首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is well known that the dorsal raphe nucleus (DRN) sends serotonergic and nonserotonergic projections to target regions in the brain stem and forebrain, including the vestibular nuclei. Although retrograde tracing studies have reported consistently that there are differences in the relative innervation of different target regions by serotonergic and nonserotonergic DRN neurons, the relative termination patterns of these two projections have not been compared using anterograde tracing methods. The object of the present investigation was to trace anterogradely the individual serotonergic and nonserotonergic components of the projection from DRN to the vestibular nuclei in rats. To trace nonserotonergic DRN projections, animals were pretreated with the serotonergic neurotoxin 5,7-dihydroxytryptamine (5,7-DHT), and then, after 7 days, the anterograde tracer biotinylated dextran amine (BDA) was iontophoretically injected into the DRN. In animals treated with 5,7-DHT, nonserotonergic BDA-labeled fibers were found to descend exclusively within the ventricular plexus and to terminate predominantly within the periventricular aspect of the vestibular nuclei. Serotonergic DRN projections were traced by injecting 5,7-DHT directly into DRN, and amino-cupric-silver staining was used to visualize the resulting pattern of terminal degeneration. Eighteen hours after microinjection of 5,7-DHT into the DRN, fine-caliber degenerating serotonergic terminals were found within the region of the medial vestibular nucleus (MVN) that borders the fourth ventricle, and a mixture of fine- and heavier-caliber degenerating serotonergic terminals was located further laterally within the vestibular nuclear complex. These findings indicate that fine-caliber projections from serotonergic and nonserotonergic DRN neurons primarily innervate the periventricular regions of MVN, whereas heavier-caliber projections from serotonergic DRN neurons innervate terminal fields located in more lateral regions of the vestibular nuclei. Thus, serotonergic and nonserotonergic DRN axons target distinct but partially overlapping terminal fields within the vestibular nuclear complex, raising the possibility that these two DRN projection systems are organized in a manner that permits regionally-specialized regulation of processing within the vestibular nuclei.  相似文献   

2.
Halberstadt AL  Balaban CD 《Neuroscience》2006,140(3):1067-1077
Using a combination of double retrograde tracing and serotonin immunofluorescence staining, we examined whether individual serotonergic and nonserotonergic neurons in the dorsal raphe nucleus are sources of collateralized axonal projections to vestibular nuclei and the central amygdaloid nucleus in the rat. Following unilateral injections of Diamidino Yellow into the vestibular nuclei and Fast Blue into the central amygdaloid nucleus, it was observed that approximately one-fourth of the dorsal raphe nucleus neurons projecting to the vestibular nuclei send axon collaterals to the central amygdaloid nucleus. Immunofluorescence staining for serotonin revealed that more than half of the dorsal raphe nucleus neurons from which these collateralized projections arise contain serotonin-like immunoreactivity. These findings indicate that a subpopulation of serotonergic and nonserotonergic dorsal raphe nucleus cells may act to co-modulate processing in the vestibular nuclei and the central amygdaloid nucleus, regions implicated in the generation of emotional and affective responses to real and perceived motion.  相似文献   

3.
The dorsal raphe nucleus (DRN) projects serotonergic axons throughout the brain and is involved in a variety of physiological functions. However, it also includes a large population of cells that contain other neurotransmitters. To clarify the physiological and pharmacological differences between the serotonergic and nonserotonergic neurons of the DRN, their postsynaptic responses to 5-hydroxytryptamine (5-HT, serotonin) and to selective activation of 5-HT1A or 5-HT2A/C receptors and their action potential characteristics were determined using in vitro patch-clamp recordings. The slices containing these neurons were then immunostained for tryptophan hydroxylase (TPH), a marker of serotonergic neurons. It was found that subpopulations of both serotonergic and nonserotonergic neurons responded to 5-HT with outward (i.e., inhibitory) and inward (i.e., excitatory) currents, responded to both 5-HT1A and 5-HT2A/C receptor activation with outward and inward currents, respectively, and displayed overlapping action potential characteristics. These findings suggest that serotonergic and nonserotonergic neurons in the DRN are both heterogeneous with respect to their individual pharmacological and electrophysiological characteristics. The findings also suggest that the activity of the different populations of DRN neurons will display heterogeneous changes when the serotonergic tone in the DRN is altered by neurological disorders or by drug treatment.  相似文献   

4.
Previous studies have shown that: (1) raphe neurons respond to acoustic and vestibular stimuli, some with a latency of 10–15 ms; (2) alterations of the raphe nuclei alter the acoustic startle reflex; (3) the dorsal raphe nucleus (DRN) is the major source of serotonergic neurons; and (4) approximately 57% of the DRN neurons are nonserotonergic. In the present study, cholera toxin subunit-B (CTB) was injected into cat cochleas, and the brain tissue was examined after a survival period of 5–7 days. Aside from neurons which were known to project to the inner ear, i.e., olivocochlear and vestibular efferent neurons, a surprising new finding was made that somata of a subpopulation of DRN neurons were intensely labeled with CTB. These CTB-labeled neurons were densely distributed in a dorsomedian part of the DRN with some in a surrounding area outside the DRN. The present results suggest that a novel raphe-labyrinthine projection may exist. A future study of anterograde labeling with injections of a tracer in the DRN will be needed to establish the existence of a raphe-labyrinthine projection more thoroughly. A raphe-labyrinthine descending input, together with an ascending input from the inner ear to the DRN through intervening neurons, such as the juxta-acousticofloccular raphe neurons (JAFRNs) described by Ye and Kim, may mediate a brain stem reflex whereby a salient multisensory (including auditory and vestibular) stimulus may alter the sensitivity of the inner ear. As a mammal responds to a biologically important auditory-vestibular multisensory event, the raphe projections to the inner ear and other auditory and vestibular structures may enhance the mammal's ability to localize and recognize the sound and respond properly. The raphe-labyrinthine projection may also modulate the inner ear's sensitivity as a function of the sleep–wake arousal state of an organism on a slower time course.  相似文献   

5.
《Neuroscience》1999,91(1):81-105
The ascending serotonergic projections are derived largely from the midbrain median and dorsal raphe nuclei, and contribute to the regulation of many behavioral and physiological systems. Serotonergic innervation of the hamster circadian system has been shown to be substantially different from earlier results obtained with other methods and species. The present study was conducted to determine whether similar differences are observed in other brain regions.Ascending projections from the hamster dorsal or median raphe were identified using an anterograde tracer, Phaseolus vulgaris leucoagglutinin, injected by iontophoresis into each nucleus. Brains were processed for tracer immunoreactivity, and drawings were made of the median raphe and dorsal raphe efferent projection patterns. The efferents were also compared to the distribution of normal serotonergic innervation of the hamster midbrain and forebrain. The results show widespread, overlapping projection patterns from both the median and dorsal raphe, with innervation generally greater from the dorsal raphe. In several brain regions, including parts of the pretectum, lateral geniculate and basal forebrain, nuclei are innervated by the dorsal, but not the median, raphe. The hypothalamic suprachiasmatic nucleus is the only site innervated exclusively by the median and not by the dorsal raphe. The pattern of normal serotonin fiber and terminal distribution is generally more robust than would be inferred from the anterograde tracer material. However, there is good qualitative similarity between the two sets of data. The oculomotor nucleus and the medial habenula are unusual to the extent that each has a moderately dense serotonin terminal plexus, although neither receives innervation from the median or dorsal raphe. In contrast, the centrolateral thalamic nucleus and lateral habenula have little serotonergic innervation, but receive substantial other neural input from the raphe nuclei. The normal serotonergic innervation of the hamster brain is similar to that in the rat, although there are exceptions. The anterograde tracing of ascending median or dorsal raphe projections reveals a high, but imperfect, degree of correspondence with the serotonin innervation data, and with data from rats derived from immunohistochemical and autoradiographic tract-tracing techniques.  相似文献   

6.
The serotonergic system regulates processing in components of the vestibular nuclear complex, including the medial vestibular nucleus (MVe) and nucleus prepositus hypoglossi (PH). Recent studies using anterograde and retrograde tracers have shown that vestibular nuclei are targeted by regionally selective projections from the serotonergic dorsal raphe nucleus. The objective of the present investigation was to determine whether the DRN is targeted by projections from the vestibular nuclear complex in rats, using the anterograde tracer biotinylated dextran amine (BDA). After injection of BDA into PH or the caudal parvicellular division of MVe, labeled fibers and terminals were observed in the ventromedial and lateral subdivisions of DRN. These findings indicate that projections from the vestibular nuclei and PH are organized to modulate processing within specific functional domains of the DRN.  相似文献   

7.
The orexinergic system interacts with several functional states of emotions, stress, hunger, wakefulness and behavioral arousal through four pathways originating in the lateral hypothalamus (LH). Hundreds of orexinergic efferents have been described by tracing studies and direct immunohistochemistry of orexin in the forebrain, olfactory regions, hippocampus, amygdala, septum, basal ganglia, thalamus, hypothalamus, brain stem and spinal cord. Most of these tracing studies investigated the whole orexinergic projection to all regions of the intracranial part of the CNS. To identify the orexinergic efferents at the subnuclear level of resolution, we focussed on the orexinergic target in the amygdala, which is substantially involved in the LH output and contributes mostly to the functional outcome of the orexinergic system and the basal ganglia. Immunohistochemical identification of axonal orexin A and orexin B in male adult rats has been performed on serial sections. In the extended amygdala many new orexinergic targets were found in the anterior amygdaloid area (dense), anterior cortical nucleus (moderate), amygdalostriatal transition region (moderate), basolateral regions (moderate), basomedial nucleus (moderate), several bed nucleus of the stria terminals regions (few to dense), central amygdaloid subdivisions (dense), posteromedial cortical nucleus (moderate) and medial amygdaloid subnuclei (dense). Furthermore, the entopeduncular nucleus has been newly identified as another target for orexinergic fibers with a high density. These results suggest that subdivisions and subnuclei of the extended amygdala are specific targets of the orexinergic system.  相似文献   

8.
In order to elucidate the regeneration properties of serotonergic fibers in the hippocampus of methylazoxymethanol acetate (MAM)-induced micrencephalic rats (MAM rats), we examined serotonergic regeneration in the hippocampus following neonatal intracisternal 5,7-dihydroxytryptamine (5,7-DHT) injection. Prenatal exposure to MAM resulted in the formation of hippocampal heterotopia in the dorsal hippocampus. Immunohistochemical and neurochemical analyses revealed hyperinnervation of serotonergic fibers in the hippocampus of MAM rats. After neonatal 5,7-DHT injection, most serotonergic fibers in the hippocampus of 2-week-old MAM rats had degenerated, while a small number of serotonergic fibers in the stratum lacunosum-moleculare (SLM) of the hippocampus and in the hilus adjacent to the granular cell layer of the dentate gyrus (DG) had not. Regenerating serotonergic fibers from the SLM first extended terminals into the hippocampal heterotopia, then fibers from the hilus reinnervated the DG and some fibers extended to the heterotopia. These findings suggest that the hippocampal heterotopia exerts trophic target effects for regenerating serotonergic fibers in the developmental period in micrencephalic rats.  相似文献   

9.
Employing both anterograde and retrograde axonal tracing, we investigated direct projections from the central amygdaloid nucleus to the basal ganglia in the cat. The anterograde axonal tracing of Phaseolus vulgaris-leucoagglutinin revealed that projection fibers from the central amygdaloid nucleus to the basal ganglia ended in the globus pallidus (the feline homolog to the external segment of the globus pallidus of primates) and substantia nigra. The amygdalopallidal fibers terminated chiefly in the medial most part of the globus pallidus at its caudal level. The amygdalonigral fibers terminated densely in the substantia nigra pars lateralis, and moderately in the dorsolateral part of the substantia nigra pars reticulata; none of them were found to end in the substantia nigra pars compacta. Both of the amygdalopallidal and amygdalonigral projections were ipsilateral. These neuronal connections were confirmed by retrograde axonal tracing of cholera toxin B subunit in the second set of the experiments: The cells of origin of the amygdalopallidal and amygdalonigral projections were located predominantly in the lateral part of the central amygdaloid nucleus, and additionally in the intercalated cell islands of the amygdala. Most of them were of small bipolar or multipolar type. The cells projecting to the globus pallidus were preferentially distributed at the rostral levels of the central nucleus and intercalated cell islands of the amygdaloid complex, while those projecting to the substantia nigra were mainly located at the caudal levels of these amygdaloid subdivisions. In the third set of the experiments, sequential double-antigen immunofluorescence histochemistry for transported cholera toxin B subunit and horseradish peroxidase showed that some single neurons in the lateral part of the central amygdaloid nucleus, particularly at its middle level, issued axon collaterals to both the globus pallidus and substantia nigra pars lateralis. The results of the present study indicate that the central amygdaloid nucleus sends projection fibers to the globus pallidus and substantia nigra possibly to exert a limbic influence upon forebrain motor mechanisms.  相似文献   

10.
The intra dorsal raphe nucleus (DRN) administration of corticotropin releasing hormone (CRF) inhibits serotonergic (5-HT) activity in this structure, an effect blocked by antagonists selective for the type 1 CRF receptor (CRF1). The DRN has a high density of the type 2 receptor (CRF2), and so the present experiments explored the impact of CRF2 activation within the DRN on 5-HT function. The intra-DRN administration of the selective CRF2 agonist urocortin 2 (Ucn 2) dose dependently increased 5-HT efflux in the basolateral amygdala, a projection region of the DRN. Intra-DRN Ucn 2 also increased c-fos expression in labeled 5-HT neurons. Both of these effects of Ucn 2 were completely blocked by intra-DRN antisauvagine-30 (ASV-30), a relatively selective CRF2 antagonist. These data suggest that CRF1 and CRF2 activation within the DRN affect 5-HT neurons in opponent fashion. Implications of these results for understanding the behavioral effects of CRF and other CRF-like ligands are discussed.  相似文献   

11.
The origins of cholecystokinin (CCK) fibers in the olfactory tubercle, nucleus accumbens and amygdala of the basal forebrain of the albino rat were studied with combined immunofluorescence and fluorescent retrograde tracing techniques. In each case, the majority of the CCK innervation arises topographically from subpopulations of neurons in the substantia nigra-ventral tegmental area of the midbrain. This ascending CCK input to the forebrain appears to exceed the amount of descending CCK input from the cortex. In this regard, the CCK innervation of limbic structures is quite different from that of the neostriatum. It has been reported that the CCK innervation of the neostriatum is derived primarily from piriform cortex as a descending corticostriatal projection. Limbic structures, on the other hand, are primarily innervated by ascending CCK, as well as local circuit, projections.  相似文献   

12.
Peptidergic fibers in the globus pallidus of the monkey appear in the morphological form referred to as woolly fibers. These fibers are composed of a dense plexus of thin beaded axons which ensheath an unstained central core. Such structures are not confined to the globus pallidus, but are also present in the bed nucleus of the stria terminalis, the hypothalamus, the dorsal part of the amygdala, and ventrally in the basal forebrain. The present study describes the relationship between projections from the rostral and ventral striatum and the enkephalin- and substance P-positive woolly fibers. Following injections of either tritiated amino acids or the lectin Phaseolus vulgaris-leucoagglutinin in the ventral striatum, anterogradely labeled fibers and terminals in the forebrain were visualized simultaneously with enkephalin- or substance P immunoreactivity in the same tissue section in order to determine: (i) the extent to which the woolly fiber distribution represents striatal output systems; (ii) whether woolly fibers can be considered as a marker for the entire striatal forebrain projection; and (iii) whether enkephalin and substance P are involved differentially in distinct ventral striatopallidal pathways. Phaseolus vulgaris-leucoagglutinin labeling is seen in the globus pallidus and adjacent structures either as single, beaded fibers or in a profile strikingly similar to that of woolly fibers. In tissue sections treated for a double immunohistochemical protocol, following which the Phaseolus vulgaris-leucoagglutinin-immunoreactive fibers turn black and the peptidergic woolly fibers brown; many of the lectin-positive fibers are seen to enter the peptide-positive woolly fiber plexus. Likewise, following the injections with tritiated amino acids in the ventral striatum, coarse structures that have dimensions resembling those of the woolly fibers are identified. In sections immunohistochemically stained and subsequently treated for autoradiography, peptide-positive woolly fibers can be identified underlying the silver grains. In sections stained for both peptide immunoreactivity and tracer substances, enkephalin or substance P-positive woolly fibers are present in all pallidal regions that receive ventral striatal input. However, the ventral striatum also sends fibers to the hypothalamus, bed nucleus of the stria terminalis, the dorsal part of the amygdala, the septum, the preoptic area, and other areas of the basal forebrain. In these nuclei the peptide-positive woolly fiber distribution is less extensive than the terminal labeling. The distribution of substance P-positive fibers in the subcommissural pallidal region is more limited than the distribution of enkephalinergic fibers.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
The relationship between efferents of the hypothalamic suprachiasmatic nucleus (SCN) and neurons of the thalamic paraventricular nucleus (PVT) projecting to the amygdala was investigated in the rat using tract tracing in light and electron microscopy. Biotinylated dextran amine was used to label anterogradely SCN efferents. These fibers were found to reach the thalamic midline, terminating in PVT, through three pathways: anterodorsally through the preoptic region, dorsally through the periventricular hypothalamus, and through the contralateral medial hypothalamic and preoptic areas after crossing the midline in the optic chiasm. Preterminal and terminal-like elements labeled from the SCN were distributed throughout the rostrocaudal extent of PVT, with an anteroposterior gradient of density. Labeled terminal elements were densest in the dorsal portion of PVT beneath the ependymal lining and some of them entered the ependyma. Anterograde tracing of SCN fibers was combined with injections of retrograde tracers in the amygdala. Numerous retrogradely labeled cell bodies were seen throughout PVT, with a prevalence in its anterodorsal portion. Overlap was detected between puncta labeled from the SCN and retrogradely labeled neurons, especially in the anterodorsal sector of PVT, where numerous puncta were in close apposition to thalamo-amygdaloid cells. Electron microscopy revealed that boutons labeled from the SCN established synaptic contacts with dendritic profiles of PVT neurons labeled from the amygdala. The findings demonstrate that information processed in the biological clock is conveyed to the amygdala through PVT, indicating that this nucleus plays a role in the transfer of circadian timing information to the limbic system.  相似文献   

14.
As one of the main serotonergic (5HT) projections to the forebrain, the dorsal raphe nucleus (DRN) has been implicated in disorders of anxiety and depression. Although the nucleus contains the densest population of 5HT neurons in the brain, at least 50% of cells within this structure are non-serotonergic, including a large population of nitric oxide synthase (NOS) containing neurons. The DRN has a unique topographical efferent organization and can also be divided into sub-regions based on rostro-caudal and medio-lateral dimensions. NOS is co-localized with 5HT in the midline DRN but NOS-positive cells in the lateral wing (LW) of the nucleus do not express 5HT. Interestingly, the NOS LW neuronal population is immediately rostral to and in line with the cholinergic lateral dorsal tegmental nucleus (LDT). We used immunohistochemical methods to investigate the potential serotonergic regulation of NOS LW neurons and also the association of this cell grouping to the LDT. Our results indicate that >75% of NOS LW neurons express the inhibitory 5HT1A receptor and are cholinergic (>90%). The findings suggest this assembly of cells is a rostral extension of the LDT, one that it is subject to regulation by 5HT release. As such the present study suggests a link between 5HT signaling, activation of cholinergic/NOS neurons, and the stress response including the pathophysiology underlying anxiety and depression.  相似文献   

15.
The amygdaloid complex has a key role in the modulation of behavioral responses in life-threatening situations, including the direction of attentional responses to sensory stimuli. The pathways from the amygdala to the basal forebrain cholinergic system, which projects to the cortex, are proposed to contribute to the modulation. To further explore the topography and postsynaptic targets of these pathways, we investigated the projections from the different divisions of the lateral, basal, accessory basal, and central nuclei of the amygdala to the cholinergic basal forebrain in rat using a sensitive anterograde tracer, Phaseolus vulgaris leucoagglutinin. The most substantial projections from the amygdala to the basal forebrain are directed to the ventrolateral and dorsomedial aspects of the substantia innominata and the fundus of the striatum. The heaviest projections originate in the capsular, lateral, and intermediate divisions of the central nucleus as well as in the magnocellular and parvicellular divisions of the basal nucleus. Light microscopic analysis of double-stained preparations revealed that the distribution of amygdaloid efferents and cholinergic neurons overlaps most prominently in the ventrolateral substantia innominata. Despite the fact that the central nucleus efferents and cholinergic elements overlap in the ventrolateral substantia innominata, electron microscopic analysis revealed, first, that the postsynaptic targets of the central nucleus efferents are non-cholinergic, probably GABAergic, neurons. Second, 80% of the synaptic contacts were symmetric.The present data extend previous observations showing that the different amygdaloid nuclei provide projections to the selective basal forebrain areas. Further, the central nucleus efferents modulate cholinergic neurons in the basal forebrain indirectly via the GABAergic interneurons.  相似文献   

16.
The aim of the present study was to determine, at the light microscopic level, whether the serotonergic fibers originating from the dorsal raphe nucleus (B7), median raphe nucleus (B8) and ventral tegmentum (B9) make putative synaptic contacts with cholinergic neurons of the nucleus basalis magnocellularis and substantia innominata. For this purpose, we utilized: (i) the anterograde transport of Phaseolus vulgaris leucoagglutinin combined with choline acetyltransferase immunohistochemistry; (ii) choline acetyltransferase/tryptophan hydroxylase double immunohistochemistry; and (iii) the FluoroGold retrograde tracer technique combined with tryptophan hydroxylase immunohistochemistry. Following iontophoretic injections of Phaseolus vulgaris leucoagglutinin in the dorsal raphe nucleus, labeling was observed primarily in the ventral aspects of the nucleus basalis magnocellularis and in the intermediate region of the substantia innominata. When Phaseolus vulgaris leucoagglutinin was combined with choline acetyltransferase immunohistochemistry, a close association between the Phaseolus vulgaris leucoagglutinin-positive fibers and cholinergic neurons was observed, even though the majority of the Phaseolus vulgaris leucoagglutinin-immunoreactive terminals seemed to establish contact with non-cholinergic elements. Following Phaseolus vulgaris leucoagglutinin injection in the median raphe nucleus, very few labeled fibers with no evident close contact with nucleus basalis magnocellularis and substantia innominata cholinergic neurons were observed. After tryptophan hydroxylase/choline acetyltransferase double immunohistochemistry, a plexus of serotonergic (tryptophan hydroxylase-positive) fibers in the vicinity of choline acetyltransferase-immunoreactive neurons of the substantia innominata and nucleus basalis magnocellularis was observed, and some serotonergic terminals have been shown to come into very close contact with the cholinergic cells. Most of the tryptophan hydroxylase-immunoreactive terminals seem to establish contacts with non-cholinergic cells. Following FluoroGold injection in the nucleus basalis magnocellularis and substantia innominata, the majority of retrogradely labeled neurons was observed mainly in the ventromedial cell group of the dorsal raphe nucleus. In this area, a minority of the FluoroGold-positive neurons was tryptophan hydroxylase immunoreactive. These findings show that serotonergic terminals, identified in very close association with the cholinergic neurons in the substantia innominata and nucleus basalis magnocellularis, derive primarily from the B7 serotonergic cell group of the dorsal raphe nucleus, and provide the neuroanatomical evidence for a direct functional interaction between these two neurotransmitter systems in the basal forebrain.  相似文献   

17.
Previous anatomic and electrophysiological evidence suggests that serotonin modulates processing in the vestibular nuclei. This study examined the organization of projections from serotonergic raphe nuclei to the vestibular nuclei in rats. The distribution of serotonergic axons in the vestibular nuclei was visualized immunohistochemically in rat brain slices using antisera directed against the serotonin transporter. The density of serotonin transporter-immunopositive fibers is greatest in the superior vestibular nucleus and the medial vestibular nucleus, especially along the border of the fourth ventricle; it declines in more lateral and caudal regions of the vestibular nuclear complex. After unilateral iontophoretic injections of Fluoro-Gold into the vestibular nuclei, retrogradely labeled neurons were found in the dorsal raphe nucleus (including the dorsomedial, ventromedial and lateral subdivisions) and nucleus raphe obscurus, and to a minor extent in nucleus raphe pallidus and nucleus raphe magnus. The combination of retrograde tracing with serotonin immunohistofluorescence in additional experiments revealed that the vestibular nuclei receive both serotonergic and non-serotonergic projections from raphe nuclei. Tracer injections in densely innervated regions (especially the medial and superior vestibular nuclei) were associated with the largest numbers of Fluoro-Gold-labeled cells. Differences were observed in the termination patterns of projections from the individual raphe nuclei. Thus, the dorsal raphe nucleus sends projections that terminate predominantly in the rostral and medial aspects of the vestibular nuclear complex, while nucleus raphe obscurus projects relatively uniformly throughout the vestibular nuclei. Based on the topographical organization of raphe input to the vestibular nuclei, it appears that dense projections from raphe nuclei are colocalized with terminal fields of flocculo-nodular lobe and uvula Purkinje cells. It is hypothesized that raphe-vestibular connections are organized to selectively modulate processing in regions of the vestibular nuclear complex that receive input from specific cerebellar zones. This represents a potential mechanism whereby motor activity and behavioral arousal could influence the activity of cerebellovestibular circuits.  相似文献   

18.
本文用菜豆自细胞凝集素免疫组织化学顺行示踪技术,观察大白鼠扣带回3区(Cg3)向皮质下核团的纤维投射。其投射区自前向后主要有:伏核、尾壳核内侧1/3、终纹床核、外侧视前区、带旁核、丘脑前内侧核、背内侧核、前室旁核、网状核、外侧缰核、后室旁核、束旁核及丘脑筛状核等。在丘脑下方,标记纤维密集于未定带、内囊的内侧边缘区和乳头丘脑束的周围。自这些区域,有纤维投射至下丘脑外侧区。本文着重分析了标记纤维在杏仁体的分布情况,标记纤维密集于基底外侧前核和外侧核的腹内侧亚核。从而证实Cg3皮质的纤维投射参与基底外侧核一边缘系环路,即所谓记忆环路。而杏仁体中央核仅偶见极稀疏的标记纤维。所以我们认为,Cg3皮质未参与“内脏环路”。标记纤维自注射侧经胼胝体膝至对侧半球,其投射区与注射侧的投射区一致,但标记纤维比较稀疏。  相似文献   

19.
The spinal projections from the raphe-associated brainstem areas containing serotonergic neurons were studied with aldehyde-induced fluorescence in combination with the retrograde fluorescent tracer True Blue in the rat. This technique makes it possible to determine simultaneously the projections of individual neurons and to detect whether serotonin is present in the same neurons. After tracer injections into the spinal cord retrogradely labeled serotonergic and non-serotonergic neurons were found in the medullary raphe nuclei and adjacent regions and to a lesser extent in association with the dorsal and median raphe nuclei in the mesencephalon. Large True Blue injections that covered one side of the spinal cord at mid-cervical level labeled about 60% of the ipsilaterally situated serotonergic neurons in the medullary raphe regions while the corresponding figure contralaterally was about 25%. On both sides a larger number of labeled non-serotonergic neurons were found; these were sometimes located dorsal to, but often intermingled with, the serotonergic cells. While the serotonergic projection from the mesencephalon could not be labeled from injections below cervical levels, the labeling in more caudal brainstem regions exhibited only minor variations depending on the rostrocaudal level of the spinal segment injected. Furthermore, quantitative data from injections at different levels indicate that the majority of the spinal-projecting neurons traverse most of the length of the cord. Summarizing the results obtained from small injections restricted to subregions of the cord we feel that it is possible to distinguish three fairly distinct pathways for spinal projections from the medullary raphe and adjacent regions: The dorsal pathway originates mainly from cells in the caudal pons and rostral medulla oblongata (rostral part of nucleus raphe magnus, nucleus raphe magnus proper, nucleus reticularis gigantocellularis pars alpha and nucleus paragigantocellularis). This pathway, which contains a large non-serotonergic component, descends through the dorsal part of the lateral funiculus and terminates mainly in the dorsal horn at all spinal cord levels. The intermediate pathway is largely serotonergic with its cell bodies located within the arcuate cell group (situated just ventral and lateral to the pyramids very close to the ventral surface of the brainstem) and in the nucleus raphe obscurus and pallidus and terminates in the intermediate grey at thoracolumbar and upper sacral levels.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Anterograde tracing studies were conducted in order to identify efferents from the arcuate nucleus, which contains the hypothalamic opiocortin neuronal pool. Phaseolus vulgaris leucoagglutinin (PHA-L) was stereotaxically iontophoresed into the arcuate nucleus and the terminal fields emanating from the labelled perikarya were identified immunocytochemically. PHA-L-immunoreactive (-ir) fibers were identified in nucleus accumbens, lateral septal nucleus, bed nucleus of the stria terminalis, medial and lateral preoptic areas, anterior hypothalamus, amygdaloid complex, lateral hypothalamus, paraventricular nucleus, zona incerta, dorsal hypothalamus, periventricular gray, medial thalamus and medial habenula. In the brainstem, arcuate terminals were identified in the periaqueductal gray (PAG), dorsal raphe nucleus (DRN), nucleus raphe magnus (NRM), nucleus raphe pallidus, locus coeruleus, parabrachial nucleus, nucleus reticularis gigantocellularis pars alpha, nucleus tractus solitarius and dorsal motor nucleus of the vagus nerve. Dual immunostaining was used to identify the neurochemical content of neurons in arcuate terminal fields in the brainstem. Arcuate fiber terminals established putative contacts with serotonergic neurons in the ventrolateral PAG, DRN and NRM and with noradrenergic neurons in periventricular gray, PAG and locus coeruleus. In the PAG, arcuate fibers terminated in areas with neurons immunoreactive to substance P, neurotensin, enkephalin and cholecystokinin (CCK) and putative contacts were identified with CCK-ir cells. This study provides neuroanatomical evidence that putative opiocortin neurons in the arcuate nucleus influence a descending system which modulates nociception.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号