首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
C57BL/6 and C57BL/10 female mice were grafted with skin from male or female donors incompatible for H-2 and/or non-H-2 antigens. Syngeneic male grafts applied after the rejection of primary allografts or syngeneic male grafts were rejected in accelerated (second set) fashion, whereas male grafts applied after primary female grafts were not. In addition, C57BL/10 female spleen cells, primed in vivo with an allogeneic (BALB/c, CBA, or B10.BR) male graft and challenged in vitro in mixed lymphocyte culture with syngeneic (C57BL/10) male cells, produced cytotoxic cells specific for syngeneic male target cells. We conclude that at least some component of H-Y is detected by female responder cells on allogeneic male cells, and that the second set cell mediated response to H-Y is not necessarily restricted by the H-2 haplotype of the primary sensitizing strain. Moreover, (CBA X B10) F1 females, primed in vivo with male cells of one parental haplotype (B10 or CBA) and challenged in vitro with male cells of the other parental haplotype (CBA or B10), fail to lyse male target cells of either parental haplotype. It therefore seems unlikely that a helper determinant shared between B10 and CBA is sufficient to explain the ability of CBA male cells to prime H-2-restricted T-cell cytotoxic responses by B10 females.  相似文献   

3.
Cytotoxic cells were generated by immunizing one strain of mouse with cells from an allogeneic strain which carries the same H-2 region. The effector cells assayed in a 4 h 51Cr release assay were shown to be T cells and indistinguishable, except in specificity, from cytotoxic T cells directed at H-2 alloantigens. Although the genetic differences between responder and stimulator cells responsible for the immunization did not code in H-2, the H-2 complex did restrict susceptibility of target cells. For example, BALB.B cytotoxic cells (H-2b) immunized against and capable of lysing C57BL/6 cells (H-2b) would not lyse B6.C/H-2d target cells. C57BL/6 and B6.C/H-2d are congenic and differ in the H-2 region. Two hypotheses are considered to explain the H-2 restriction of susceptibility to cytotoxic T cells generated by an H-2 identical alloimmunization. (a) The dual (self) recognition hypothesis states that the cytotoxic cell has two recognition units, one for H-2-coded structures and another clonally restricted receptor for the minor alloantigen. (b) The interaction antigen hypothesis states that all the surface alloantigenic determinants recognized by cytotoxic T cells are the result of interaction between H-2- and non-H-2-coded gene products. Two lines of evidence, one with F1 effector cells and the other a cold target competition experiment, are presented which argue strongly in favor of the interaction antigen hypothesis. The regions of H-2 required to be histocompatible were mapped to the D region and to the left of IC, probably the K region. These results, and recent work on the response to virus-infected and TNP-modified syngeneic cells, suggest that cytotoxic cells are restricted in specificity to preferentially recognizing alterations in structures that are coded in the major histocompatibility complex.  相似文献   

4.
Four different combinations of F1 hybrid mice [(C57BL/10 X B10.A)F1, (C57BL/10 X B10.BR)F1, B6D2F1, and AKD2F1] were injected intravenously with spleen cells from parental strains. The T-cell-mediated cytotoxic potential of spleen cells from the injected F1 mice was assessed from 4 to 21 d later by in vitro sensitization with trinitrophenyl-modified parental or syngeneic F1 spleen cells (TNP-self) or with allogeneic spleen cells. The cytotoxic potential of the F1 mice to TNP-self as well as to alloantigens was abolished or severely depressed throughout this period when the respective H-2k,a,d parental spleen cells were injected. In contrast, the cytotoxic potential was unaffected or only marginally reduced when H-2b parental cells were injected. The induction of depressed cytotoxic activity was shown to be a result of a population of parental radiosensitive T lymphocytes. The results should be discussed with respect to (a) the genetic and mechanistic parameters associated with the differential depressive effects of parental cells expressing H-2b vs. H-2k,a,d antigens, and (b) the use of this system for investigating allogeneic receptors on T-lymphocyte populations.  相似文献   

5.
T-cell mediated cytotoxic responses to H-Y antigen require co-recognition of H-Y and H-2 gene products. F1 mael stimulating cells and target cells express H-Y antigen in association with both parental H-2 haplotypes. However, F1 females primed in vivo and challenged in vitro with F1 male cells lyse male target cells of F1 and only one parental H-2 haplotype. Thus, (CBA X B10)F1 females sensitized to (CBA X B10)F1 male cells lyse (CBA X B10)F1 and CBA but not B10 male target cells, and (BALB/c X B10)F1 females sensitized to (BALB/c X B10)F1 male cells will lyse (BALB/c X B10)F1 and B10 but not BALB/c male target cells. It is suggested that this may represent an effect of immune response or suppressor genes mapping in the major histocompatibility gene complex which regulate responsiveness to H-Y antigen.  相似文献   

6.
C57BL/10 mice were injected with semiallogeneic (B10.D2 X C57BL/10)F(1) spleen cells via the anterior facial vein within 24 h of birth to induce tolerance to B10.D2 (H-2(d)) alloantigens. Spleen cells from these mice as adults developed reduced, but significant, mixed lymphocyte and cytotoxic lymphocyte responses in vitro to H-2(d) stimulator cells and these treated mice rejected first-set B10.D2 skin grafts within a normal time-course, indicating that at best only a state of partial tolerance had been induced. Spleen cells from these mice failed to develop antibody responses to a variety of antigens in vitro when H-2(d) macrophages were in the cultures. Partially purified T cells from these neonatally treated mice suppressed primary antibody responses by normal syngeneic spleen cells in the presence of H-2(d) but not other allogeneic macrophages. These radiosensitive, haplotype-specific suppressor T (Ts) cells inhibited primary antibody responses by blocking initiation of the response, but failed to suppress secondary antibody responses and mixed lymphocyte or cytotoxic lymphocyte responses by appropriate responding spleen cells. To activate H-2(d) haplotype-specific Ts cells, stimulation with IA(d) subregion antigen(s) was necessary and sufficient; syngenicity at the I-A subregion of H-2 between the activated Ts cells and target responding spleen cell populations was also necessary and sufficient to achieve suppression. Comparable results have been obtained with spleen cells from BALB/c mice injected as neonates with (B10.D2 × C57BL/10)F(1) spleen cells where IA(b) antigens activate the haplotype-specific Ts cells. Implications for the significance of this population of haplotype-specific Ts cells in immune regulation are discussed and the properties of these Ts cells are compared and contrasted with other antigen-specific and nonspecific Ts cells whose activity is restricted by I- region products.  相似文献   

7.
The secondary cytotoxic T cell response of BALB/c to B10.D2 or DBA/2 minor histocompatibility antigens in vitro requires the participation of an adherent cell. Nylon wool-passed spleen cells were only able to respond to nonadherent intact stimulator cells, or to membrane fragments derived from those cells, if a syngeneic adherent cell were present in the cultures. When the H-2 restriction properties of cytotoxic cells generated in response to various types of stimulation were analyzed, it was found that responses to B10.D2 or DBA/2 intact cells were always H-2 restricted. Responses to syngeneic adherent cells presenting B10.D2 or DBA.2 freeze-thaw antigen were either entirely or predominantly lacking in H-2 restriction as defined by efficient competition by B10 (H-2b) cold target cells. These unrestricted killers appeared to recognize minor histocompatibility as an independent determinant rather than as an H-2d/minors moiety cross-reaction with H-2b, because they were not absorbed by BALB.B (H-2b) macrophage monolayers, but were absorbed by B10 monolayers. Similarly, B10 but not BALB.B cold targets were able to compete for the anti-B10.D2 killers. These experiments eliminate the possibility that the lack of restriction was due to an H-2b restricted receptor cross-reactive with H-2b. Possible models to explain these findings are discussed.  相似文献   

8.
The in vitro secondary cytotoxic T lymphocyte (CTL) response to Sendai virus-treated stimulator cells by primed spleen cells from thymus gland-grafted nude mice was examined. BALB/c (H-2d) nude mice grafted with allogeneic C57BL/10 (H-2b) thymus glands developed CTL responses directed exclusively to Sendai virus-infected H-2d target cells. (C57BL/6 X BALB/c)F1 nude mice grafted with thymus glands of either parent developed CTL responses preferentially against infected target cells expressing the MHC antigens present in the parental thymus graft, but also had detectable activity for infected target cells of the parental haplotype not expressed in the thymus. These results provide evidence against the concept that self recognition by MHC-restricted CTL is directed exclusively by the MCH type of the thymus.  相似文献   

9.
Fully H-2 incompatible radiation chimeras were prepared using BALB congenic mice. Such chimeric mice were immunized in vivo against histocompatibility antigens of the C57BL/10Sn (B10) background in association with either of the parental H-2 haplotypes, and their spleen cells subsequently boosted in vitro with the same minor antigens. Strong H-2-restricted cytotoxic activity against minor antigens was detected, and the specificity of the restriction could be to the H-2 haplotype of the donor or the host depending on the cells used for priming or boosting. Cross priming could also be demonstrated in these mice. The results show that fully allogenic radiation chimeras can produce H-2-restricted T-cell responses to minor histocompatibility (H) antigens, and are discussed in relation to contrasting results recently obtained against viral antigens.  相似文献   

10.
Mta-specific cytotoxic T lymphocyte (CTL) can be generated in primary cultures of (NZB X B10.D2)F1 spleen cells with H-2-compatible BALB/c stimulator cells. The CTL lyse reciprocal Mta+ (B10.D2 X NZB)F1 as well as H-2-disparate targets, such as B10, B6, and B6-Tlaa; they do not lyse targets from NZB or any F1 hybrid of an NZB mother. The lysis of 51Cr-labeled B10 targets is completely inhibited by unlabeled targets from Mta+ (B10.D2 X NZB)F1, but not from the reciprocal Mta- F1, thus demonstrating H-2-unrestricted lysis of Mta.  相似文献   

11.
In these studies, the role of T helper and T cytotoxic cells in generating intestinal graft-vs.-host disease (GVHD) was examined. Treatment of C57BL/6J (B6) splenocytes with L-leucyl-L-leucine methyl ester (Leu-Leu-OMe) selectively removes natural killer cells, cytotoxic T lymphocyte (CTL) precursors, and the capacity to cause lethal GVHD in irradiated B6xDBA/2 F1 (B6D2F1) mice while preserving T helper cell function. Neither control nor Leu-Leu-OMe-treated DBA/2 donor spleen and bone marrow cells were found to induce lethal GVHD in B6D2F1 recipients. However, extensive colonic GVHD developed in B6D2F1 recipients of DBA/2 bone marrow and spleen cells. Enteropathic GVHD in DBA/2----B6D2F1 mice was reduced in severity after anti-L3T4 + C treatment of donor cells, and was eliminated by anti-Thy1.2 + C or the combination of anti-L3T4 and anti-Lyt2 + C treatment of the donor cell inoculum. However, neither anti-Lyt2 + C, Leu-Leu-OMe, nor anti-Lyt2 + C and Leu-Leu-OMe treatment of donor cells significantly decreased severity of gut GVHD. Leu-Leu-OMe treatment of DBA/2 or B6 SpC was comparably effective in preventing in vitro or in vivo generation of B6D2F1-specific CTL. These findings, therefore, demonstrate that histologically severe enteropathic GVHD does not require participation of CTL and is not always associated with high mortality rates.  相似文献   

12.
Splenic lymphocytes from four C57BL/10 congenic mouse strains were sensitized in vitro to N(-3-nitro-4-hydroxy-5-iodophenylacetyl)-beta-alanylglycylglycyl-(N) modified autologous lymphocytes. The effector cells generated after 5 days of culture were assayed on a series of either N-modified phytohemagglutinin-stimulated spleen cells or N-modified tumor cells. The results indicated in all cases that both N modification of the targets and H-2 homology between the modified stimulating and target cells are required for lysis to occur. In each case the effector cells were found to lyse N-modified target cells only when there was homology at either or both ends of the major histocompatibility complex (MHC) between the stimulator and target cells. B10.BR lysed targets sharing alleles at K (or K plus I-A) and/or at D. B10.A effector cell specificity was mapped to K (or K plus I-A) and/or the D half of the MHC (D or D plus I-C and/or S). The two regions of specificity determined for B10.D2 effector cells were D (or D plus S plus I-C) and a region not including D of the MHC. C57BL/10 effector cells lysed N-modified targets only if there was target cell H-2 homology at K, I-A, and I-B or at the D serological region. As in the trinitrophenyl (TNP) system (6) B10.BR and B10.A effector cells lysed targets sharing K end H-2 serological regions greater than target cells sharing D-end serological regions. The C57BL/10 effector cells were shown to react to the K end greater than the D end, which differed from the equal reactivity seen in the TNP system for this strain. The data are consistent with the hypothesis that the antigen recognized by the effector cell includes an altered H-2 serological cell surface product. That the reaction is not "hapten specific" and the H-2 homology is required only for effector:target cell interaction was excluded by the use of two F1 combinations in which lysis of only N-modified target cells sharing the H-2 haplotype with the stimulating parental strain was obtained. Finally, it was demonstrated that N and TNP modification create distinct new antigenic determinants, since an effector cell sensitized to one modifying agent will lyse only H-2 matched target modified with that same modifying agent.  相似文献   

13.
After immunization, normal H-2 heterozygous mice (for example H-2(b) × H-2(d)) generate two populations of cytotoxic effector T cells, one specific for target cells expressing H-2(b)-plus-antigen and the other specific for H- 2(d)-plus-antigen. With a multideterminant antigen, these two populations have about the same activity. We show here that the H-2 type of resident cells in the thymus determines the H-2 preference of cytotoxic T lymphocytes. F(1)(B 10 × B 10.D2) (H-2(b) × H-2 (d)) mice were thymectomized, lethally irradiated, and reconstituted with T-cell-depleted syngeneic hematopoietic cells. Groups of such ATXBM mice were grafted subcutaneously with neonatal thymus lobes from parental mice, either B10 (H-2 (b)) or B10.D2 (H-2(d)). 2-3 mo later, the mice were immunized against the minor histocompatibility antigens on F(1)(BALB/c × BALB.B) cells and assayed for cytotoxic T-cell activity. H-2(b) × H-2(d) ATXBM mice with H-2(b) thymus grafts responded to antigen-plus-H-2(b) much better than to antigen-plus-H-2(d), and vice versa for the mice with H-2(d) thymus grafts. As judged by antiserum treatment, the effector cells were of F(1) origin. To explore the possibility that the “thymus preference” may have been due to suppression of T-cell activity, nonimmune spleen and lymph node cells from normal H-2(b) × H-2(d) mice and cells from H-2(b) × H-2(d) mice bearing a homozygous thymus were mixed 1:1 and immunized in adoptive transfer. The mixture responded to antigen-plus-H-2(b) and antigen-plus-H-2(d) equally well, demonstrating that the cells that showed a “thymus preference” could not suppress a response to antigen in association with the nonthymic H-2 type. We conclude from these and other experiments that H-2 antigens present on resident cells of the thymus determine the spectrum of specificity of T cells which mature in that thymus and eventually make up the peripheral T- cell pool.  相似文献   

14.
B10.A(5R) mice immunized with C57BL/10 spleen cells demonstrate a normal T-cell-mediated cytotoxicity to H-2Db tumor cells but they do not mount any IgG antibody response to H-2Db alloantigens. B10.A(5R) mice do show a high titered IgG response when immunized with A.BY cells, which differ at H-2Db plus non-H-2 cell surface antigens, or with B10.A(2R) cells, which differ at H-2Db, H-2Kk, and H-2Ik cell surface antigens. These findings indicate a failure of the T-helper cells to induce the switch from IgM to IgG when the H-2Db alloantigens are the only difference on the immunizing cell. In immunizing H-2d mice with congenic H-g2 cells which differ only in the H-2Db region, mice of the C57BL/10 background made only IgM antibodies whereas mice of the BALB/c background made IgG antibodies. This comparison confirms that genes separate from H-2 regulate the T-cell helper function. The genes that influence the T-cell helper function do not regulate the T-cell- mediated cytotoxicity.  相似文献   

15.
We sought to examine the role of immune response (Ir) genes in helper T cells. To eliminate allogeneic effects, we used neonatally tolerized mice. The results bear not only on the mechanism of Ir genes, but also on the development of the T cell repertoire. B 10.BR (H-2(k)) or C57BL/10 (H-2(b)) mice, which were low responders to myoglobin (Mb), were neonatally tolerized to high responder H-2(d) alloantigens, and B10.D2 mice, which were high responders to Mb, were neonatally tolerized to low responder H-2(k) or H-2(b) alloantigens. Spleen cells from these tolerized mice did not show any reactivity in mixed-lymphocyte reaction or cell-mediated lympholysis against alloantigens used in tolerization. Mb-immune F(1) B cells were helped comparably by Mb-immune tolerized low or high responder T cells. Thus, low responder T cells functioned equivalently to high responder T cells. The failure of nonimmune T cells from tolerized low responder mice to help F(1) B cells and antigen-presenting cells (APC) indicated that collaboration between B10.BR or C57BL/10 T cells and F(1) B cells was not caused by a positive allogeneic effect. Spleen cells from tolerized mice were contaminated with 2-4 percent chimeric F(1) cells, as judged by fluorescence-activated cell sorter analysis, and no F(1) alloantigens were detectable in the thymus. However, removal of chimeric F(1) T cells from the tolerized cell population by treatment with anti-H-2 and complement did not change the helper activity of tolerized low responder T cells. These data indicated that helper activity in the T cell population from low responder mice was not due to F(1) cells. Also, the level of contamination was not sufficient to quantitatively account for the help. In examining the genetic restriction of these tolerized T cells, we found that T cells from tolerized low responder B10.BR or C57BL/10 mice helped F(1) or high responder B10.D2 B cells and APC but not syngeneic B10.BR or C57BL/10 B cells and APC, which were immunized with Mb-coupled fowl gamma globulin instead of Mb to prime low responder B cells with Mb. On the other hand, high responder B 10.D2 tolerized T cells helped syngeneic B 10.D2 B cells but not allogeneic low responder B10.BR B cells. These data indicated that clones of helper T cells specific for Mb exist in low responder mice, and these are not phenotypically different from those in high responder mice, in that both help high responder and F(1) but not low responder B cells and APC. These data are discussed in terms of the mechanism for Ir gene control, and the mechanism of T cell repertoire development- whether intra- or extrathymically-in neonatally tolerized mice.  相似文献   

16.
Spleen cells from B10.BR and C57BL/10 (B10) mice were compared for their ability to generate primary in vitro cytotoxic responses to syngeneic cells modified with different concentrations (from 10 to 0.031 mM) of trinitrobenzene sulfonate (TNBS) (TNP-self). Although both strains generated effector cells to TNP-self in the range of 10-0.25 mM TNBS modification, effector activity of B10 cells was weaker than that of B10.BR cells. B10 spleen cells did not respond to syngeneic stimulating cells modified at 0.1 mM or lower, whereas B10.BR cells generated effector activity even when stimulated by TNP-self modified with as low as 0.031 mM TNBS. Fluorescence analysis of the modified cells using the FACS II indicated that equivalent quantities of TNP were conjugated to the surfaces of B10.BR and B10 spleen cells for any given concentration of TNBS modification. Similar strain-dependent differences were observed when the TNP was diluted out in the cultures by reducing the number of stimulating cells modified with 10 mM TNBS. These response patterns were verified by stimulating cultures of B10.BR and B10 spleen cells either with TNP conjugated to bovine serum albumin or bovine gamma globulin (B10.BR but not B10 cells responded to TNP-conjugated proteins) or with TNBS-modified glass-adherent spleen cells. The strain-dependent differences could also be detected at the effector phase, because optimally stimulated B10.BR, but not B10 effector cells, could lyse 0.1 mM TNBS-modified syngeneic target cells. The genetic parameters associated with the response and nonresponse patterns of B10.BR and B10 mice were further investigated by comparing the cytotoxic responses to low doses of TNP-self of spleen cells from the following strains: (a) C3H/HeJ (H-2k) and C3H.SW (H-2b); (b) BALB.K (H-2k) and BALb.b (h-2b); and (c) B10.A (H-2a) and B10.D2 (H-2d). The H-2k and H-2a, but not the H-2b and H-2d, strains generated cytotoxic responses to TNP-self when the syngeneic stimulators were modified with 0.1 mM TNBS. Further studies using (B10 X B10.BR)F1 responding cells and parental or F1-modified stimulating cells, indicated that the F1 cells generated cytotoxic activity to low doses of TNP in association with H-2k but not in association with H-2b self products. The results of this study indicate that H-2-linked genetic factors, expressed in the target as well as in the responding and/or stimulating cell populations, control the ability of inbred mouse strains to generate cytotoxic effector cells to low doses of TNP-self. Such dose-dependent genetic effects may be important in the regulation of immune responses activated in vivo by chronic exposure to infectious agents.  相似文献   

17.
We transduced BALB/c-derived C-26 colon carcinoma cells with granulocyte/macrophage colony-stimulating factor (GM-CSF) and CD40 ligand (CD40L) genes to favor interaction of these cells with host dendritic cells (DCs) and, therefore, cross-priming. Cotransduced cells showed reduced tumorigenicity, and tumor take was followed by regression in some mice. In vivo tumors were heavily infiltrated with DCs that were isolated, phenotyped, and tested in vitro for stimulation of tumor-specific cytotoxic T lymphocytes (CTLs). BALB/c C-26 carcinoma cells express the endogenous murine leukemia virus (MuLV) env gene as a tumor-associated antigen. This antigen is shared among solid tumors of BALB/c and C57BL/6 mice and contains two epitopes, AH-1 and KSP, recognized in the context of major histocompatibility complex class I molecules H-2Ld and H-2K(b), respectively. DCs isolated from C-26/GM/CD40L tumors grown in (BALB/c x C57BL/6)F1 mice (H-2d x b) stimulated interferon gamma production by both anti-AH-1 and KSP CTLs, whereas tumor-infiltrating DCs (TIDCs) of BALB/c mice stimulated only anti-AH-1 CTLs. Furthermore, TIDCs primed naive mice for CTL activity as early as 2 d after injection into the footpad, whereas double-transduced tumor cells required at least 5 d for priming; this difference may reflect direct DC priming versus indirect tumor cell priming. Immunohistochemical staining indicated colocalization of DCs and apoptotic bodies in the tumors. These data indicate that DCs infiltrating tumors that produce GM-CSF and CD40L can capture cellular antigens, likely through uptake of apoptotic bodies, and mature in situ to a stage suitable for antigen presentation. Thus, tumor cell-based vaccines engineered to favor the interaction with host DCs can be considered.  相似文献   

18.
Simplified-in vitro system was developed to examine the contribution of host's cells in graft-versus-host (GVH)-disease-associated immunodeficiencies. In analogy with major histocompatibility complex (MHC)-matched GVH-reaction, (BALB/c x DBA/2)F1 (H-2d) hybrid spleen cells were co-cultured with irradiated BALB/c (H-2d) spleen cells, so that cellular activities to be generated are ascribable to F1 cells. In vitro development of anti-allo-specific cytotoxic T cells of the F1 origin was dramatically suppressed by coexistence of the irradiated parental cells and by the addition of F1 cells precultured once with the parental cells, suggesting the generation of suppressor cells in the F1 (host) cells activated by the parental cells. Thus generated suppressor cells are Thy.1-, weakly or nonadherent and radiosensitive. Interestingly, in the same reactions there also developed Thy.1- cytotoxic cells for autologous macrophage targets. An involvement in immunodeficiencies in GVH disease of the host-derived cytotoxic and/or immunosuppressive, non-T cells was discussed.  相似文献   

19.
A number of inbred and congenic resistant strains of mice were immunized with staphylococcal nuclease (Nase). Antibody responses were measured in the sera of the animals by a sensitive method involving inhibition of enzymatic hydrolysis of DNA, High responder strains included A/J, DBA/2, BALB/c, AKR/J, C57BR, and SJL/J. DBA/1 and C57BL/6 mice were low responders. The strain distribution of anti-Nase response potential was compatible with the relevant immune response gene(s) being linked to the murine major histocompatibility complex. Linkage of this response to H-2 was demonstrated by the findings that: (a) the congenic C3H/HeJ and C3H.SW mice were respectively high and low responders; (b) the congenic lines B10.A and B10.D2 were high responders, whereas the C57BL/10 strain was a poor responder; and (c) anti-Nase response potential of F2 progeny from DBA/1 x SJL/J matings correlated with their H-2 type. Three B10.A recombinant lines were used to map this Ir gene within H-2. B10.A(4R) was a high responder to Nase, whereas B10.A(2R) and B10.A(5R) were both low responders. We wish to propose the name Ir-Nase for the gene(s) controlling antibody responsiveness to this immunogen. Our data indicate that Ir-Nase is located within the same chromosomal segment of the H-2 complex as is Ir-IgG.  相似文献   

20.
Natural killer (NK) cells from nonimmunized mice capable of lysing EL-4 (C57BL/6 strain H-2b) tissue culture-adapted lymphoma cells have been analyzed and compared with NK cells which lyse YAC-1 (A-strain, H-2a) lymphoma cells. A correlation was seen in the ability of inbred and B6D2F1 mice to reject C57BL/6 (B6) bone-marrow grafts and the ability of their spleen cells to lyse EL-4 cells in vitro. This suggests that hybrid or hemopoietic histocompatibility antigens, (Hh-1b), relevant in the rejection of B6 stem cells may also be the relevant target structures for the anti-EL-4 NK cells. Certain features of these NK cells are similar to the NK cells reactive against YAC-1 cells. Both types of NK cells are present in athymic nude mice, are not affected by treatment with anti-immunoglobulin plus complement, and are not depleted by techniques that remove macrophages. NK activity against both targets is stimulated 3 d after injection of Corynebacterium parvum, and 24 h after challenge with polyinosinic:polycytidylic acid. Hydrocortisone acetate and cyclophosphamide lead to reduction of NK activity within 2-3 d after administration. However, the anti-YAC and anti-EL-4 NK reactivities differed in several important respects. Treatment of mice with 89Sr, the bone-seeking isotope, to deplete marrow-dependent cells, depleted the anti-YAC-1 but not anti-EL-4 cell functions. Anti-EL-4 NK cells were unaffected by silica particles in vivo or in vitro; the NK cells reactive to EL-4 cells matured functionally much earlier in life (5 d of age) and the function did not decline with age. Irradiated mice reconstituted with syngeneic marrow or spleen cells developed functional NK cells against EL-4 targets before they developed anti-YAC-1 NK cells in their spleen. Thus anti-EL-4 NK cells that express hybrid resistance in vitro appear to differ from anti-YAC-1 NK cells and do not require an intact marrow microenvironment for functional differentiation. Despite differences in the NK-cell types involved in the lysis of YAC-1 and EL-4 cells, these two tumor cells share certain common determinants. This was ascertained both by cold competition and by utilization of YAC-1 and EL-4 cell monolayers as immunoadsorbents. We conclude that Hh-1b is the common antigen present in EL-4 and YAC-1 cells, because B6D2F1 anti-B6 (anti-Hh-1b) cytotoxic T lymphocytes lysed both the tumor cells. Our data suggest that Hh-1b antigen is recognized by both types of NK cells, but that additional determinants must be present on YAC-1 cells. Two models of NK cell lysis compatible with the data are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号