首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Five fit-testing methods (Bitrex, ambient aerosol condensation nuclei counter using the TSI PortaCount Plus, saccharin, modified ambient aerosol condensation nuclei counter using the TSI PortaCount Plus with the N95-Companion, and generated aerosol using corn oil) were evaluated for their ability to identify poorly fitting N95 filtering-facepiece respirators. Eighteen models of NIOSH-certified, N95 filtering-facepiece respirators were tested by a panel of 25 subjects using each fit-testing method. The penetration of the corn oil and the ambient aerosols through the filter media of each respirator was measured in order to adjust the corresponding generated and ambient aerosol overall fit factors, reflecting only face-seal leakage. Fit-testing results were compared to 5th percentiles of simulated workplace protection factors. Beta errors (the chance of passing a fit-test in error) ranged from 3 percent to 11 percent. Alpha errors (the chance of failing a fit-test in error) ranged from 51 percent to 84 percent. The ambient aerosol using the TSI PortaCount Plus and the generated aerosol methods identified poorly fitting respirators better than the saccharin, the Companion, and Bitrex methods. These errors rates should be considered when selecting a fit-testing method for fitting N95 filtering-facepieces. When both types of errors were combined as an assignment error, the ambient aerosol method using the TSI PortaCount Plus had the lowest percentage of wearers being assigned a poor-fitting respirator.  相似文献   

2.
During July 1995 the National Institute for Occupational Safety and Health (NIOSH) began to certify nine new classes of particulate respirators. To determine the level of performance of these respirators, NIOSH researchers conducted a study to (1) measure the simulated workplace performance of 21 N95 respirator models, (2) determine whether fit-testing affected the performance, and (3) investigate the effect of varying fit-test pass/fail criteria on respirator performance. The performance of each respirator model was measured by conducting 100 total penetration tests. The performance of each respirator model was then estimated by determining the 95th percentile of the total penetration through the respirator (i.e., 95% of wearers of that respirator can expect to have a total penetration value below the 95th percentile penetration value). The 95th percentile of total penetrations for each respirator without fit-testing ranged from 6 to 88%. The 95th percentile of total penetrations for all the respirators combined was 33%, which exceeds the amount of total penetration (10%) normally expected of a half-mask respirator. When a surrogate fit test (1% criterion) was applied to the data, the 95th percentile of total penetrations for each respirator decreased to 1 to 16%. The 95th percentile of total penetrations for all the respirators combined was only 4%. Therefore, fit-testing of N95 respirators is necessary to ensure that the user receives the expected level of protection. The study also found that respirator performance was dependent on the value of the pass/fail criterion used in the surrogate fit-test.  相似文献   

3.
This study investigates two different methods (random effects model and 5th percentile) for determining the performance of three types of respiratory protective devices (elastomeric N95 respirators, N95 filtering-facepiece respirators, and surgical masks) during a simulated workplace test. This study recalculated the protection level of three types of respiratory protective devices using the random effects model, compared the two methods with each other and the APF of 10 for half-facepiece respirators, and determined the value of each of the fit test protocols in attaining the desired level of simulated workplace protection factor (SWPF). Twenty-five test subjects with varying face sizes tested 15 models of elastomeric N95 respirators, 15 models of N95 filtering-facepiece respirators, and 6 models of surgical masks. Simulated workplace testing was conducted using a TSI PORTACOUNT Plus model 8020 and consisted of a series of seven exercises. Six simulated workplace tests were performed with redonning of the respirator/mask occurring between each test. Each of the six tests produced an SWPF. To determine the level of protection provided by the respiratory protective devices, a 90% lower confidence limit for the simulated workplace protection factor (SWPF(LCL90%)) and the 5th percentile of simulated workplace protection factor were computed. The 5th percentile method values could be up to seven times higher than the SWPF(LCL90%) values. Without fit testing, all half-facepiece N95 respirators had a 5th percentile of 4.6 and an SWPF(LCL90%) value of 2.7. N95 filtering-facepiece respirators as a class had values of 3.3 and 2.0, respectively, whereas N95 elastomeric respirators had values of 7.3 and 4.6, respectively. Surgical masks did not provide any protection, with values of 1.2 and 1.4, respectively. Passing either the Bitrex, saccharin, or Companion fit test resulted in the respirators providing the expected level of protection with 5th percentiles greater than or equal to 10 except when passing the Bitrex test with N95 filtering-facepiece respirators, which resulted in a 5th percentile of only 7.9. No substantial difference was seen between the three fit tests. All of the SWPF(LCL90%) values after passing a fit test were less than 10. The random model method provides a more conservative estimate of the protection provided by a respirator because it takes into account both between- and within-wearer variability.  相似文献   

4.
Respiratory protection is offered to American workers in a variety of ways to guard against potential inhalation hazards. Two of the most common ways are elastomeric N95 respirators and N95 filtering-facepiece respirators. Some in the health care industry feel that surgical masks provide an acceptable level of protection in certain situations against particular hazards. This study compared the performance of these types of respiratory protection during a simulated workplace test that measured both filter penetration and face-seal leakage. A panel of 25 test subjects with varying face sizes tested 15 models of elastomeric N95 respirators, 15 models of N95 filtering-facepiece respirators, and 6 models of surgical masks. Simulated workplace testing was conducted using a TSI PORTACOUNT Plus model 8020, and consisted of a series of seven exercises. Six simulated workplace tests were performed with redonning of the respirator/mask occurring between each test. The results of these tests produced a simulated workplace protection factor (SWPF). The geometric mean (GM) and the 5th percentile values of the SWPFs were computed by category of respiratory protection using the six overall SWPF values. The level of protection provided by each of the three respiratory protection types was compared. The GM and 5th percentile SWPF values without fit testing were used for the comparison, as surgical masks were not intended to be fit tested. The GM values were 36 for elastomeric N95 respirators, 21 for N95 filtering-facepiece respirators, and 3 for surgical masks. An analysis of variance demonstrated a statistically significant difference between all three. Elastomeric N95 respirators had the highest 5th percentile SWPF of 7. N95 filtering-facepiece respirators and surgical masks had 5th percentile SWPFs of 3 and 1, respectively. A Fisher Exact Test revealed that the 5th percentile SWPFs for all three types of respiratory protection were statistically different. In addition, both qualitative (Bitrex and saccharin) and quantitative (N95-Companion) fit testing were performed on the N95 filtering- and elastomeric-facepiece respirators. It was found that passing a fit test generally improves the protection afforded the wearer. Passing the Bitrex fit test resulted in 5th percentile SWPFs of 11.1 and 7.9 for elastomeric and filtering-facepiece respirators, respectively. After passing the saccharin tests, the elastomeric respirators provided a 5th percentile of 11.7, and the filtering-facepiece respirators provided a 5th percentile of 11.0. The 5th percentiles after passing the N95-Companion were 13.0 for the elastomeric respirators and 20.5 for the filtering-facepiece respirators. The data supports fit testing as an essential element of a complete respiratory protection program.  相似文献   

5.
A recent study was conducted to compare five fit test methods for screening out poor-fitting N95 filtering-facepiece respirators. Eighteen models of NIOSH-certified, N95 filtering-facepiece respirators were used to assess the fit test methods by using a simulated workplace protection factor (SWPF) test. The purpose of this companion study was to investigate the effect of subject characteristics (gender and face dimensions) and respirator features on respirator fit. The respirator features studied were design style (folding and cup style) and number of sizes available (one size fits all, two sizes, and three sizes). Thirty-three subjects participated in this study. Each was measured for 12 face dimensions using traditional calipers and tape. From this group, 25 subjects with face size categories 1 to 10 tested each respirator. The SWPF test protocol entailed using the PortaCount Plus to determine a SWPF based on total penetration (face-seal leakage plus filter penetration) while the subject performed six simulated workplace movements. Six tests were conducted for each subject/respirator model combination with redonning between tests. The respirator design style (folding style and cup style) did not have a significant effect on respirator fit in this study. The number of respirator sizes available for a model had significant impact on respirator fit on the panel for cup-style respirators with one and two sizes available. There was no significant difference in the geometric mean fit factor between male and female subjects for 16 of the 18 respirator models. Subsets of one to six face dimensions were found to be significantly correlated with SWPFs (p < 0.05) in 16 of the 33 respirator model/respirator size combinations. Bigonial breadth, face width, face length, and nose protrusion appeared the most in subsets (five or six) of face dimensions and their multiple linear regression coefficients were significantly different from zero (p < 0.05). Lip length was found in only one subset. The use of face length and lip length as the criteria to define the current half-facepiece respirator fit test panel may need to be reconsidered when revising the panel. Based on the findings from this and previous studies, face length and face width are recommended measurements that should be used for defining the panel for half-facepiece respirators.  相似文献   

6.
Past studies have found little or no correlation between workplace protection factors (WPFs) and quantitative fit factors (FFs). This study investigated the effect of good- and poor-fitting half-facepiece, air-purifying respirators on protection in actual workplace environments at a steel foundry and the correlation between WPFs and FFs. Fifteen burners and welders, who wore respirators voluntarily, and chippers participated in this study. Each subject was fit-tested with two respirator models each with three sizes, for a total of six fit-tests. Models and sizes were assigned this way to provide a wide range of FFs among study participants. Each worker donned the respirator twice per day (at the beginning of the shift and following the lunch break) for 2 days. Quantitative FFs were first obtained for each donning using the PortaCount Plus trade mark in a separate room. Without redonning the respirators, workers performed normal work for 1 to 2 hours, and WPFs were measured by collecting ambient and in-facepiece samples simultaneously. A second fit-test was conducted without disturbing the respirator. FFs were obtained by averaging the results from the first and second fit-tests. The resulting FFs had a geometric mean (GM) of 400 (range=10-6010) and a geometric standard deviation (GSD) of 6.1. Of the 55 valid donnings, 43 were good fitting (FFs> or =100) and 12 were poor fitting (FFs<100). The WPFs had a GM of 920 (range=13-230,000) and a GSD of 17.8. The WPFs were found to be significantly correlated with the FFs (R(2)=.55 and p-value=.0001). Therefore, FF was shown to be a meaningful indicator of respirator performance in actual workplace environments.  相似文献   

7.
Many agencies recommend that health care workers wear N95 filtering facepiece respirators (N95-FFR) to minimize occupational exposure to bioaerosols, such as tuberculosis and pandemic influenza. Published standards outline procedures for the proper selection of an N95-FFR model, including user seal checks and respirator fit-testing. Some health officials have argued that the respirator fit-test step should be eliminated altogether, given its additional time and cost factors, and that only a user seal check be utilized to ensure that an adequate face seal has been achieved. One of the aims of the current study is to examine whether a user seal check is an appropriate surrogate for respirator fit-testing. Subjects were assigned an N95-FFR and asked to perform a user seal check (as per manufacturer's instructions) after which they immediately underwent a respirator fit-test. Successfully passing a respirator fit-test was based on not detecting a leakage through the face seal (either qualitatively with a test agent or quantitatively with a particulate counter). The sample population consisted of 647 subjects who had never been previously fit-tested (naive), while the remaining 137 participants were experienced respirator users. Only four of the 647 naive subjects (0.62%) identified an inadequate seal during their user seal check. Of the 643 remaining naive subjects who indicated that they had an adequate face seal prior to fit-testing, 158 (25%) failed the subsequent quantitative fit-test and 92 (14%) failed the qualitative fit-test. All 137 experienced users indicated that they had an adequate seal after performing the user seal check; however, 41 (30%) failed the subsequent quantitative fit-test, and 30 (22%) failed the qualitative fit-test. These findings contradict the argument to eliminate fit-testing and rely strictly on a user seal check to evaluate face seal.  相似文献   

8.
N95 filtering facepiece respirators are used by healthcare workers when there is a risk of exposure to airborne hazards during aerosol-generating procedures. Respirator fit-testing is required prior to use to ensure that the selected respirator provides an adequate face seal. Two common fit-test methods can be employed: qualitative fit-test (QLFT) or quantitative fit-test (QNFT). Respiratory protection standards deem both fit-tests to be acceptable. However, previous studies have indicated that fit-test results may differ between QLFT and QNFT and that the outcomes may also be influenced by the type of respirator model. The aim of this study was to determine if there is a difference in fit-test outcomes with our suite of respirators, 3M - 1860S, 1860, AND 1870, and whether the model impacts the fit-test results.

Subjects were recruited from residential care facilities. Each participant was assigned a respirator and underwent sequential QLFT and QNFT fit-tests and the results (either pass or fail) were recorded. To ascertain the degree of agreement between the two fit-tests, a Kappa (Κ) statistic was conducted as per the American National Standards Institute (ANSI) respiratory protection standard. The pass-fail rates were stratified by respirator model and a Kappa statistic was calculated for each to determine effect of model on fit-test outcomes.

We had 619 participants and the aggregate Κ statistic for all respirators was 0.63 which is below the suggested ANSI threshold of 0.70. There was no statistically significant difference in results when stratified by respirator model.

QNFT and QLFT produced different fit-test outcomes for the three respirator models examined. The disagreement in outcomes between the two fit-test methods with our suite of N95 filtering facepiece respirators was approximately 12%. Our findings may benefit other healthcare organizations that use these three respirators.  相似文献   


9.
Fit factor is the ratio of the particle concentration outside (C(out)) to the inside (C(in)) of the respirator and assumes that filter penetration is negligible. For Class-95 respirators, concerns were raised that filter penetration could bias fit test measurements. The TSI N95-Companion was designed to overcome this limitation by measuring only 40-60 nm size particles. Recent research has shown that particles in this size range are the most penetrating for respirators containing electrostic filter media. The goal of this study was to better understand the performance of the N95-Companion by assessing the impact of filter penetration and by comparing C(out)/C(in) ratios measured by other aerosol instruments (nano-Differential Mobility Analyzer/Ultrafine Condensation Particle Counter (nano-DMA/UCPC) and the TSI PortaCount Plus) using N95 filtering facepiece respirators sealed to a manikin and with intentionally created leaks. Results confirmed that 40-60 nm-diameter size room air particles were most penetrating for the respirators tested. A nonlinear relationship was found between the N95-Companion-measured C(out)/C(in) ratios and the other instruments at the sealed condition and at the small leak sizes because the N95-Companion measures only charged particles that are preferentially captured by the electrostic filter media, while the other instrument configurations also measure uncharged particles, which are captured less efficiently. The C(out)/C(in) ratios from the N95-Companion for experiments conducted under sealed condition suggest that filter penetration of negatively charged 40-60 nm size particles was less than 0.05%. Thus, the N95-Companion measured C(out)/C(in) ratios are due primarily to particle penetration through leakage, not through filter media, while the C(out)/C(in) ratios for the PortaCount, nano-DMA/UCPC, and UCPC result from a combination of face seal leakage and filter penetration.  相似文献   

10.
Fifteen subjects underwent three replicates of quantitative respirator fit-testing with N95 filtering facepiece respirators that were donned with the upper strap high on the occiput, as per the manufacturers’ donning instructions. Each fit-test was immediately followed by repeat fit-testing with the upper strap downwardly displaced to the level of the ear sulcus to determine any change in fit factors that might occur with upper strap downward slippage. A total of 35/45 (78%) initial fit-tests had a passing score (fit factor ≥100) with the top strap high on the occiput and 33/35 (94%) of these passed subsequent fit-testing after the top strap was displaced downward to the ear sulcus. Geometric mean fit factors for the initial passed fit-tests, and following downward strap displacement, were 217±1.6 and 207±1.9, respectively (p = 0.64). Downward displacement of the top strap did not significantly impact fit factors of N95 FFRs that had previously passed fit-testing.  相似文献   

11.
Although workplace protection factor (WPF) and simulated workplace protection factor (SWPF) studies provide useful information regarding the performance capabilities of powered air-purifying respirators (PAPRs) under certain workplace or simulated workplace conditions, some fail to address the issue of total PAPR unit performance over extended time. PAPR unit performance over time is of paramount importance in protecting worker health over the course of a work shift or at least for the recommended service lifetime of the PAPR battery pack, whichever is shorter. The need for PAPR unit performance testing has become even more important with the inception of 42 CFR 84 and the recent introduction of electrostatic respirator filter media into the PAPR market. This study was conducted to learn how current PAPRs certified by the National Institute for Occupational Safety and Health would perform under an 8-hour unit performance test similar to the dioctyl phthalate (DOP) loading test described in 42 CFR 84 for R- and P-series filters for nonpowered, air-purifying particulate respirators. In this study, entire PAPR units, four with mechanical filters and one with an electrostatic filter, were tested using a TSI Model 8122 Automated Respirator Tester, with and without the built-in breathing machine. The two, tight-fitting PAPRs, both with mechanical filters, showed little effect on performance resulting from the breathing machine. The two loose-fitting helmet PAPRs indicate that unit performance testing without the breathing machine is a more stringent test than testing with the breathing machine under the conditions used. The PAPR with a loose-fitting hood gave inconclusive results as to which testing condition is more stringent. The PAPR unit equipped with electrostatic filters gave the highest maximum penetration values during unit performance testing.  相似文献   

12.
Three fit test methods (Bitrex, saccharin, and TSI PortaCount Plus with the N95-Companion) were evaluated for their ability to identify wearers of respirators that do not provide adequate protection during a simulated workplace test. Thirty models of NIOSH-certified N95 half-facepiece respirators (15 filtering-facepiece models and 15 elastomeric models) were tested by a panel of 25 subjects using each of the three fit testing methods. Fit testing results were compared to 5th percentiles of simulated workplace protection factors. Alpha errors (the chance of failing a fit test in error) for all 30 respirators were 71% for the Bitrex method, 68% for the saccharin method, and 40% for the Companion method. Beta errors (the chance of passing a fit test in error) for all 30 respirator models combined were 8% for the Bitrex method, 8% for the saccharin method, and 9% for the Companion method. The three fit test methods had different error rates when assessed with filtering facepieces and when assessed with elastomeric respirators. For example, beta errors for the three fit test methods assessed with the 15 filtering facepiece respirators were < or = 5% but ranged from 14% to 21% when assessed with the 15 elastomeric respirators. To predict what happens in a realistic fit testing program, the data were also used to estimate the alpha and beta errors for a simulated respiratory protection program in which a wearer is given up to three trials with one respirator model to pass a fit test before moving onto another model. A subject passing with any of the three methods was considered to have passed the fit test program. The alpha and beta errors for the fit testing in this simulated respiratory protection program were 29% and 19%, respectively. Thus, it is estimated, under the conditions of the simulation, that roughly one in three respirator wearers receiving the expected reduction in exposure (with a particular model) will fail to pass (with that particular model), and that roughly one in five wearers receiving less reduction in exposure than expected will pass the fit testing program in error.  相似文献   

13.
This study, part of the Survey of Painters and Repairers of Auto bodies by Yale (SPRAY), evaluated the effectiveness of respiratory protection against exposure to aliphatic polyisocyanates. A total of 36 shops were assessed for respiratory protection program completeness; 142 workers were measured for respirator fit factor (FF) using PortaCount Plus respirator fit tester. Twenty-two painters from 21 shops were sampled using NIOSH method 5525 to determine the workplace protection factor (WPF) of negative pressure, air-purifying half-facepiece respirators equipped with organic vapor cartridges and paint prefilters during spray-painting and priming activities. Only 11 shops (30%) had written respiratory protection programs. Eighty percent of all fit tested workers passed the test on the first try with FF >or= 100, and 92% passed the second test after respirator use training. Overall geometric mean (GM) FF was 1012 for all fit tested workers. Significant differences on pass rate (92% vs. 72%) and on FF (1990 vs. 736) were found between previously fit tested workers vs. nontested workers. Twenty-nine WPF samples were collected. The outside facepiece GM concentration of total isocyanate group (NCO) was 378.4 micro g NCO/m(3) with 96% concentrations exceeding the U.K. short-term exposure limit, 70 micro g NCO/m(3), but no in-facepiece concentrations exceeded the limit. The GM WPF of total NCO was 319 (GSD 4) and the 5th percentile was 54. WPF of total NCO was positively correlated with the duration of painting task. FF positively correlated with WPF when FF was 450. We conclude that negative pressure, air-purifying half-facepiece respirators equipped with organic vapor cartridges and paint prefilters provide effective protection against isocyanate exposure in spray and priming operations if workers are properly trained and fitted.  相似文献   

14.
To assess performances of N95 respirators for Health Care Workers (HCWs) in a simulated health-care setting, we measured the Simulated Workplace Protection Factors (SWPFs) in real-time from the volunteers. A total of 49 study subjects, wearing 3 M respirator Model N95 1860 and 1860S, were fit tested using the OSHA Exercise Regimen. The test subjects were asked to perform simulated scenarios, including patient assessments, suction, and intravenous injection (IV) treatment. Two TSI PortaCount instruments continuously measured concentrations in the respirator and the room concentration. For Quantitative Fit Testing (QNFT), 36 out of 49 (73.5%) passed the fit factor (FF) criteria set at 100 and 13 (26.5%) failed. The results of QNFT were found to have a low correlation with SWPF, with R2=0.32. The geometric means (GM) and geometric standard deviations (GSD) of SWPF were 68.8 (1.1) for those subjects who passed and 39.6 (1.3) for those who failed. Real-time assessments of SWPF showed that lower SWPFs were; moving head up and down, and bending at the waist. This study identifies the needs for providing different sizes of respirators for HCWs and the importance of performing fit tests for HCWs regularly. And particular movements were identified as attributing factors affecting more on SWPFs.  相似文献   

15.
This study evaluated the workplace performance of an N95 filtering facepiece, air-purifying respirator in a steel foundry. Air samples were collected inside and outside respirators worn by workers who were properly trained and qualitatively fit tested. For most workers, three or four pairs of air samples were collected on each of 2 days. The 49 valid sample sets were analyzed for iron, silicon, and zirconium. Only iron was present in sufficient concentrations to perform workplace protection factor (WPF) calculations. Individual WPF measurements ranged from 5 to 753. The geometric mean of the distribution was 119 with a lower 5th percentile value of 19. Time-weighted average WPFs (WPF(TWA)) were also calculated for each day for each worker as an estimate of the protection an individual might receive with daily respirator use. The WPF(TWA) values ranged from 15 for the worker with the single WPF value of 5, to a high of 684. The distribution of WPF(TWA) had a geometric mean of 120 and a lower 5th percentile of 22. Both data treatments indicate this respirator's performance was consistent with the assigned protection factor of 10 typically used for half facepiece respirators. The respirator provided adequate protection as used in this study. All contaminant concentrations inside the respirator were well below the relevant occupational exposure limits. Data collected also illustrate the dynamic nature of faceseal leakage in the workplace.  相似文献   

16.
National Institute for Occupational Safety and Health recommends the use of particulate respirators for protection against nanoparticles (<100 nm size). Protection afforded by a filtering facepiece particulate respirator is a function of the filter efficiency and the leakage through the face-to-facepiece seal. The combination of particle penetration through filter media and particle leakage through face seal and any component interfaces is considered as total inward leakage (TIL). Although the mechanisms and extent of nanoparticle penetration through filter media have been well documented, information concerning nanoparticle leakage through face seal is lacking. A previous study in our laboratory measured filter penetration and TIL for specific size particles. The results showed higher filter penetration and TIL for 50 nm size particles, i.e. the most penetrating particle size (MPPS) than for 8 and 400 nm size particles. To better understand the significance of particle penetration through filter media and through face seal leakage, this study was expanded to measure filter penetration at sealed condition and TIL with artificially introduced leaks for 20-800 nm particles at 8-40 l minute volumes for four N95 models of filtering facepiece respirators (FFRs) using a breathing manikin. Results showed that the MPPS was ~45 nm for all four respirator models. Filter penetration for 45 nm size particles was significantly (P < 0.05) higher than the values for 400 nm size particles. A consistent increase in filter penetrations for 45 and 400 nm size particles was obtained with increasing breathing minute volumes. Artificial leakage of test aerosols (mode size ~75 nm) through increasing size holes near the sealing area of FFRs showed higher TIL values for 45 nm size particles at different minute volumes, indicating that the induced leakage allows the test aerosols, regardless of particle size, inside the FFR, while filter penetration determines the TIL for different size particles. TIL values obtained for 45 nm size particles were significantly (P < 0.05) higher than the values obtained for 400 nm size particles for all four models. Models with relatively small filter penetration values showed lower TIL values than the models with higher filter penetrations at smaller leak sizes indicating the dependence of TIL values on filter penetration. When the electrostatic charge was removed, the FFRs showed a shift in the MPPS to ~150 nm with the same test aerosols (mode size ~75 nm) at different hole sizes and breathing minute volumes, confirming the interaction between filter penetration and face seal leakage processes. The shift in the MPPS from 45 to 150 nm for the charge removed filters indicates that mechanical filters may perform better against nanoparticles than electrostatic filters rated for the same filter efficiency. The results suggest that among the different size particles that enter inside the N95 respirators, relatively high concentration of the MPPS particles in the breathing zone of respirators can be expected in workplaces with high concentration of nanoparticles. Overall, the data obtained in the study suggest that good fitting respirators with lower filter penetration values would provide better protection against nanoparticles.  相似文献   

17.
Fit is an important but difficult-to-predict feature of respirator performance. This study examined a new approach to measuring respirator performance using two continuous direct-reading particle-counting instruments in a simulated health care workplace. A pilot test was conducted with eight experienced health care professionals who passed a traditional quantitative fit test before performing three randomized 10-min health care scenarios (patient assessment [PA], IV treatment [IV], and wound care [WC]). Two TSI Portacount Plus (Model 8020) with N95 Companion (Model 8095) instruments were used to continuously measure 1-sec ambient particle concentrations inside and outside the respirator facepiece. A simulated workplace protection factor (SWPF) was calculated by dividing outside by inside concentrations. Data were log transformed and examined using analysis of variance (ANOVA) between subjects, scenario types, and scenario order. The GM SWPF for the eight subjects, three scenarios per subject, ranged from 172 to 1073 (GSD 1.7 to 3.5) and was significantly different for each subject. A multi-way analysis of variance showed no difference between the three scenario types (PA, IV, WC). There were differences by the order in which scenarios were performed: the third scenario SWPF was significantly different and higher than that of the first and second scenarios. All subjects passed the initial quantitative fit test with a fit factor of at least 100. Five subjects had fit factors greater than 200 and GM scenario SWPFs greater than 400. Three participants with initial fit factors less than 200 had GM scenario SWPFs ranging from 132 to 326. This pilot test demonstrates that it is possible to evaluate instantaneous respirator fit using two quantitative fit test instruments in a simulated health care environment. Results suggest that an initial fit test may be predictive of fit during simulated tasks and that one scenario may be adequate for measuring a simulated workplace protection factor. [Supplementary materials are available for this article. Go to the publisher's online edition of Journal of Occupational and Environmental Hygiene for the following free supplemental resource: a video for subject D activities overlaid with simulated workplace protection factor data.].  相似文献   

18.
A method for performing quantitative fit tests (QNFT) with N95 filtering facepiece respirators was developed by earlier investigators. The method employs a simple clamping device to allow the penetration of submicron aerosols through N95 filter media to be measured. The measured value is subtracted from total penetration, with the assumption that the remaining penetration represents faceseal leakage. The developers have used the clamp to assess respirator performance. This study evaluated the clamp's ability to measure filter penetration and determine fit factors. In Phase 1, subjects were quantitatively fit-tested with elastomeric half-facepiece respirators using both generated and ambient aerosols. QNFT were done with each aerosol with both P100 and N95 filters without disturbing the facepiece. In Phase 2 of the study elastomeric half facepieces were sealed to subjects' faces to eliminate faceseal leakage. Ambient aerosol QNFT were performed with P100 and N95 filters without disturbing the facepiece. In both phases the clamp was used to measure N95 filter penetration, which was then subtracted from total penetration for the N95 QNFT. It was hypothesized that N95 fit factors corrected for filter penetration would equal the P100 fit factors. Mean corrected N95 fit factors were significantly different from the P100 fit factors in each phase of the study. In addition, there was essentially no correlation between corrected N95 fit factors and P100 fit factors. It was concluded that the clamp method should not be used to fit-test N95 filtering facepieces or otherwise assess respirator performance.  相似文献   

19.
National Institute for Occupational Safety and Health (NIOSH) certification test methods employ charge neutralized NaCl or dioctyl phthalate (DOP) aerosols to measure filter penetration levels of air-purifying particulate respirators photometrically using a TSI 8130 automated filter tester at 85 L/min. A previous study in our laboratory found that widely different filter penetration levels were measured for nanoparticles depending on whether a particle number (count)-based detector or a photometric detector was used. The purpose of this study was to better understand the influence of key test parameters, including filter media type, challenge aerosol size range, and detector system. Initial penetration levels for 17 models of NIOSH-approved N-, R-, and P-series filtering facepiece respirators were measured using the TSI 8130 photometric method and compared with the particle number-based penetration (obtained using two ultrafine condensation particle counters) for the same challenge aerosols generated by the TSI 8130. In general, the penetration obtained by the photometric method was less than the penetration obtained with the number-based method. Filter penetration was also measured for ambient room aerosols. Penetration measured by the TSI 8130 photometric method was lower than the number-based ambient aerosol penetration values. Number-based monodisperse NaCl aerosol penetration measurements showed that the most penetrating particle size was in the 50 nm range for all respirator models tested, with the exception of one model at ~200 nm size. Respirator models containing electrostatic filter media also showed lower penetration values with the TSI 8130 photometric method than the number-based penetration obtained for the most penetrating monodisperse particles. Results suggest that to provide a more challenging respirator filter test method than what is currently used for respirators containing electrostatic media, the test method should utilize a sufficient number of particles <100 nm and a count (particle number)-based detector.  相似文献   

20.
Performance capability of respirators has traditionally been evaluated by testing components of the respirator (e.g., filter efficiency), facepiece fit, total inward leakage, or some other measure of performance evaluated under laboratory conditions. In recent years, increased emphasis has been placed on development of test methods suitable for evaluating respirator performance in the workplace. The goal of such testing is to evaluate the level of protection provided by respirators in the work environment. The AIHA Respiratory Protection Committee believes that workplace testing of respirators has the potential to be an excellent tool for increasing knowledge about the effectiveness of respiratory protection. However, a number of technical issues remain to be addressed before optimal test protocols and data analysis methods can be defined. The progress made to date in workplace testing will be reviewed, and broader discussion about key elements that must be considered when developing guidelines for testing respirators in the workplace will be initiated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号