levels, than the corresponding DPOAE. These findings may point to a potential benefit of applying FFR testing to complement DPOAE in evaluating cochlear function at low frequencies.  相似文献   

15.
Frequency selectivity of single auditory nerve fibers in the auditory nerve of the rat was studied using pseudorandom noise as the stimulus. The noise was lowpass filtered ternary m-sequences. Period histograms of the discharges of single auditory nerve fibers, locked to the periodicity of the noise, were cross-correlated with one period of the noise to obtain estimates of the impulse response. These cross-correlograms were subsequently Fourier transformed to obtain estimates of the frequency transfer functions. Earlier results obtained using noise that was based on binary sequences as the stimulus showed a systematic dependence on stimulus intensity of the bandwidth and center frequency of the computer transfer functions. The results of the present study confirmed this dependence and showed that a linear model based upon first-order cross-correlations fit the histograms of response. It is concluded that phase-locked activity of single auditory nerve fibers accurately reproduces the half-wave rectified motion of the basilar membrane over a large range of sound intensities.  相似文献   

16.
Pitch scaling was assessed for 10 normal-hearing listeners and 8 patients who use the Ineraid multichannel cochlear implant. For two patients who were excellent users of the prosthesis, pitch increased over a wide range of frequencies (100 Hz to 2333-3000 Hz). For three patients who were above average users of the prosthesis, pitch increased with frequency over a smaller range (100 Hz to 1200-2300 Hz). For three patients who demonstrated poor word recognition ability, pitch increased with frequency over a very small range (100 Hz to 600-1000 Hz). These results suggest that differences in speech understanding among patients who use the Ineraid may be accounted for, in part, by the range of pitch available through the implant.  相似文献   

17.
言语识别中的时域及频域信息   总被引:4,自引:1,他引:4  
本文对言语识别中的声学要素从时域和频域的角度进行探讨,旨在为人工耳蜗编码策略的改善提供理论依据。声码器技术被用于一系列的实验以确定时域和频域信息对言语识别和汉语四声识别的相互作用。频域信息是由声码器中的频道数来决定,而时域信息则是由声码器的低通滤波器的截止频率来决定。听力正常成人参加了各项感知试验。结果表明,时域和频域信息都对音素识别很重要。在安静环境下。辅音和元音识别率分别在8和12频道及16Hz和4Hz的低通截止频率时达到平台成绩。在噪声环境下,元音识别受益于增高的频道数。汉语四声的识别需要256Hz的低通截止频率才达到平台成绩,这一频率比英语音素识别所需的时域信息高得多。声调识别率在本研究中最高频道数12时仍未见饱和。为了研究细微结构和时域包络对四声识别的相对重要性.我们用声嵌合技术将不同声调信号的时域包络和细微结构进行对换。感知实验结果表明,声调识别主要取决于细微结构,这一点与音乐感知的结果类似,而不象言语识别,后者主要依赖于时域包络信息。因此,增加人工耳蜗系统中有效的频道数将有助于尤其是噪声环境下的言语识别。将人工耳蜗刺激中提供更多的细微结构信息可能会提高患者声调识别的成绩。  相似文献   

18.
Response rates of auditory nerve fibers (ANFs) to electric pulse trains change over time, reflecting substantial spike-rate adaptation that depends on stimulus parameters. We hypothesize that adaptation affects the representation of amplitude-modulated pulse trains used by cochlear prostheses to transmit speech information to the auditory system. We recorded cat ANF responses to sinusoidally amplitude-modulated (SAM) trains with 5,000 pulse/s carriers. Stimuli delivered by a monopolar intracochlear electrode had fixed modulation frequency (100 Hz) and depth (10%). ANF responses were assessed by spike-rate measures, while representation of modulation was evaluated by vector strength (VS) and the fundamental component of the fast Fourier transform (F0 amplitude). These measures were assessed across the 400 ms duration of pulse-train stimuli, a duration relevant to speech stimuli. Different stimulus levels were explored and responses were categorized into four spike-rate groups to assess level effects across ANFs. The temporal pattern of rate adaptation to modulated trains was similar to that of unmodulated trains, but with less rate adaptation. VS to the modulator increased over time and tended to saturate at lower spike rates, while F0 amplitude typically decreased over time for low driven rates and increased for higher driven rates. VS at moderate and high spike rates and degree of F0 amplitude temporal changes at low and moderate spike rates were positively correlated with the degree of rate adaptation. Thus, high-rate carriers will modify the ANF representation of the modulator over time. As the VS and F0 measures were sensitive to adaptation-related changes over different spike-rate ranges, there is value in assessing both measures.  相似文献   

19.
This study examined the effects of cochlear hearing loss on the ability to discriminate increments in the duration of a stimulus under conditions where the frequency and/or amplitude of the stimulus change dynamically. Three stimulus types were used: pure tones, frequency-modulated tones, and narrow bands of noise. The carrier/center frequency of each 250-ms stimulus either remained constant at 1035 Hz or varied randomly from presentation to presentation across the frequency range 432-2804 Hz. Two groups of listeners participated: 9 with bilateral cochlear hearing loss and 7 with normal hearing sensitivity. The results showed no differences in performance between the 2 groups. However, both groups showed poorer duration discrimination for the conditions where the carrier/center frequency changed randomly than for the conditions where the carrier/center frequency remained constant. In addition, performance was poorer for the narrowband noise stimuli than for the tonal stimuli. This pattern of results suggests that across-frequency temporal judgments are more difficult than isofrequency temporal judgments, but that cochlear hearing loss does not exacerbate this difficulty per se.  相似文献   

20.
OBJECTIVE: The purposes of this study were to (a) examine the accuracy of cochlear implant recipients who use different types of devices and signal processing strategies on pitch ranking as a function of size of interval and frequency range and (b) to examine the relations between this pitch perception measure and demographic variables, melody recognition, and speech reception in background noise. DESIGN: One hundred fourteen cochlear implant users and 21 normal-hearing adults were tested on a pitch discrimination task (pitch ranking) that required them to determine direction of pitch change as a function of base frequency and interval size. Three groups were tested: (a) long electrode cochlear implant users (N = 101); (b) short electrode users that received acoustic plus electrical stimulation (A+E) (N = 13); and (c) a normal-hearing (NH) comparison group (N = 21). Pitch ranking was tested at standard frequencies of 131 to 1048 Hz, and the size of the pitch-change intervals ranged from 1 to 4 semitones. A generalized linear mixed model (GLMM) was fit to predict pitch ranking and to determine if group differences exist as a function of base frequency and interval size. Overall significance effects were measured with Chi-square tests and individual effects were measured with t-tests. Pitch ranking accuracy was correlated with demographic measures (age at time of testing, length of profound deafness, months of implant use), frequency difference limens, familiar melody recognition, and two measures of speech reception in noise. RESULTS: The long electrode recipients performed significantly poorer on pitch discrimination than the NH and A+E group. The A+E users performed similarly to the NH listeners as a function of interval size in the lower base frequency range, but their pitch discrimination scores deteriorated slightly in the higher frequency range. The long electrode recipients, although less accurate than participants in the NH and A+E groups, tended to perform with greater accuracy within the higher frequency range. There were statistically significant correlations between pitch ranking and familiar melody recognition as well as with pure-tone frequency difference limens at 200 and 400 Hz. CONCLUSIONS: Low-frequency acoustic hearing improves pitch discrimination as compared with traditional, electric-only cochlear implants. These findings have implications for musical tasks such as familiar melody recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号