首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1-Aminobenzotriazole (ABT) has been widely used as a nonspecific mechanism-based inhibitor of cytochrome P450 (P450) enzymes. It is extensively used in preclinical studies to determine the relative contribution of oxidative metabolism mediated by P450 in vitro and in vivo. The aim of present study was to understand the translation of fraction metabolized by P450 in dog hepatocytes to in vivo using ABT, for canagliflozin, known to be cleared by P450-mediated oxidation and UDP-glucuronosyltransferases–mediated glucuronidation, and 3 drug discovery project compounds mainly cleared by hepatic metabolism. In a dog hepatocyte, intrinsic clearance assay with and without preincubation of ABT, 3 Lilly compounds exhibited a wide range of fraction metabolized by P450. Subsequent metabolite profiling in dog hepatocytes demonstrated a combination of metabolism by P450 and UDP-glucuronosyltransferases. In vivo, dogs were pretreated with 50 mg/kg ABT or vehicle at 2 h before intravenous administration of canagliflozin and Lilly compounds. The areas under the concentration-time curve (AUC) were compared for the ABT-pretreated and vehicle-pretreated groups. The measured AUCABT/AUCveh ratios were correlated to fraction of metabolism by P450 in dog hepatocytes, suggesting that in vitro ABT inhibition in hepatocytes is useful to rank order compounds for in vivo fraction of metabolism assessment.  相似文献   

2.
The objective of the study was to improve the bioavailability and anticancer potential of naringenin (NRG) by developing a drug-loaded polymeric nanodelivery system. NRG-loaded eudragit E100 nanoparticle (NRG-EE100-NPs) system was developed and physicochemically characterized. In vivo pharmacokinetic and in vitro cytotoxicity abilities of the NRG-EE100-NPs were investigated. In vivo anticancer activity was evaluated in murine BALB/c mice-bearing colorectal tumor. The NRG-EE100-NPs had an optimum mean particle size (430.42 ± 5.78 nm), polydispersity index (0.283 ± 0.089) with percent entrapment efficiency (68.83 ± 3.45%). The NRG-EE100-NPs demonstrated significant higher bioavailability (~96-fold; p <0.05) as well as cytotoxicity (~16-fold; p <0.001) as compared to free NRG. Furthermore, NRG-EE100-NPs indicated significant tumor suppression (p <0.01) subsequently improvement in survival rate compared to free NRG in vivo. Thus, the physicochemical properties and colorectal cancer efficacy of NRG were improved by successful encapsulating in cationic-polymeric nanoparticle system.  相似文献   

3.
This work aimed at loading of diosmin nanocrystals into alginate-based wafers for treatment of highly exuding diabetic ulcer in rats using topical route of administration. For this purpose, different formulation variables and preparation techniques to enhance the flexibility and adhesion properties of the prepared sodium alginate (SA) wafers were carried out. The prepared wafers were characterized regarding hydration capacity, bioadhesion, scanning electron microscope, and Fourier-transform infrared spectroscopy. Efficacy of treating diabetic ulcer was studied using diabetic-induced rat model using streptozotocin. Results obtained showed that using SA:gelatin with 1.5%/1.5% w/w gave acceptable wafers with a sustained release of diosmin over 8 h. A complete re-epithelialization, well-organized dermal layers, well-formed granulation tissue, and mature collagen bundles were observed in treated rats. It was concluded that combination of gelatin with SA provided an excellent wafer as a promising medicated wound dressing holding diosmin nanocrystals while maintaining its stability.  相似文献   

4.
Zhang L  Li C  Lin G  Krajcsi P  Zuo Z 《The AAPS journal》2011,13(3):378-389
Baicalein (Ba) was found to be subject to serious first-pass metabolism after oral administration. We previously revealed the important role of intestine in the low oral bioavailability of Ba. The present study aims to evaluate the hepatic metabolism and disposition of Ba. Ba was given to Sprague-Dawley rats through bolus or infusion via intravenous or intra-portal route of administrations. Both plasma and bile samples at different time intervals were obtained. Concentrations of Ba and potential metabolites in the collected samples were analyzed with HPLC/UV and identified by LC/MS/MS, respectively. Plasma concentration versus time profiles of Ba obtained from intravenous and intra-portal administrations were compared to estimate the extent of hepatic metabolism. In addition, transport studies of baicalein-7-glucuronide (BG), one of the major metabolites of Ba, were carried out using transfected cell systems overexpressing various human organic anion-transporting polypeptide (OATP) isoforms to estimate the specific transporters involved in the hepatic disposition of Ba metabolites. The results showed that liver, in addition to intestine, also conferred extensive metabolism to Ba. Several mono- and di-conjugates of Ba, which were mainly glucuronides, sulfates, and methylates, were found in bile. The transport study demonstrated that besides MRPs and BCRP, human OATP2B1 and OATP1B3 in liver might also mediate the secretion of BG to bile. In summary, liver plays an important role in the metabolism of Ba and transport of its conjugated metabolites.  相似文献   

5.
AZ’0908 is a novel microsomal prostaglandin E synthase-1 inhibitor intended for oral administration. Pharmacokinetic experiments in rats showed that bioavailability was much lower than anticipated and increased following pretreatment with the nonspecific cytochrome P450 (CYP) inhibitor 1-aminobenzotriazole, presumably by inhibition of intestinal metabolism. Stability experiments in rat liver and intestinal fractions revealed that the intrinsic clearance (Clint) was much higher in intestinal than in liver microsomes. Caco2 experiments showed that AZ’0908 was a substrate for breast cancer resistance protein. Permeability was generally high and the efflux component was saturable predicting good absorption. The Clint values in human intestinal microsome and S9 fractions were low. A correlation occurred between in vitro intestinal metabolism and in vivo intestinal loss in rats and dogs. Enzyme identification experiments showed that human CYP2J2 was involved in the oxidation of AZ’0908. In rats, the major metabolic enzyme was not identified. However, rat CYP2J2 analogs were not investigated. Intestinal metabolism appeared to be a major occurrence, explaining intestinal loss of AZ’0908 in the rats. In view of good overall permeability, low in vitro intestinal turnover, and relative low intestinal abundance of CYP2J2, we predict that intestinal metabolism of AZ’0908 in human does not exert a major issue. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 102:1106-1115, 2013  相似文献   

6.
During formulation development, efficiently integrating in vitro dissolution testing can significantly improve one's ability to estimate in vivo performance and aide in the selection of premier drug candidates. The concept of in vitro–in vivo relationship/correlation has garnered significant attention from pharmaceutical scientists to predict expected bioavailability characteristics for drug substances and products. The present work illustrates a comparative evaluation of in vitro tests to access crystalline carbamazepine and various types of amorphous and crystalline dispersions of carbamazepine and Eudragit® L100 produced by spray drying, including a membrane-permeation dissolution methodology and nonsink dissolution. To establish the best model, parameters such as pH, membrane constitution, and dissolution media composition were investigated. The in vitro results were compared against in vivo mice pharmacokinetic studies and qualitatively, the membrane-permeation dissolution methodology correlated well with in vivo. Various correlations were performed in order to evaluate the optimal model for characterizing the relationship. Results exhibited a coefficient of determination (R2) values of 0.90 and 1.00, depicting a linear relationship of the data in comparison. Therefore, for the current formulation system (drug/polymer/technique), membrane-permeation dissolution can guide formulation development and potentially reduce the number of animal and clinical pharmacokinetic studies required.  相似文献   

7.
Vincristine (VCR) has been used in the treatment of lung cancer. To improve its efficacy, the designs of elevating lung exposure to drug and decreasing the clearance with extended time were brought out. Pulmonary delivery is regarded as a good choice in pulmonary diseases treatment. Spray-drying is a technology for the preparation of drugs that can be delivered to lung via a dry powder inhaler. The results showed an appropriate particle size and shape for the pulmonary delivery. The aerosol behaved a sustained-release profile while VCR solution released rapidly within 10 h. The antitumor activity was characterized by 3-(4, 5-dimethylthiazol-2-yl) -2, 5-diphenyltetrazolium bromide assay, and half maximal inhibitory concentration values of VCR-liposomes spray-dried powder were 24.42 ± 1.88 nM and 55.28 ± 4.76 nM in MCF-7 and A549 cells, respectively. Compared with the free VCR, the aerosol performed better pharmacokinetic behavior: increased maximum concentration (630.8%) and systemic exposure (429.6%) and decreased elimination half-life (81.1%). The clearance was decreased by 83.2%. Comprehensively, the pulmonary delivery seemed to be a recommendable way to effectively treat the pulmonary disease.  相似文献   

8.
Intravaginal rings (IVRs) are an option for continuous administration of drugs in women. However, a considerable amount of excess drug often remains in the ring upon removal. The current study focuses on comparing 2 IVRs releasing levonorgestrel (LNG). Both formulations were designed to release 40 μg of LNG daily, however, with a significant difference in the total amount of drug (10.6 vs. 176.9 mg). Numerical simulations and in vitro release rate testing were utilized in designing the IVRs and confirming the similarity of drug release. Moreover, a pharmacokinetic (PK) study was performed in 13 healthy Japanese women to investigate both formulations during the intended wearing period of 28 days. The primary PK metrics was the average concentration of LNG in plasma at defined time points under stable conditions. Statistical evaluation of the ratio of the main PK metrics indicated values almost in the bioequivalence range. Furthermore, drug content determinations for used and unused IVRs were analyzed for confirming the expected drug delivery in vivo. In summary, it was shown that with proper design, even major differences in the total drug content of IVR formulations might not result in significant effects in the in vitro and in vivo release properties.  相似文献   

9.
Intranasal nanostructured lipid carrier (NLC) of lurasidone hydrochloride (LRD) for brain delivery was prepared by the solvent evaporation method. The effects of independent variables, X1-lipid concentration, X-2 surfactant, and X-3 sonication times on dependent variables, Y1-particle size, Y-2 polydispersity index, and Y-3% entrapment efficiency were determined using Box-Behnken design. Optimized LRD-NLC was selected from the Box-Behnken design and evaluated for their morphological, physiological, nasal diffusion, and in vivo distribution in the brain after intranasal administration. Particle size, polydispersity index, and entrapment efficiency of optimized LRD-NLC were found to be 207.4 ± 1.5 nm, 0.392 ± 0.15, and 92.12 ± 1.0%, respectively. Transmission electron microscopy and scanning electron microscopy was used to determine the particle size and surface morphology of LRD-NLC. The prepared LRD-NLC follows biphasic in vitro drug release. Prepared NLC showed a 2-fold increase in LRD concentration in the brain when compared with the drug solution following intranasal administration. Results showed that intranasal route can be a good and efficient approach for delivering the drug directly to the brain and enhancing the drug efficacy in the brain for the management of schizophrenia and a good alternative to oral drug delivery.  相似文献   

10.
11.

Purpose

In vitro skin permeation studies have been used extensively in the development and optimisation of delivery of actives in vivo. However, there are few reported correlations of such in vitro studies with in vivo data. The aim of this study was to investigate the skin permeation of a model active, niacinamide, both in vitro and in vivo.

Methods

Conventional diffusion cell studies were conducted in human skin to determine niacinamide permeation from a range of vehicles which included dimethyl isosorbide (DMI), propylene glycol (PG), propylene glycol monolaurate (PGML), N-methyl 2-pyrrolidone (NMP), Miglyol 812N® (MG), and mineral oil (MO). Single, binary or ternary systems were examined. The same vehicles were subsequently examined to investigate niacinamide delivery in vivo. For this proof-of-concept study one donor was used for the in vitro studies and one volunteer for the in vivo investigations to minimise biovariability. Analysis of in vitro samples was conducted using HPLC and in vivo uptake of niacinamide was evaluated using Confocal Raman spectroscopy (CRS).

Results

The amount of niacinamide permeated through skin in vitro was linearly proportional to the intensity of the niacinamide signal determined in the stratum corneum in vivo. A good correlation was observed between the signal intensities of selected vehicles and niacinamide signal intensity.

Conclusions

The findings provide further support for the use of CRS to monitor drug delivery into and across the skin. In addition, the results highlight the critical role of the vehicle and its disposition in skin for effective dermal delivery.  相似文献   

12.
The present study aimed at formulating and optimizing natamycin (NT)-loaded polyethylene glycosylated nano-lipid carriers (NT-PEG-NLCs) using Box-Behnken design and investigating their potential in ocular applications. Response surface methodology computations and plots for optimization were performed using Design-Expert® software to obtain optimum values for response variables based on the criteria of desirability. Optimized NT-PEG-NLCs had predicted values for the dependent variables which are not significantly different from the experimental values. NT-PEG-NLCs were characterized for their physicochemical parameters; NT's rate of permeation and flux across rabbit cornea was evaluated, in vitro, and ocular tissue distribution was assessed in rabbits, in vivo. NT-PEG-NLCs were found to have optimum particle size (<300 nm), narrow polydispersity index, and high NT entrapment and NT content. In vitro transcorneal permeability and flux of NT from NT-PEG-NLCs was significantly higher than that of Natacyn®. NT-PEG-NLC (0.3%) showed improved delivery of NT across the intact cornea and provided concentrations statistically similar to the marketed suspension (5%) in inner ocular tissues, in vivo, indicating that it could be a potential alternative to the conventional suspension during the course of fungal keratitis therapy.  相似文献   

13.
In some multidrug therapy programs, ketoconazole (KTZ) may be administered with some antacids that could modify its dissolution rate and reduce its absorption, thus leading to therapeutic failures. The primary aim of this study was to evaluate the influence of Compritol HD5 ATO and Compritol 888 ATO on this interaction in comparison with commercial KTZ tablets. The second aim was to prepare lipid granules of KTZ that could be an alternative to the commercial formulation. Therefore, six KTZ sustained-release granules were prepared with different lipid concentrations, because they were found to be more suitable than tablets that are dissolved only in gastric medium. The results confirmed that the dissolution rate of KTZ granules was significantly reduced in the presence of antacids. The ideal formulation was selected as granules including 5% of Compritol lipids in relation to the suitability of the target profile. Therapeutic effects of orally administered, ideal KTZ granule formulations, and commercial tablets were evaluated in vivo by the experimental model of murine vulvo-vaginal candidiasis (VVC) with and without antacids. It was found that formulations were very effective on VVC, and the therapeutic effect decreased significantly in the presence of antacids. Histopathological studies were carried out for vagina, stomach, and liver tissues and hepatoxicity was also examined. The levels of reduced glutathione (GSH) were measured to assess the oxidative stress induced by KTZ and function of the liver. It was observed that orally administered formulations of KTZ were successful in treating candidiasis in mice without irritancy in stomach. However, liver tissues were damaged. The decreased GSH levels indicated toxicity in our study. This study suggested that in vitro release and in vivo microbiological-toxicological properties of KTZ were affected by antacids and drug-excipient interactions. Lipid granules of KTZ prepared with Compritol 888 ATO could be proposed as a new KTZ solid dosage form with optimum dissolution and therapeutic characteristics.  相似文献   

14.
Celecoxib (CXB) is a widely used anti-inflammatory drug that also acts as a chemopreventive agent against several types of cancer, including skin cancer. As the long-term oral administration of CXB has been associated with severe side effects, the skin delivery of this drug represents a promising alternative for the treatment of skin inflammatory conditions and chemoprevention of skin cancer. We prepared and characterized liquid crystalline systems based on glyceryl monooleate and water containing penetration enhancers which were primarily designed to promote skin delivery of CXB. Analysis of their phase behavior revealed the formation of cubic and hexagonal phases depending on the systems' composition. The systems' structure and composition markedly affected the in vitro CXB release profile. Oleic acid reduced CXB release rate, but association oleic acid/propylene glycol increased the drug release rate. The developed systems significantly reduced inflammation in an aerosil-induced rat paw edema model. The systems' composition and liquid crystalline structure influenced their anti-inflammatory potency. Cubic phase systems containing oleic acid/propylene glycol association reduced edema in a sustained manner, indicating that they modulate CXB release and permeation. Our findings demonstrate that the developed liquid crystalline systems are potential carriers for the skin delivery of CXB.  相似文献   

15.
This study is to evaluate 3 fenofibrate (FEN) formulations including Fournier® 200 mg capsule, Lipidil® 145 mg tablet, and a clinical HME 160 mg tablet by an in vitro biphasic method. Key experimental parameters were evaluated including the selection of biorelevant media, the United States Pharmacopeia IV flow rate, and the United States Pharmacopeia paddle speed. Varying the hydrodynamic condition resulted in a significant impact on FEN concentration time profiles in both aqueous and octanol phases for these formulations. In vivo pharmacokinetic profiles of the HME tablet, the Lipidil tablet, and Fournier capsule under the fasting and low-fat fed states are reported. Their corresponding absorption-time profiles were obtained through deconvolution by the Wagner-Nelson method. When fed state simulated intestinal fluid version 2 was used, the partitioned FEN amount–time profiles in octanol from the 3 formulations under an appropriate hydrodynamic condition exhibited a good agreement with their in vivo absorbed amount–time profiles, permitting a quantitative in vitroin vivo correlation. When fasted state simulated intestinal fluid version 2 was used, partitioned FEN amounts into octanol from these formulations are significantly lower than those from in vivo data. Although no food effect was observed for both HME and Lipidil tablets, the positive food effect of the Fournier capsules significantly overestimated by the biphasic test.  相似文献   

16.
17.
An orally administered site-specific Oral Ghost Drug Delivery (OGDD) device was developed and evaluated for the administration of salmon calcitonin. In vitro drug release studies have been undertaken using biorelevant media and aspirated gastrointestinal fluid from a large white pig in addition to characterization of a formulated trimethyl chitosan blend formulated and prepared into a loaded mini-pellet system. In vivo drug release analysis in a large white pig model has further been undertaken on the OGDD device and a commercial intramuscular injection to ascertain the release properties of the OGDD device in an animal model in comparison with the currently used treatment option for the administration of salmon calcitonin. Results of this study have detailed the success of the prepared system during both in vitro and in vivo analyses with the OGDD providing a greater control of release of salmon calcitonin when compared to the commercial product.  相似文献   

18.
The present study demonstrated the systematic adaptation of quality by design-integrated approach for the development of novel nanostructured lipid carrier (NLC) of an anti-hypertensive drug isradipine (ISD) to address the inherent challenges such as low solubility and low oral bioavailability. Plackett-Burman design was used for preliminary screening of significant process and formulation variables (p <0.05), which were further processed using Box-Behnken design for the attainment of optimization goal that is, mean particle size (85.7 ± 7.3 nm), drug entrapment efficiency (87.4 ± 3.29%), and in vitro drug release characteristics (92.89 ± 5.47%). The optimized ISD-NLC formulation also demonstrated well-dispersed uniform-shaped particles (polydispersity index 0.207 ± 0.029), high gastrointestinal fluid stability (zeta potential ?10.17 ± 0.59 mV), and higher in vitro gut permeation (21.69 ± 2.38 μg/cm2 of ISD-NLC as compared to 11.23 ± 1.74 μg/cm2 in ISD suspension). Furthermore, lipolysis studies were performed for the purpose of in vivo fate, and significantly higher drug content of ISD from ISD-NLC in aqueous phase was found (72.34 ± 4.62%) as compared to drug suspension (3.01 ± 0.91%). Relative bioavailability of ISD-NLC and ISD suspension was increased by 4.2-fold and 1.78-fold in the absence and presence of cycloheximide which is a lymphatic uptake inhibitor revealing lymphatic uptake of ISD-NLC in bioavailability improvement. Hence, systematic adaptation of quality by design integrated approach improved gut permeation and potential solubilizaton fate (dynamic lipolysis) of ISD-NLC, which further improved the lymphatic uptake and biodistribution of drug thereby promisingits in vivo prospect and clinical efficacy.  相似文献   

19.
In vitro-in vivo correlation (IVIVC) is a biopharmaceutical tool recommended to be used in development of formulation. When validated, it can speed up development of formulation, be used to fix dissolution limits and also as surrogate of in vivo study. However, as do all tools, it presents limitations and traps. The aim of the present paper is to investigate five common traps which could limit either the setting or use of IVIVC (1) using mean or individual values; (2) correction of absolute bioavailability; (3) correction of lag time and time scaling; (4) flip-flop model; and (5) predictability corrections.  相似文献   

20.
A method is presented to describe the in vitro–in vivo correlation (IVIVC) of an extended release drug formulation. This extended release drug product is overencapsulated with immediate release material. The heterogeneity of the capsule is modelled using a combined model of an extended release and an immediate release pharmacokinetic profile. Whereas an IVIVC is conventionally performed using a two-stage procedure, the model uses a one-stage convolution-based method. The method is applied to a Galantamine controlled release formulation, an acetylcholinesterase inhibitor for the treatment of Alzheimer's disease. The average percentage prediction error indicated a good fit of the new model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号