首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Our purpose was to study the possible role of a pulmonary chemoreceptor in the control of ventilation during exercise. Respiratory gas exchange was measured breath-by-breath at two intensities of exercise with circulatory occlusion of the legs. Eight male subjects exercised on a cycle ergometer at 49 and 98 W for 12 min; circulation to the legs was occluded by thigh cuffs (26.7 kPa) for two min after six min of unoccluded exercise. PETCO2 and decreased and PETO2 increased significantly during occlusion at both workloads. Occlusion elicited marked hyperventilation, as evidenced by sharp increases in , and . A sudden sharp increase in PETCO2 was seen 12.3±0.5 and 6.5±1.2 s after cuff release in all subjects during exercise at 49 and 98 W, respectively. At 49 W a post-occlusion inflection in was seen in 7 subjects 21.1±5.8 s after the PETCO2 inflection. Three subjects showed an inflection in at 98 W 23.3±7.5 s after the PETCO2 inflection. There were significant increases in PETCO2, and after cuff release. mirrored better than , post occlusion. On the basis of a significant lag time between inflections in PETCO2 and following cuff release, it is concluded that the influences of a pulmonary CO2 receptor were not seen.  相似文献   

2.
Small increases in external dead space (VD) augment the exercise ventilatory response via a neural mechanism known as short-term modulation (STM). We hypothesized that breathing mechanics would differ during exercise, increased VD and STM. Men were studied at rest and during cycle exercise (10–50 W) without (Control) and with added VD (200–600 ml). With added VD, VT increased via increased end-inspiratory lung volume (EILV), with no change in end-expiratory lung volume (EELV), indicating recruitment of inspiratory muscles only. With exercise, VT increased via both decreased EELV and increased EILV, indicating recruitment of both expiratory and inspiratory muscles. A significant interaction between the effects of exercise and VD on mean inspiratory flow indicated that the augmented exercise ventilatory response with added VD (i.e. STM) resulted from increased drive to the inspiratory muscles. These results reveal different patterns of respiratory muscle recruitment among experimental conditions. Hence, we conclude that fundamental differences exist in the neural control of ventilatory responses during exercise, increased VD and STM.  相似文献   

3.
Summary The present investigation examined the relationship between CO2 sensitivity [at rest (S R) and during exercise (S E)] and the ventilatory response to exercise in ten elderly (61–79 years) and ten younger (17–26 years) subjects. The gradient of the relationship between minute ventilation and CO2 production ( E/ CO2) of the elderly subjects was greater than that of the younger subjects [mean (SEM); 32.8 (1.6) vs 27.3 (0.4); P<0.01]. At rest, S R was lower for the elderly than for the younger group [10.77 (1.72) vs 16.95 (2.13) 1 · min–1 · kPa–1; 1.44 (0.23) vs 2.26 (0.28) 1 · min–1 · mmHg–1; P<0.05], but S E was not significantly different between the two groups [17.85 (2.49) vs 19.17 (1.62) l · min–1 · kPa–1; 2.38 (0.33) vs 2.56 (0.21) 1 · min–1 · mmHg–1]. There were significant correlations between both S R and S E, and E/ CO2 (P<0.05; P<0.001) for the younger group, bot none for the elderly. The absence of a correlation for the elderly supports the suggestion that E/ CO2 is not an appropriate index of the ventilatory response to exercise for elderly humans.  相似文献   

4.
The dynamic influences of end-tidal CO2 and exercise on ventilation are compared when CO2 and exercise are imposed separately and when they are imposed simultaneously. Five human subjects are studied. The subjects performed three trials: random work rate forcing, random CO2 inhalation and their simultaneous loading. The work rate was varied between 20 and 80 W as a pseudorandom binary sequence. The concentration of inspired CO2 was varied randomly between 0 and 7 per cent, adjusted so that it produced approximately the same amount of ventilatory fluctuations as the random work load. The relative contribution of each variable was analysed using multivariate autoregressive analysis at frequencies ranging from 0·1 to 1 cycle min−1. The results show that the dynamics of the response to CO2 inhalation, exercise and their combination are nonlinear and that the combination of CO2 inhalation and exercise magnifies the nonlinear behaviour. Ventilation is largely unaffected by either work rate or end-tidal CO2 at 1 cycle min−1. During simultaneous CO2 and work rate forcing, ventilation tends to follow the change in the end-tidal CO2.  相似文献   

5.
Small increases in respiratory dead space (VD) augment the exercise ventilatory response by a serotonin-dependent mechanism known as short-term modulation (STM). We tested the hypotheses that the relevant serotonin receptors for STM are in the spinal cord, and are of the 5-HT2-receptor subtype. After preparing adult female goats with a mid-thoracic (T6-T8) subarachnoid catheter, ventilation and arterial blood gases were measured at rest and during treadmill exercise (4.8 km/h; 5% grade) with and without an increased VD (0.2-0.3 L). Measurements were made before and after spinal or intravenous administration of a broad-spectrum serotonin receptor antagonist (methysergide, 1-2mg total) and a selective 5-HT2-receptor antagonist (ketanserin, 5-12 mg total). Although spinal methysergide had no effect on the exercise ventilatory response in control conditions, the augmented response with increased VD was impaired, allowing [Formula: see text] to increase from rest to exercise. Spinal methysergide diminished both mean inspiratory flow and frequency responses to exercise with increased VD. Spinal ketanserin impaired [Formula: see text] regulation with increased VD, although its ventilatory effects were less clear. Intrathecal dye injections indicated CSF drug distribution was caudal to the upper cervical spinal cord and intravenous drugs at the same total dose did not affect STM. We conclude that spinal 5-HT2 receptors modulate the exercise ventilatory response with increased VD in goats.  相似文献   

6.
The purpose of this study was to clarify whether delayed onset muscle soreness (DOMS) and muscle damage after eccentric exercise (ECC) could affect the ventilatory and circulatory responses at the onset of exercise, and whether those effects would continue after the disappearance of DOMS. Ten males participated in this study. We measured ventilatory and circulatory responses at the onset of exercise, for the first 20 s, during knee extension–relaxation voluntary exercise (VOL) and passive movement (PAS), which was achieved by the experimenter alternatively pulling ropes connected to the subjects’ ankles for the same period and frequency as during VOL. VOL and PAS were performed before, 2 days after, and 7 days after ECC. The following results were found: (1) the gain of minute ventilation at the onset of VOL at 2 days after ECC was significantly larger than that of before ECC; (2) the gain of minute ventilation at 7 days after ECC during both VOL and PAS was also enhanced significantly as compared to that of before ECC; and (3) heart rate and blood pressure responses were unchanged throughout the experimental period. In conclusion, ventilatory response at the onset of exercise is augmented during DOMS and EIMD after ECC and the enhanced ventilatory response continued after the disappearance of DOMS. It is suggested that enhanced ventilatory response during exercise after ECC is attributed to at least the changes in neural factors and that the mechanisms inducing these augmented ventilatory responses should be different during the period after ECC.  相似文献   

7.
To assess muscle metabolism and inorganic phosphate (Pi) peak splitting during exercise, 31-phosphorus nuclear magnetic resonance spectroscopy was performed during ramp incremental and submaximal step exercise with and without circulatory occlusion. Seven healthy men performed calf flexion in a superconducting magnet. There was no Pi splitting during ramp incremental exercise with the circulation present and phosphocreatine (PCr) decreased linearly by 0.07 (SEM 0.01) mmol?·?l?1?·?s?1, while exercise with the circulation occluded caused the Pi peak to split into a high and a low pH peak. The rate of PCr decrease during exercise with the circulation occluded was 0.15 (SEM 0.03) mmol?·?l?1?·?s?1 which with the efficiency of the adenosine 5′-triphosphate (ATP) hydrolysis reaction corresponded well to the mechanical energy. Both with and without occlusion of the circulation PCr decreased with some time lag which may reflect the consumption of residual oxygen. In submaximal step exercise PCr decreased exponentially at the onset of exercise with the circulation open whereas it decreased linearly by 0.15?mmol?·?l?1?·?s?1 when the circulation was occluded. After exercise, occlusion of the circulation was maintained for 1 min more and there was no PCr resynthesis. It is suggested that ATP synthesis was limited by the availability of oxygen.  相似文献   

8.
Summary The ventilatory response to sinusoidally varying exercise was studied in five adults and seven prepubertal children to determine whether the faster kinetics of ventilation observed in children during abrupt changes in exercise intensity remained more rapid when exercise intensity varied continuously. Each subject exercised on a cycle ergometer first against a constant load and then against a load fluctuating over six different periods ranging from 0.75 to 10 min. The pedal rate was kept constant for all loads. The inspiratory minute ventilation was determined breath-by-breath. Amplitude (A) and phase angle () of the fundamental component and the first harmonics of the ventilatory response were calculated by Fourier analysis for an integer number of waves for each period. From the relationship between A, and frequency, dynamic parameters of a first order model with and without delay were compared between adults and children. Firstly we found that the ventilatory time constant was significantly faster in children: 49.7 (SD 9.1) s vs 74.6 (SD 11.1) s (P<0.01). Secondly, the change in A and with the frequency was not however characteristic of a first order system without delay in most of the subjects > 90° for the shorter periods). Thirdly, even when the ventilatory control system was described as a first order model with a positive delay, time constants remained significantly shorter in children: 45.6 (SD 5.7) s vs 67.4 (SD 13) s (P<0.01). The ability to increase ventilation faster in children appeared to be a characteristic of the ventilatory control system during exercise independent of the type of drive used.  相似文献   

9.
We compared the ventilatory and circulatory responses during 20 s of light dynamic leg and arm exercises performed separately using dominant and non-dominant limbs. Seventeen subjects performed a 20-s single-leg knee extension-flexion exercise with a load of 5% of maximal muscle strength attached to the ankle. Fifteen of the seventeen subjects also did a single-arm elbow flexion-extension exercise in which a load was attached to the wrist in the same way as in the leg exercise. Similar movements were passively performed on the subjects by experimenters to avoid the effects of central command. The magnitude of change from rest (gain) in minute ventilation during passive movement (PAS) was significantly smaller in the dominant limbs than in the non-dominant limbs, though a significant difference was not detected during voluntary exercise (VOL). In contrast, heart rate and blood pressure responses did not show any differences between the dominant and non-dominant limbs during either VOL or PAS. In conclusion, the initial ventilatory response to PAS in the dominant limbs was lower than that of the non-dominant limbs, though the ventilatory response to VOL was not. Circulatory responses were not different between the dominant and non-dominant limbs. These results suggest that peripheral neural reflex during exercise could be different between dominant and non-dominant limbs and that ventilatory response at the onset of exercise might be controlled by the dual neural modulation of central command and peripheral neural reflex, resulting in the same ventilatory response to both dominant and non-dominant limb exercise.  相似文献   

10.
To determine if arterial chemoreceptors contribute to the ventilatory response during exercise, we measured minute ventilation ( 1) in spontaneously breathing Pekin ducks (Anas platyrhynchos) during rest and running exercise when the inspired gas was switched from either 21% or 12% O2 to 100% O2 for 45 s (O2-test). In normoxia at rest (PaO2=99 Torr), inhaling 100% O2 reduced 1 by 30%, while during resting hypoxic conditions, (PaO2=56 Torr), 100% O2 inhalation reduced 1 by 66%. During exercise, abruptly inhaling 100% O2 decreased 1 by only 14% and 33% in normoxic and hypoxic conditions, respectively. Thus, only a small fraction of the ventilatory response during exercise under normoxic conditions is due to an arterial chemoreceptor input. However, during exercise in hypoxic conditions, arterial chemoreceptors provide a substantial portion of the total drive to ventilation.  相似文献   

11.
Summary The cardiorespiratory response to graded treadmill exercise was studied in a group of kindergarten children, aged 5 to 6 years. From the non-linear change of pulmonary ventilation with increasing exercise intensity a ventilatory threshold was determined which averaged 28.1±4.9 (SD) ml O2·min–1·kg–1. A significant correlation was established between this ventilatory threshold (ml O2·min–1) and the physical working capacity at a heart rate of 170 beats per min (PWC170, ml O2·min–1):r=0.93,p<0.001. These data show that a ventilatory threshold can be obtained in young children which is an objective index of cardiorespiratory performance capacity.  相似文献   

12.
Summary Arterial blood pressure, total peripheral resistance (TPR), plasma catecholamine and other hormone concentrations were measured or estimated during, and 4 h following, a 20-min exercise test on the bicycle ergometer in 10 women with marginal (borderline) hypertension. Each woman served as her own control by repeating the whole procedure, except for the exercise test, on another day. Median and 80% range was used: M (0.8 R). Compared with the control, the exercise reduced the driving blood pressure from 103 (94–110) to 95 (80–100) mm Hg and the TPR from 1.13 (0.96–1.40) to 0.91 (0.79–1.11) PRUS — both reductions being statistically significant with two-sided P<0.05 for at least 4 h. — The reduced nervous and humoral sympathetic activity following aerobic exercise seems capable of explaining the low TPR, and the continuous rise in the muscular vasodilatator dopamine may be of importance.Supported by Hjerteforeningen and HÄssle, Denmark  相似文献   

13.
The purpose of this study was to investigate whether or not the ventilatory and circulatory responses at the onset of voluntary exercise and passive movement, especially at the initial stage (phase I), in children are the same as in adults. Ten pre-teenage male children and ten adult men participated in this study. Voluntary exercise and passive movement were performed in a sitting position for about 20 s. Both the exercise and the movement consisted of flexion-extensions of the lower leg from a vertical to horizontal position, either voluntarily or passively, with a frequency of about 60 · min−1. Inspiratory minute ventilation ( I), tidal volume (V T), respiratory frequency, partial pressure of end-tidal CO2 and O2, heart rate (f c) and mean blood pressure (BˉPˉ) before, during and after exercise or movement were measured using breath-by-breath and beat-to-beat techniques. Cardiorespiratory responses at the onset of voluntary exercise and passive movement were compared with the relative change (Δ), which was estimated from the value at rest (100%). In the present study, it was found that: (1) the I during voluntary exercise were significantly lower in the children, mainly due to lower ΔV T; (2) the Δf c during voluntary exercise was almost the same in both groups, while Δf c was significantly lower in the children during the last part of passive movement; (3) in the voluntary exercise and passive movement, the BˉPˉ in the children was increased a little or remained close to the value at rest, while it was significantly decreased in the adults. As a result, there were significant differences in ΔBˉPˉ between the two groups during voluntary exercise. These results suggest that the cardiorespiratory responses at the onset of voluntary exercise and passive movement may be modified during the growth process. Accepted: 30 June 2000  相似文献   

14.
This study evaluated the dynamic behavior of total and compartmental chest wall volumes [(VCW) = rib cage (VRC) + abdomen (VAB)] as measured breath-by-breath by optoelectronic plethysmography during constant-load exercise in patients with stable chronic obstructive pulmonary disease. Thirty males (GOLD stages II-III) underwent a cardiopulmonary exercise test to the limit of tolerance (Tlim) at 75% of peak work rate on an electronically braked cycle ergometer. Exercise-induced dynamic hyperinflation was considered to be present when end-expiratory (EE) VCW increased in relation to resting values. There was a noticeable heterogeneity in the patterns of VCW regulation as EEVCW increased non-linearly in 17/30 “hyperinflators” and decreased in 13/30 “non-hyperinflators” (P < 0.05). EEVAB decreased slightly in 8 of the “hyperinflators”, thereby reducing and slowing the rate of increase in end-inspiratory (EI) VCW (P < 0.05). In contrast, decreases in EEVCW in the “non-hyperinflators” were due to the combination of stable EEVRC with marked reductions in EEVAB. These patients showed lower EIVCW and end-exercise dyspnea scores but longer Tlim than their counterparts (P < 0.05). Dyspnea increased and Tlim decreased non-linearly with a faster rate of increase in EIVCW regardless of the presence or absence of dynamic hyperinflation (P < 0.001). However, no significant between-group differences were observed in metabolic, pulmonary gas exchange and cardiovascular responses to exercise. Chest wall volumes are continuously regulated during exercise in order to postpone (or even avoid) their migration to higher operating volumes in patients with COPD, a dynamic process that is strongly dependent on the behavior of the abdominal compartment.  相似文献   

15.
Summary The time course of heart rate (HR) and venous blood norepinephrine concentration [NE], as an expression of the sympathetic nervous activity (SNA), was studied in six sedentary young men during recovery from three periods of cycle ergometer exercise at 21%±2.8%, 43%±2.1% and 65%±2.3% of respectively (mean±SE). The HR decreased mono-exponentially withτ values of 13.6±1.6 s, 32.7±5.6 s and 55.8±8.1s respectively in the three periods of exercise. At the low exercise level no change in [NE] was found. At medium and high exercise intensity: (a) [NE] increased significantly at the 5th min of exercise (Δ[NE]=207.7±22.5 pg·ml−1 and 521.3±58.3 pg·ml−1 respectively); (b) after a time lag of 1 min [NE] decreased exponentially (τ=87 s and 101 s respectively); (c) in the 1st min HR decreased about 35 beats · min−1; (d) from the 2nd to 5th min of recovery HR and [NE] were linearly related (100 pg·ml−1 Δ[NE]5 beats ·min−1). In the 1st min of recovery, independent of the exercise intensity, the adjustment of HR appears to have been due mainly to the prompt restoration of vagal tone. The further decrease in HR toward the resting value could then be attributed to the return of SNA to the pre-exercise level.  相似文献   

16.
A computer program is described which can provide either on-line or off-line analysis of the surface electromyogram (EMG) in man during submaximal isometric contractions. The intention of the program was to quantify the tension developed by, and the degree of fatigue induced in muscle during this form of exertion from the surface EMG. Six male and female volunteers served as subjects to test the program by exerting brief isometric contractions of their handgrip muscles at tensions ranging from 3 to 100% of their maximum strength and fatiguing isometric contractions at tensions ranging between 20 and 95% of their maximum strength. The results of these experiments showed that the program was able to estimate the tension developed by muscle within an average of 2.4% of the subject's maximum strength and estimate the duration of fatigue contractions within an average of 3.5% of the actual recorded endurance. The applications of this form of analysis to work physiology are discussed.  相似文献   

17.
Summary Endurance for dynamic exercise, cardiac output, blood pressure, heart rate, ventilation, and oxygen consumption was measured in eight individuals with paraplegia at the end of 4-min bouts of exercise on a friction braked cycle ergometer. Movement of the subjects' legs was induced by electrically stimulating the quadriceps, gluteus maximus and hamstring muscles with a computer-controlled biphasic square — wave current at a frequency of 30 Hz. The friction braked cycle ergometer was pedalled at work rates which varied between 0 and 40 W. Measurements were repeated after 3 and 6 months to assess the affect of training. After 3 months of training it was found that endurance increased from 8 min at a work rate of 0 W to 30 min at a work rate of 40 W. Compared to the cardiovascular responses in non-paralyzed subjects, computerized cycle ergometry was found to be associated with higher relative stresses for a given level of absolute work. Mean blood pressure, for example, increased by over 30% during maximal work in individuals with paralysis compared to the typical response obtained for able-bodied subjects. Analysis of the data showed that instead of the 20-30% metabolic efficiency commonly reported for cycle ergometry, the calculated metabolic efficiency during computer-controlled cycle ergometry was only 3.6%.  相似文献   

18.
Ventilatory responses to imagined exercise   总被引:3,自引:0,他引:3  
We studied whether the ventilatory responses to imagined exercise are influenced by automatic processes. Twenty-nine athletes produced mental images of a sport event with successive focus on the environment, the preparation, and the exercise. Mean breathing frequency increased from 15 to 22 breaths/min. Five participants reported having voluntarily controlled breathing, two of them during preparation. Twenty participants reported that their breathing pattern changed during the experiment: 11 participants were unable to correctly report on the direction of changes in frequency, and 13 incorrectly reported changes in amplitude. This finding suggests that these changes were not voluntary in most participants and may therefore reveal automatic forebrain influences on exercise hyperpnea. However, these changes may also reflect nonspecific processes (e.g., arousal) different from those occurring during actual exercise.  相似文献   

19.
Summary To investigate whether ventilation frequency could be entrained to a sub-harmonic of the exercise rhythm, 19 experimentally naive male volunteers were tested during steady state bicycle ergometry and arm cranking under conditions of constant applied workload. Each exercise was performed at two separate ventilatory loads, one within the linear range and the other in the curvilinear range of ventilatory response to exercise. A preferred exercise rhythm was initially adopted (4 min.) followed by forced incremented and decremented rhythm changes each lasting 3 min during a 12 min exercise period. Ventilation, pedal pulse train and heart rate were sampled at 17 Hz on a PDP 11/23 computer. Ratios of limb frequency to dominant respiratory frequency were determined following Fourier analysis of these signals. Data that lay within ±0.05 of an integer and half-integer ratio were accepted as indices of entrainment, provided that the observed entrained scores were statistically significant. Ventilation frequency showed a clear, but intermittent tendency to entrain with limb frequency. This tendency was greater during bicycle ergometry, possibly as a consequence of task familiarisation, although both exercise entrainments were independent of workload. No difference between preferred versus varied exercise rhythm was evident, but more entrainment (p<0.01) was observed during a decremental change in exercise rhythm. These responses do not appear to support an appreciable role for limb-based afferents in the control of entrainment. The results of this study provide evidence that exercise rhythm has some regulatory role in the control of breathing during moderate rhythmical laboratory-based exercise ergometry.  相似文献   

20.
Summary We set out to demonstrate whether changes in plasma volume, haematocrit and some important blood constituents occurred after swimming 100 m and 800 m, as well as monitoring the duration of these changes. We measured exercise-induced changes in concentration of plasma constituents in eight subjects, and determined the expected effects of haemoconcentration on these constituents. We also investigated the different biochemical responses occurring after maximal exercise (100 m), as compared to submaximal exercise (800 m). The haematocrit increased significantly after the 100 m swim and to a lesser extent after the 800-m swim, returning to basal levels within 30 min. The plasma volume decreased by 16% on completion of the 100 m and by 8% on completion of the 800 m. The blood lactate concentration increased 15-fold and 10-fold after the 100-m and 800-m swims respectively. The plasma potassium concentration increased significantly immediately on completion of the 100-m swim, then decreased significantly at 2 1/2 and 5 min post-exercise, returning to near-basal values at 30 min. The potassium concentration measured after the 800-m event did not differ significantly from basal levels, however the measured concentrations were significantly lower than the concentrations expected on the basis of haemoconcentration. The plasma sodium concentrations measured after both 100-m and 800-m swims were significantly increased. However, calculations correcting for haemoconcentration showed significant losses in toal circulating sodium. Our study demonstrates marked changes in plasma volume and certain blood constituents after maximal intensity swimming, and less marked changes after submaximal exercise. We also demonstrated the importance of taking the effects of haemoconcentration into account when evaluating changes in concentration of plasma constituents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号