首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The effects of bilateral deafferentation of the greater superficial petrosal (GSP) and the chorda tympani (CT) nerves on the ingestion of sucrose solutions were studied in rats. The rats received five daily sequential 30 second exposures for each sucrose concentration, and the average number of licks per exposure was calculated. Sucrose concentrations of 0.01, 0.03, 0.10, 0.32, and 1.00 M were presented in ascending order across days, both before and after bilateral sectioning of both the CT and the GSP nerves, the CT alone, the GSP alone, or a sham surgery. Prior to surgery, mean lick rate increased with increasing concentrations of sucrose. Following surgery, the rats with combined GSP and CT nerve sections showed a significant decrease in mean rate of licking to the sucrose solutions. The rats with GSP sections showed a similar decrease in mean lick rate to the sucrose solutions. Animals with sections of the CT nerve and sham-operated animals showed no significant reduction in mean lick rate to the sucrose solutions. These results indicate that the GSP nerve is important to the rat in reinforcing high lick rates to sucrose.  相似文献   

2.
Taste-responsive neurons of the glossopharyngeal nerve of the rat   总被引:8,自引:0,他引:8  
1. Taste sensibilities of neurons in mammalian glossopharyngeal nerves have been inadequately studied, although they innervate the majority of taste buds and may provide unique taste information. 2. Extracellular responses of glossopharyngeal neural units to taste stimuli infused into foliate or vallate papillae were recorded in anesthetized rats. A 0.3-ml/min infusion of stimuli into papillae resulted in short-latency, 5-s nerve-impulse rates that approached 10 times the response rates observed using less invasive means of stimulation. 3. Sucrose, Na saccharin, NaCl, NH4Cl, KCl, HCl, citric acid, acetic acid, MgSO4, and quinine.HCl were effective stimuli for glossopharyngeal neurons at concentrations that have behavioral significance. 4. Response spectra for individual neural units with either foliate or vallate receptive fields fell into three clusters. Forty-six percent were A units that responded most strongly to acids and chloride salts, NH4Cl being the most effective; neither quinine nor sucrose was effective. Twenty-three percent were S units that responded to sugars and saccharin; quinine, salts, and acids were not effective. Thirty-one percent were Q units that responded to quinine; neither NaCl, HCl, nor sucrose was effective stimulus for these fragile units. 5. Glossopharyngeal A neural units were more sensitive to 1 mM HCl than were electrolyte-sensitive H units of the chorda tympani, although both respond generally to salts and acids. Units relatively specific for sodium salts (N units), which are common in the chorda tympani nerve, were not found in the glossopharyngeal nerve, which explains losses in sodium-specific behavior after cutting only the chorda tympani nerve. 6. Q units were the only glossopharyngeal neural units that responded significantly to quinine, and units with similar response spectra do not occur in the chorda tympani nerve. Q units probably mediate aversive reflexes to quinine that are eliminated by cutting only the glossopharyngeal nerve. Glossopharyngeal S neural units were more sensitive to sucrose and are more common than their counterparts in the chorda tympani, although it is not known how they might compare with sugar-sensitive units in the greater superficial petrosal nerve. 7. These data strongly suggest that posterior taste bud fields innervated by the glossopharyngeal nerve are specialized for functions different from those of anterior taste bud fields innervated by the facial nerve.  相似文献   

3.
1. Mammalian taste receptors are distributed within several distinct subpopulations, innervated by branches of cranial nerves VII, IX, and X. Most gustatory electrophysiology has focused on input from the fungiform papillae on the anterior portion of the tongue, carried by the chorda tympani branch of the VIIth nerve. However, laryngeal taste buds in the hamster are as numerous as those in the fungiform papillae. Gustatory fibers in the hamster's chorda tympani and glossopharyngeal nerves have been well characterized. In comparison with these taste fibers, much less is known about the chemical sensitivities of fibers innervating laryngeal taste buds. 2. Action potentials were recorded from 65 individual fibers in the superior laryngeal nerve (SLN) of the hamster. Stimuli were distilled H2O and five concentrations each of sucrose, NaCl, HCl, and quinine hydrochloride (QHCl). All stimuli except the NaCl series were made in physiological saline (0.154 M NaCl) and were delivered from the laryngeal side of the epiglottis via a tracheal cannula. Responses were quantified as the number of impulses in 10 s minus the responses in the preceding 10 s of baseline activity during a rinse with physiological saline. 3. Distilled H2O, HCl, and NaCl were by far the most excitatory stimuli, with mean responses across all cells 5-10 times greater than those evoked by sucrose or QHCl. The order of effectiveness of the strongest concentrations of the stimuli was H2O greater than 0.03 M HCl greater than 1.0 M NaCl much greater than 0.03 M QHCl greater than 1.0 M sucrose. 4. The mean concentration-response function for NaCl was U shaped, with the greatest number of impulses to distilled H2O and 1.0 M NaCl. The responses diminished as the concentrations approached physiological levels (0.154 M NaCl), where there was no response, and increased as NaCl concentration rose above this level. Increasing concentrations of HCl above 0.0003 M elicited increasing responses in these fibers. 5. The mean time course of the responses to distilled H2O and to hypotonic NaCl solutions (0.01 and 0.03 M) peaked in the first few seconds and then declined slowly. This was distinct from the time course of the responses to hypertonic NaCl concentrations (0.3 and 1.0 M), which increased gradually throughout the 10-s response period. Responses to HCl peaked in the initial second and then decayed rapidly to a slowly declining plateau. These distinctively different time courses suggest different receptor mechanisms for water, salt, and acid stimuli. 6. The across-fiber pattern of the responses to hypotonic NaCl solutions correlated strongly to that elicited by distilled H2O.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Bilateral electrophysiologically guided lesions were placed in the nucleus of the solitary tract (NST), the parabrachial nucleus (PBN), and the ventral posteromedial thalamic nucleus (VPMpc) of rats, and 15-min intake and taste reactivity (TR) responses elicited by 3 concentrations each of sucrose, NaCl, HCl, and quinine (Q) HCl were subsequently measured. Compared with controls, NST lesions had no significant effects on intake, and rats with PBN lesions consumed significantly more QHCl, sucrose, NaCl, and HCl. Thalamic lesions decreased sucrose intake. Analysis of TR responses showed that the QHCl threshold for aversive responses increased after VPMpc, PBN, and NST lesions. Rats with NST or PBN lesions were unresponsive to increasing sucrose concentration. TR responses elicited by NaCl and HCl were similar across the groups.  相似文献   

5.
Preferences for NaCl, sucrose, HCl and quinine were examined in rats fed a diet containing D-penicillamine (D-pen), and compared with those of normal control rats. Preferences for NaCl and sucrose were reduced by administration of D-pen, and returned to normal upon cessation of D-pen administration. Change in preferences for NaCl and sucrose depended on the amount as well as the duration of D-pen administration. Preferences for HCl and quinine were unaffected by D-pen. No significant difference in the threshold and magnitude of the chorda tympani nerve responses to the taste stimuli was found between D-pen treated and normal rats. Concentrations of electrolytes in serum and saliva were scarcely changed by D-pen administration, but the amount of serum copper was markedly reduced. Effect of D-pen on sensitivity of taste receptors and role of copper ions in regulating fluid intake are discussed.  相似文献   

6.
The ability of rats to make intensity discriminations was determined by forming a conditioned taste aversion to a moderate concentration of each of four basic taste stimuli, and then measuring the level of acceptance (number of licks during a 15 sec exposure) shown to a range of concentrations of the same chemical. Rats (N = 66) could discriminate between glucose concentrations that were separated by as little as 0.074 M, between NaCl concentrations that differed by 0.029 M, between HCl concentrations that were 9 X 10(-4) M apart, and between quinine HCl concentrations that differed by as little as 2.4 X 10(-6) M.  相似文献   

7.
The receptor cells of taste buds have a life span of about 10 days but it is not known if response characteristics of these receptors alter during the turnover cycle. To examine taste cell responses over time, a micromachined polyimide sieve electrode array was implanted between the cut ends of the rat chorda tympani nerve, which then regenerated through the electrode array. Long-term stable recordings from regenerated single afferent fibers innervating taste buds were possible using this technique for up to 21 days. Responses to taste stimuli recorded from the same fiber changed with time. The changes occurred in both the magnitude of response and the relative response profiles to four chemical stimuli, NaCl, sucrose, HCl, and quinine HCl. These changes in response characteristics were hypothesized to result from changes in the taste receptor cells as the receptor cells turnover in the taste buds.  相似文献   

8.
Control rats rapidly learned to avoid drinking either a sucrose solution (Experiment 1) or a NaCl solution (Experiment 2) when the taste was paired with illness. These rats also produced aversive reactivity to each of these solutions in a taste reactivity test. Rats that lacked gustatory cortex (GC) learned to avoid drinking sucrose and NaCl, albeit at a slower rate than control rats. GC rats failed to display aversive reactivity to these tastes. The GC rats did show normal aversive reactivity to a strong quinine HCl solution during additional tests. It is suggested that the avoidance developed by GC rats did not entail a palatability shift of the conditional stimulus as it did in control rats. This altered learning strategy may account for the consistent learning deficits found in GC rats trained to avoid tastes.  相似文献   

9.
The pattern of licking microstructure during various phases of a conditioned taste aversion (CTA) was evaluated. In Experiment 1, rats ingested lithium chloride (LiCl) for 3 trials and were then offered sodium chloride (NaCl) or sucrose on 3 trials. A CTA to LiCl developed and generalized to NaCl but not to sucrose. CTA intake suppression was characterized by reductions in burst size, average ingestion rate, and intraburst lick rate, and increases in brief pauses and burst counts. Compared with previous studies, LiCl licking shifted from a pattern initially matching that for normally accepted NaCl to one matching licking for normally avoided quinine hydrochloride by the end of the 1st acquisition trial. In Experiment 2, a novel paradigm was developed to show that rats expressed CTA generalization within 9 min of their first LiCl access. These results suggest that licking microstructure analysis can be used to assay changes in hedonic evaluation caused by treatments that produce aversive states.  相似文献   

10.
To provide more information on a potentially valuable preparation for studies in taste and appetite, we have examined the taste preferences (and aversions) and chorda tympani sensitivity of the rabbit. Adult male New Zealand rabbits were given a two-bottle preference test between water and various molar concentrations of NaCl, KCl, sucrose, sodium saccharin, quinine hydrochloride and HCl. The rabbits exhibited the expected preferences for sucrose and aversions for quinine and HCl. Unexpectedly, however, the rabbits exhibited only a mild preference for NaCl, a stronger preference for KCl, and an aversion to sodium saccharin. Multiunit discharges of the chorda tympani nerve to the same taste stimuli indicated that the anterior tongue receptors are acutely sensitive to KCl, NaCl and quinine, but not to sucrose, HCl and saccharin. The chorda tympani was more responsive to KCl than to NaCl. Dilute concentrations of both NaCl and sodium saccharin elicited a two-component response consisting of an immediate excitatory phase followed by a tonic inhibitory phase. This complex response pattern of the whole nerve to NaCl and sodium saccharin is discussed in relation to the impulse frequencies in hypothesized water-sensitive and salt-sensitive fibers. Both the behavioral and neural data are discussed in relation to similar data obtained in rat and hamster.  相似文献   

11.
Behavioral studies suggest that there are significant differences in the taste systems of the inbred mouse (Mus musculus) strains: C57BL/6J (B6) and DBA/2J (D2). In an attempt to understand the biological basis of the behavioral differences, we recorded whole-nerve chorda tympani responses to taste solutions and compared the results to intake of similar solutions in nondeprived mice. Stimuli included a test series composed of 0.1 M sodium chloride, 0.3 M sucrose, 10 mM sodium saccharin, 3 mM hydrochloric acid, and 3 mM quinine hydrochloride, as well as concentration series for the same substances. Neural activity of the chorda tympani that was evoked by sucrose, saccharin, or NaCl was greater in B6 than D2 mice; and neural threshold for sucrose was lower in B6 mice, but neural thresholds for HCl and quinine were lower in D2 mice. B6 mice drank more sucrose and saccharin but less quinine than D2 mice; thus, sucrose and saccharin preference were positively correlated, but NaCl and quinine aversiveness were negatively correlated with the chorda tympani results. Nonetheless, genes involved in the structuring of taste receptors and/or the chordae tympani, which transduce taste stimuli having diverse perceptual qualities, differ for the two mouse strains.  相似文献   

12.
The diverse chemical structures of stimuli that are bitter to humans suggest a need for multiple bitter receptors. Reactions of golden hamsters (Mesocricetus auratus) to 1 mM quinine hydrochloride, 3 mM denatonium benzoate, 180 mM magnesium sulfate, 30-100 mM caffeine, and 1-1.5 mM sucrose octaacetate (SOA) were studied to address whether there are multiple sensations elicited by bitter stimuli. Methods included behavioral generalization of LiCl-induced conditioned taste aversions (CTAs), intake preference tests, and electrophysiological recordings from the chorda tympani (CT) nerve. The five compounds, all bitter to humans, were all innately aversive to hamsters. CTA for the ionic quinine.HCl, denatonium benzoate, and MgSO(4) mutually cross-generalized and these ionic compounds were effective CT stimuli. Yet, the hamsters were much less sensitive to denatonium than humans, requiring a 100,000 times higher concentration for detection. CTA for nonionic caffeine and SOA did not cross-generalize to quinine or the other two ionic stimuli and these nonionic compounds were not effective CT stimuli. SOA and caffeine may elicit aversive reflexes or systemic reactions rather than taste sensations in the animals. Thus, the three ionic and two nonionic compounds form separate aversive stimulus classes in hamsters, neither of which appears to be a close homologue of the human bitter taste.  相似文献   

13.
Nerve fibers sensitive to ionic taste stimuli in chorda tympani of the rat   总被引:8,自引:0,他引:8  
Hypotheses about the peripheral basis for the sense of taste in mammals have been based to a considerable degree on the determined sensibilities of the nerve fibers in the chorda tympani of the rat to chemical stimulation of the anterior tongue. Yet, whether neuron types exist in this nerve, the nature of the basic mechanisms of taste reception that are tapped by this nerve and the form in which information about stimulus quality and intensity is transmitted to the central nervous system by this nerve are, at present, unresolved issues. These issues are addressed in the present study, which is a detailed analysis of the responses of rat chorda tympani nerve fibers that are sensitive to ionic stimuli; solutions applied to the anterior tongue included a range of concentrations of four chemical compounds (sucrose, sodium chloride, hydrochloric acid, and quinine hydrochloride) that represent widely different taste qualities to man or rat. Of the 44 nerve fibers sampled, 40 were stimulated most by one of the two ionic stimuli at test concentrations reported to be equally effective: 21 fibers were most responsive to 0.1 M NaCl and named N units; 19 fibers were most responsive to 0.01 M HCl and named H units. Although many N and H units responded to both HCl and NaCl, the distribution of NaCl-HCl response ratios was bimodal, indicating there are two varieties of units sensitive to ionic taste stimuli in the rat chorda tympani. Sucrose (0.5 M) affected 4 of the nerve fibers and was the most effective stimulus for 3 of them; 0.02 M quinine affected 13 of the fibers but 10 of these were H units. H units were less "specifically tuned" than N units; they were more likely to respond to several of the chemicals. Although the absolute sensitivity to NaCl in N units or to HCl in H units varied more than 10-fold, the relative effects of the four stimuli (response profiles) were generally similar for units of a given type. Exceptions occurred when H unit responses to NaCl or quinine were suppressed by prolonged effects of preceding HCl stimulation. The similarity in response profiles is reflected in high and significant correlations between responses to each pair of effective stimuli across either H or N units.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Extracellular responses from neurons in the parabrachial nuclei (PBN) were studied in rats 4 days old to adulthood during chemical stimulation of the tongue with monochloride salts, citric and hydrochloric acids, sucrose, sodium saccharin, and quinine hydrochloride. Multiunit taste responses were recorded in rats at 4-7 days of age and single-unit responses were recorded from 121 neurons in four other age groups of 14-20 days, 25-35 days, 50-60 days, and adults. PBN neurons in rats 4-7 days old consistently responded to 0.1 M solutions of NH4Cl and NaCl, to 0.5 M solutions of NH4Cl, NaCl, and KCl, and to 1.0 M sucrose, 0.1 M sodium saccharin, 0.1 M citric acid, and 0.1 N HCl. They often did not respond, however, to 0.1 M KCl and 0.01 M quinine hydrochloride. Single PBN neurons in rats 14 days old and older characteristically responded to all stimuli, which consisted of 0.1 and 0.5 M salts, acids, sucrose, sodium saccharin, and quinine hydrochloride. Thus no developmental differences occurred in the number of stimuli to which neurons responded after rats were 14 days old. With the exception of responses to hydrochloric acid, there were significant increases in response frequencies to all stimuli after 14 days of age. Average response frequencies to NH4Cl and citric acid increased after 20 days of age and those to NaCl, LiCl, KCl, sucrose, sodium saccharin, and quinine hydrochloride increased after 35 days of age. Average response frequencies for hydrochloric acid did not alter after 14 days of age. The proportion of single PBN neurons that responded maximally to specific monochloride salts did not change during development. Most single neurons in all age groups responded equally well to NH4Cl, NaCl, and LiCl. No PBN neuron responded maximally to KCl. Developmental differences in response frequencies of third-order gustatory neurons in the PBN generally reflect developmental response changes in first-order neurons of the chorda tympani nerve and second-order neurons of the solitary nucleus. However, unique developmental changes are evident in the PBN. Thus the ontogenetic changes that occur in PBN responses likely relate to modifications of lower-order peripheral and central nervous system afferents and peripheral receptor sensitivities.  相似文献   

15.
Rats with their intra-lingual taste nerves (the chorda tympani and the glossopharyngeal nerve) sectioned were trained to avoid drinking 0.5 M NaCl solution by associating NaCl drinking with subsequent LiCl poisoning. The acquired learned aversion in these rats was abolished after ablations of the neocortical area for the intra-lingual taste nerves. This result indicates that extra-lingual taste inputs from the palatine and epiglottal taste buds share the neocortical taste area with intra-lingual taste inputs.  相似文献   

16.
Calcium deprivation increases the palatability of calcium solutions in rats   总被引:1,自引:0,他引:1  
Calcium-deprived rats have elevated intakes of CaCl2, other calcium salts, and some non-calcium compounds. We used taste reactivity to examine the effects of calcium deprivation on the palatability of CaCl2 and other solutions. Nine male Sprague-Dawley rats were calcium-deprived by maintenance on a low-calcium diet, and eight replete rats were used as controls. All rats were videotaped during intraoral infusion of the following solutions: 30 and 300 mM CaCl2, 30 mM calcium lactate, 100 and 600 mM NaCl, 30 mM MgCl2, 1 mM quinine.HCl, 2.5 mM sodium saccharin, and deionized water. We counted individual orofacial and somatic movements elicited by the infusions and used them to calculate total ingestive and aversive scores. Relative to controls, calcium-deprived rats gave a significantly larger number of tongue protrusions and had higher total ingestive scores for CaCl2, calcium lactate, NaCl, and MgCl2. Our results suggest that CaCl2, calcium lactate, NaCl, and MgCl2 taste more palatable to rats when they are calcium-deprived than replete, and this may be responsible for the increased intake of these solutions following calcium deprivation.  相似文献   

17.
The responses of 39 cortical neurons to 13 kinds of taste stimuli including the four putative basic taste solutions (sucrose, NaCl, HCl, and quinine HCl) applied to the anterior portion of the tongue were recorded extracellularly in lightly anesthetized rats. The neural responses were analyzed in terms of the four hypotheses of quality coding: across-neuron response pattern, labeled-line, matrix pattern, and across-region response pattern notions. Animals were given a conditioned taste aversion to one of the 11 stimuli by pairing it with a gastrointestinal illness caused by intraperitoneal injection of 0.15 M LiCl. Behavioral taste profiles were constructed for each stimulus from the suppression of rate of drinking, which indicates the extent of generalization of aversion to each of the four basic taste stimuli. Neural taste profiles of each taste stimulus, which indicate the relation of the taste of a stimulus to each taste of the four basic stimuli, differed more or less depending on the kind of quality-coding notions employed. Among the four analyses, across-region correlation coefficients that were derived from an across-region response-pattern theory showed the highest correlation with the behavioral suppression rates. Therefore we conclude that processing of taste information in the cortex involves differences in both response magnitude across neurons and the spatial localization of those neurons. Fluid intake per day of each of the 12 taste solutions was measured by the single-bottle preference method. When the amount of intake was described in terms of an hedonic index (HI), which indicates the hedonic aspect of the taste of each solution, HI's for sucrose, NaCl, HCl, and quinine were 1.17, 0.43, -0.49, and -0.89, respectively. These values represent the degree of deviation of solution intake above (i.e., preferable) or below (aversive) the standard water intake. Then, HI's were calculated for each of the 12 taste stimuli based on the neural taste profiles and actual HI's for each of the four basic taste stimuli. The correlations between the calculated and the actual (or behaviorally obtained) HI's were very high (ranging from 0.832 to 0.941). This result suggests that the hedonic dimension of taste can be matched well by any one of the four proposed hypotheses.  相似文献   

18.
Conditioned taste aversions: generalization to taste mixtures   总被引:1,自引:0,他引:1  
Rats were trained to take their daily water ration within a 30-min session, during which the number of licks per 10-sec presentation of a drinking tube could be recorded. During one of these sessions, one of three stimuli (sucrose, NaCl or HCl) was presented, followed by the administration of cyclophosphamide to produce a conditioned taste aversion. When tested with mixtures of the conditioned stimulus (CS) with the other two stimuli and also with quinine hydrochloride, the animals avoided mixtures containing the CS in proportion to its concentration in the mixture. Although the natural preferences and aversions for these stimuli interacted somewhat with the learned taste aversions, rats responded to the presence of a CS in a mixture and did not generalize to other stimuli not containing the CS. Thus, the generalization of conditioned taste aversions provides a good measure of the behavioral similarities among gustatory stimuli.  相似文献   

19.
Relationships between insulin release and taste   总被引:1,自引:0,他引:1  
Tasting sweet food elicits insulin release prior to increasing plasma glucose levels, known as cephalic phase insulin release (CPIR). The characteristic of CPIR is that plasma insulin secretion occurs before the rise of the plasma glucose level. In this experiment, we examined whether taste stimuli placed on the tongue could induce CPIR. We used female Wistar rats and five basic taste stimuli: sucrose (sweet), sodium chloride (salty), HCl (sour), quinine (bitter) or monosodium glutamate (umami). Rats reliably exhibited CPIR to sucrose. Sodium chloride, HCl, quinine, or monosodium glutamate did not elicit CPIR. The non-nutritive sweetener saccharine elicited CPIR. However, starch, which is nutritive but non-sweet, did not elicit CPIR although rats showed a strong preference for starch which is a source of glucose. In addition, we studied whether CPIR was related to taste receptor cell activity. We carried out the experiment in rats with bilaterally cut chorda tympani nerves, one of the gustatory nerves. After sectioning, CPIR was not observed for sweet stimulation. From these results, we conclude that sweetness information conducted by thistaste nerve provides essential information for eliciting CPIR.  相似文献   

20.
Chorda tympani nerve (CT) transection in rats severely impairs NaCl taste detection. These rats can detect higher concentrations of NaCl, however, suggesting that remaining oral nerves maintain some salt sensibility. Rats were tested in a gustometer with a 2-response operant taste-detection task before and after sham surgery (n = 5), combined transection of the CT and the greater superficial petrosal nerves (GSP; 7x, n = 6), or transection of the glossopharyngeal nerve (GL; 9x, n = 4). Thresholds did not significantly change after sham surgery. Although the GL responds to NaCl and innervates nearly 60% of total taste buds, 9x surgery had no effect. However, 7x surgery increased NaCl detection threshold by ~2.5 log-sub-1-sub-0 units, greater than that reported for CT transection alone. These results suggest that the GSP contributes to NaCl sensitivity in rats and also demonstrate that the GL and perhaps the superior laryngeal and lingual nerve proper can maintain some NaCl detectability at high concentrations. These findings confirm the primacy of the 7th nerve relative to the 9th nerve in sensibility of NaCl in the rat model. ((c) 2006 APA, all rights reserved).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号